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Abstract

In this paper we propose a novel fault tolerant multisensor switching strategy for feedback control. Each sensor of the proposed
multisensor scheme has an associated state estimator which, together with a state feedback gain, is able to individually stabilise
the closed loop system. At each instant of time, the switching strategy selects the sensor-estimator pair that provides the best
closed loop performance, as measured by a control-performance criterion. We establish closed-loop stability of the resulting
switching scheme under normal (fault-free) operating conditions. More importantly, we show that closed-loop stability is
preserved in the presence of faulty sensors if a set of conditions on the system parameters (such as bounds on the sensor noises,
maximum and minimum values of the reference signal, etc.) is satisfied. This result enhances and broadens the applicability
of the proposed multisensor scheme since it provides guaranteed properties such as fault tolerance and robust closed-loop
stability under sensor fault. The results are applied to the problem of automotive longitudinal control.
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1 Introduction

Recent advances in sensor technology have generated
substantial research interest in developing strategies for
multisensor fusion, which aim at combining data sup-
plied by different sensors to provide more accurate and
reliable information. When compared with a system em-
ploying a single sensor, a multisensor system has en-
hanced properties such as improved reliability and ro-
bustness, extended coverage, increased confidence, faster
responses and better resolution (Varshney, 1997). Nu-
merous strategies for multisensor fusion have been pro-
posed in the literature; see, e.g., Dasarathy (1997); Ka-
landros et al. (2004); Luo and Kay (1989); Luo et al.
(2002); Sun and Deng (2004); Varshney (1997); Xu et al.
(2004).

The use of sensor fusion estimates in feedback control
systems has largely relied on ad-hoc techniques, whereby
a multisensor fusion system and a controller are designed
independently prior to their assembling within a feed-
back loop. Recent examples of this type of assembly
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49601712, email: Maria.Seron@newcastle.edu.au

technique have been reported for automotive applica-
tions. For instance, Hsiao and Tomizuka (2005) combine
a mixture Kalman filter having fault detection capabil-
ities with an arbitrarily designed stabilising controller
in a multisensor strategy for vehicle lateral control. The
resulting scheme does not have pre-checkable fault tol-
erance guarantees but it performs well in simulations.

In this paper we introduce a novel switching approach
for multisensor feedback control which has fault tol-
erance guarantees. Each sensor of the proposed mul-
tisensor scheme has an associated state estimator. At
each instant of time, the switching strategy utilises a
state feedback gain to feed back the estimate of the
plant states that achieves the best value of a chosen
control-performance criterion. We establish closed-loop
stability of the resulting switching scheme under nor-
mal (fault-free) operating conditions. In particular, we
show that, in the fault-free case, the system achieves
asymptotic stability in the absence of disturbances and
ultimate boundedness in the presence of bounded dis-
turbances. A distinctive characteristic of the proposed
scheme, when compared to sensor fusion approaches [for
example, Hsiao and Tomizuka (2005); Sun and Deng
(2004)], is that we allow for very general descriptions of
the disturbances and do not require any particular prob-
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ability distribution, provided they are bounded. In addi-
tion, we provide conditions to guarantee closed-loop sta-
bility of the proposed switching scheme under the occur-
rence of abrupt faults in some of the sensors leading to
sensor outage. These conditions are such that the switch-
ing scheme never selects failed sensors to implement the
control law. These results enhance and broaden the ap-
plicability of the proposed multisensor scheme since they
provide guaranteed properties such as fault tolerance
and robust closed-loop stability under sensor fault.

The proposed switching scheme is applied to the prob-
lem of automotive vehicle longitudinal control. For this
problem, we find conditions on the parameters of the sys-
tem (such as bounds on the sensor noises, maximum and
minimum values of the reference signal, etc.) to guaran-
tee closed-loop stability under sensor fault. Simulation
results under realistic assumptions confirm the validity
of these conditions. In addition, a numerical example is
presented to compare our proposed scheme with an al-
ternative approach based on multisensor fusion.

2 Multisensor switching scheme

In this section, we describe the proposed multisensor
switching control scheme, depicted in Figure 1.
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Fig. 1. Multisensor switching scheme with plant P , sensors
S1, . . . SN , estimators F1, . . . , FN and feedback gain K.

2.1 Problem statement

Consider the following linear discrete-time plant model

x+ = Ax+Bu+ Ew, (1)

where x ∈ Rn and x+ ∈ Rn are, respectively, the current
and successor system states, u ∈ Rm is the input, and
w ∈ Rr is a bounded process disturbance.

Assumption 2.1 The pair (A,B) is stabilisable. ◦

The control objective is for the state of the plant (1) to
track a reference signal xref that satisfies

x+ref = Axref +Buref . (2)

Assumption 2.2 The reference signals uref and xref
in (2) are bounded. ◦

Note that in the case where A has eigenvalues on or
outside the unit circle, uref must be obtained from some
stabilising feedback controller for system (2).

2.2 Sensors, estimators, and tracking errors

We assume that a plant’s combination of states Cx ∈ Rp
is measured via a family of N sensors

ξ+i = Asiξi +BsiCx, (3)

yi = Csiξi + ηi, i = 1, · · · , N, (4)

where, for each sensor, ξi ∈ Rni is the state, yi ∈ Rpi
is the measured output and ηi ∈ Rpi is a bounded mea-
surement disturbance.

Assumption 2.3 The matrices Asi in (3) have all their
eigenvalues strictly inside the unit circle. ◦

Assumption 2.4 The pairs

([
A 0

BsiC Asi

]
,
[
0 Csi

])
are detectable for i = 1, . . . , N . ◦

For future reference, we define sensor “reference signals”
ξi,ref , i = 1, . . . , N , as the solution to

ξ+i,ref = Asiξi,ref +BsiCxref . (5)

Note that ξi,ref are bounded by Assumptions 2.2 and 2.3.

We consider N state estimators, each of which estimates
the states of the series connection of the plant and a
sensor. The estimators are described by the following
dynamic and update equations, for i = 1, · · · , N :

x̂+i = Ax̂i +Bu+ Li(yi − Csi ξ̂i), (6)

ξ̂+i = Asi ξ̂i +BsiCx̂i + Lsi(yi − Csi ξ̂i), (7)

x̂UPi = x̂i +Mi(yi − Csi ξ̂i), (8)

ξ̂UPi = ξ̂i +Msi(yi − Csi ξ̂i). (9)

Assumption 2.5 The gains Li, Lsi are such that

ALi ,

[
A 0

BsiC Asi

]
−

[
Li

Lsi

] [
0 Csi

]
, (10)

for i = 1, · · · , N , have all their eigenvalues strictly in-
side the unit circle [note that this is always possible by
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Assumption 2.4]. The update gains Mi and Msi are ar-
bitrary real matrices of appropriate dimensions. 2 ◦

Remark 2.6 The estimation errors, defined as[
x̃i

ξ̃i

]
,

[
x− x̂i
ξi − ξ̂i

]
, i = 1, · · · , N, (11)

satisfy, using (1), (3), (4), (6), (7) and (10),[
x̃+i

ξ̃+i

]
= ALi

[
x̃i

ξ̃i

]
+

[
E

0

]
w −

[
Li

Lsi

]
ηi. (12)

Hence, it follows from Assumption 2.5 that x̃i and ξ̃i are
bounded whenever w and ηi are bounded. ◦

We will study the plant tracking error defined as

z , x− xref . (13)

In addition, we define “tracking errors” for the input,
sensor states, plant and sensor state estimates, and plant
state updated estimates, respectively, as

v , u− uref , (14)

ζi , ξi − ξi,ref , (15)

ẑi , x̂i − xref , (16)

ζ̂i , ξ̂i − ξi,ref , (17)

ẑUPi , x̂UPi − xref = ẑi + γi, (18)

for i = 1, · · · , N , where

γi ,Mi(yi − Csi ξ̂i). (19)

Substituting (4) and (11) in (19), we have

γi = MiCsi ξ̃i +Miηi. (20)

2.3 Switching controller

We propose a switching controller that at each time in-
stant selects the sensor-estimator pair, and computes
the corresponding feedback control action, so that the
following switching cost function is minimised:

J(ẑ, v) = ẑ′Qẑ + v′Rv + (Aẑ +Bv)′P (Aẑ +Bv), (21)

2 If the estimators are steady-state Kalman filters then Li,
Lsi , Mi and Msi are obtained via an algebraic Riccati equa-
tion. More generally, Li, Lsi can be computed by placement
of the poles of ALi in some desired location.

where ẑ ∈ ẐUP ,
{
ẑUP1 , · · · , ẑUPN

}
and ẑUPi , i =

1, . . . , N , are the tracking errors for the updated esti-
mates of the plant states, defined in (18). In (21), Q > 0
and R > 0 are design (tuning) parameters, and P > 0
is computed from the algebraic Riccati equation [ARE]

P = A′PA+Q−K ′(R+B′PB)K,

K , (R+B′PB)−1B′PA.
(22)

At each time step, we perform the optimisation

(ẑ∗, v∗) = arg min
(ẑ,v)

{
J(ẑ, v) : ẑ ∈ ẐUP , v ∈ Rm

}
, (23)

and the control is computed from (14) as u∗ = uref +v∗.

From the choices (22) in the cost function, it follows
that, for a fixed ẑ, the minimisation of (21) with
respect to v is equivalent to the standard steady-
state linear quadratic control problem of minimising∑∞
k=0 [ẑ(k)′Qẑ(k) + v(k)′Rv(k)] subject to the dynamic

equation ẑ(k + 1) = Aẑ(k) +Bv(k), ẑ(0) = ẑ.

Hence v = −Kẑ, with K defined in (22), minimises (21)
with respect to v, that is, minv{J(ẑ, v) : v ∈ R} =
J(ẑ,−Kẑ) = ẑ′Qẑ + ẑ′K ′RKẑ + ẑ′(A − BK)′P (A −
BK)ẑ. Using (22) we haveQ+K ′RK+(A−BK)′P (A−
BK) = P , and hence minv{J(ẑ, v) : v ∈ R} = ẑ′P ẑ. It
follows that v∗ = −Kẑ∗ in (23) and, correspondingly,

u∗ = uref −Kẑ∗, ẑ∗ = arg min
ẑ

{
ẑ′P ẑ : ẑ ∈ ẐUP

}
,

(24)

and the minimum is given by

J(ẑ∗,−Kẑ∗) = (ẑ∗)′P ẑ∗. (25)

Thus, at each time instant, the switching controller feeds
back the best, with respect to the minimisation (23), up-
dated estimate tracking error via a linear gain K. Ma-
trix P in (25) is the solution of the ARE and K is the
associated linear state feedback gain. In particular, As-
sumption 2.1 guarantees that K is such that A − BK
has all its eigenvalues strictly inside the unit circle.

3 Closed-loop stability and ultimate bounds in
the absence of sensor fault

In this section we first establish closed-loop stability of
the switching scheme described in Section 2 under full
operability of all sensors, that is, in the absence of sensor
fault. We then derive ultimate bounds on the closed-
loop system’s states that will hold if the system has been
running without sensor fault for sufficiently long time.
These bounds will be used in Section 4 when we obtain
conditions for stability under sensor fault.
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3.1 Closed-loop stability

Theorem 3.1 Under Assumptions 2.1 to 2.5, the
switching control system described in Section 2 has
bounded trajectories. Moreover, the plant tracking er-
ror (13) and the estimator tracking errors (16), for
i = 1, . . . , N , asymptotically converge to zero in the
absence of process and measurement disturbances.

PROOF. Let system (1), (3)–(4) and (6)–(9) be in
closed-loop with control u = u∗ = uref −Kẑ∗ given by
(24). Suppose that, at any arbitrary time, the switching
controller selects some l ∈ {1, · · · , N} so that ẑ∗ = ẑUPl ,
u∗ = uref −KẑUPl . Using (18) and (16), we have

u∗ = uref −K(ẑl+γl) = uref −K(x̂l−xref +γl). (26)

Substituting (26) into (1) and using (13), (2), (11)
and (20), we have that the plant tracking error satisfies

z+ = x+ − x+ref = (A−BK)z+[
E BK −BKMlCsl −BKMl

] [
w′ x̃′l ξ̃

′
l η
′
l

]′
. (27)

In addition, from (16), (11) and (13), we have that, for
all i = 1, . . . , N , the estimator tracking errors satisfy
ẑi = z− x̃i. Since A−BK has all its eigenvalues strictly
inside the unit circle and w, x̃i, ξ̃i and ηi are bounded for
all i ∈ {1, . . . , N} (see Remark 2.6) it then follows that
the tracking error z and the estimator tracking errors ẑi,
i = 1, . . . , N , are bounded. Moreover, they asymptoti-
cally converge to zero in the absence of disturbances. Us-
ing (3), (13), (15) and (5) we have the following sensor
tracking error dynamics, for i = 1, . . . , N :

ζ+i = Asiζi +BsiCz. (28)

By Assumption 2.3 and since z is bounded (as shown
above), it follows from (28) that the sensor tracking er-
rors are bounded for all i = 1, . . . , N . A similar anal-
ysis using (7) and (17) shows that the tracking errors

ζ̂i for the sensor state estimates are bounded for all
i = 1, . . . , N . The result then follows. 2

Theorem 3.1 is important since closed-loop stability is
not automatically guaranteed for switched systems even
if the controller switches between stable systems. Indeed,
one can construct examples of switching between stable
systems and a switching sequence that sends all trajec-
tories to infinity [see, for example, Branicky (1998)].

3.2 Ultimate bounds

We present below a theorem that will allow us to com-
pute ultimate bounds for the closed-loop system’s states.

This result, whose proof can be consulted in Seron et al.
(2006), extends Theorem 4.1 of Kofman et al. (2007)
to a class of switched systems with constant perturba-
tion bounds. In the sequel, |M | denotes the element-
wise magnitude of a (possibly complex) matrix M and
x ≤ y (x < y) denotes the set of elementwise (strict) in-
equalities between the components of the real vectors x
and y, and similarly for x ≥ y (x > y). In addition, if

Wl =
[
w1
l . . . w

n
l

]′
, l ∈ {1, . . . , N}, are vectors in Rn

then maxl∈{1,...,N}Wl denotes the elementwise maxi-
mum, whose ith element, i = 1, . . . , n, is defined as(

max
l∈{1,...,N}

Wl

)
i

, max{wi1, . . . wiN}. (29)

Theorem 3.2 Consider the system x(k + 1) =
Ax(k) + Blνl(k), where A ∈ Rn×n, Bl ∈ Rn×m,
l ∈ {1, . . . , N}, and A has eigenvalues strictly inside
the unit circle. Let V ΛV −1 be the Jordan matrix de-
composition of A. Assume that, for all l ∈ {1, . . . , N},
| νl(k) | ≤ ν̄l for all k ≥ 0, where ν̄l ∈ Rm, ν̄l > 0, and let

ν̄ , maxl∈{1,...,N}
∣∣V −1Bl ∣∣ ν̄l. For ε ∈ Rn, ε ≥ 0, define

Sε ,
{
x ∈ Rn :

∣∣V −1x ∣∣ ≤ (I − |Λ |)−1ν̄ + ε
}
. (30)

Then:

(1) For any ε ≥ 0, the set Sε is (positively) invariant.
That is, if x(0) ∈ Sε, then x(k) ∈ Sε for all k ≥ 0.

(2) Given ε ∈ Rn, ε > 0, there exists k∗ ≥ 0 such that
x(k) ∈ Sε for all k ≥ k∗. ◦

Remark 3.3 Part 1 of Theorem 3.2 characterises in-
variant sets in the state space, the smallest being the set
S0 obtained by taking ε = 0 in (30). Part 2 shows that the
state trajectories asymptotically converge to the invari-
ant set Sε for ε ≥ 0 (in particular, S0) from any initial
condition. In addition, for ε > 0, the state trajectories
enter Sε in finite time. Note that an elementwise ultimate
bound on the state can be obtained from Theorem 3.2 us-
ing the fact that |x(k) | ≤ |V |

∣∣V −1x(k)
∣∣. ◦

Remark 3.4 If the eigenvalues of A = V ΛV −1 are real,
then the sets Sε in (30) are polyhedral sets. ◦

Remark 3.5 Assume that bounds on the measurement
disturbances |ηi| ≤ η̄i, for i = 1, . . . , N , and process
disturbance |w| ≤ w̄ are problem data. 3 Applying The-
orem 3.2 to the estimation error subsystems (12), we
obtain the following invariant sets in which each sub-
system’s trajectories will remain if started inside or to-
wards which the trajectories will asymptotically converge

3 In the sequel, if ν(k) ∈ Rm is a discrete-time signal and
ν̄ ∈ Rm, ν̄ ≥ 0, then |ν| ≤ ν̄ denotes the elementwise bound
|ν(k)| ≤ ν̄ for all times k ≥ k∗, for some k∗ ≥ 0.
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if started outside:

S̃i ,

{[
x̃i

ξ̃i

]
∈ Rn+ni :

∣∣∣∣∣V −1i

[
x̃i

ξ̃i

]∣∣∣∣∣ ≤
(I − |Λi|)−1

∣∣∣∣∣V −1i

[
E −Li
0 −Lsi

]∣∣∣∣∣
[
w̄

η̄i

]}
, (31)

for i = 1, . . . , N , where ALi
= ViΛiV

−1
i is the Jordan

decomposition of ALi
. From (31), we can compute ulti-

mate bounds on x̃i and ξ̃i, as suggested in Remark 3.3:∣∣∣∣∣x̃iξ̃i
∣∣∣∣∣ ≤ |Vi|(I − |Λi|)−1

∣∣∣∣∣V −1i

[
E −Li
0 −Lsi

]∣∣∣∣∣
[
w̄

η̄i

]
. (32)

Then, from (27), (28) and the bounds (32), we can ob-
tain ultimate bounds on z, and then on ζi, again using
Theorem 3.2 and Remark 3.3. ◦

3.3 Closed-loop dynamics in the absence of fault

We will consider the dynamics of the estimator tracking

errors ẑi and ζ̂i in closed loop with (26). Using equations
from Sections 2.1 and 3.1 and the definitions

Bli ,

[
−BK BK −BKMlCsl −BKMl LiCsi Li

0 0 0 0 LsiCsi Lsi

]
,

νli ,
[
z′ x̃′l ξ̃

′
l η
′
l ζ
′
i η
′
i

]′
, (33)

we obtain the following closed-loop estimator tracking
error subsystems (see Seron et al. (2006) for details):[

ẑ+i

ζ̂+i

]
= ALi

[
ẑi

ζ̂i

]
+Bliνli, i = 1, . . . , N, (34)

and l varying in {1, . . . , N} [recall that l represents the
updated estimate tracking error ẑUPl selected at a given

time instant in (26)]. Combining bounds on z, x̃i, ξ̃i
and ζi, for i = 1, . . . , N , computed as discussed in Re-
mark 3.5, readily yields a bound ν̄li such that |νli| ≤ ν̄li.
Using (30) (with ε = 0) we can then compute the set

Ŝi ,

{[
ẑi

ζ̂i

]
∈ Rn+ni :

∣∣∣∣∣V −1i

[
ẑi

ζ̂i

]∣∣∣∣∣ ≤
(I − |Λi|)−1 max

l∈{1,...,N}
|V −1i Bli|ν̄li

}
, (35)

where the maximum is taken elementwise [cf. (29)].
Thus, it follows from Theorem 3.2 that, in the absence
of sensor fault, the trajectories of (34) will remain

in Ŝi if started inside or will asymptotically converge
towards Ŝi if started outside.

4 Closed-loop stability under sensor fault

Our fault model is described in the following definition.
We consider abrupt faults that lead to sensor outage.

Definition 1 A sensor is operational (or “healthy”)
when its measured output is given by (4). When a jth
sensor fails, its dynamics continue to obey (3), while its
measured output during the fault is given by

yj = ηFj , (36)

where ηFj is a bounded noise.

In the following subsections we shall establish closed-
loop stability under sensor fault by providing conditions
that guarantee that the switching scheme never selects
faulty sensors to implement the control law.

4.1 Closed-loop dynamics during the fault

In this section we analyse the behaviour of the closed-
loop system under the following working hypothesis:

Assumption 4.1 The switching scheme always selects
only healthy sensors whose estimation errors satisfy (32).

Section 4.2 will then derive conditions that ensure that
our working hypothesis is satisfied.

4.1.1 Healthy sensors

Provided only healthy sensors are selected by the
switching controller, the closed-loop dynamics of the
estimator tracking errors for each of the ith sensors
that remain healthy continue to obey (34), that is, do
not change in the event a jth sensor fails. Moreover,
the bounds that define the sets Ŝi, namely |νli| ≤ ν̄li,
remain valid while (32) holds for the selected sensor
[see (35) and (33)]. Thus, under Assumption 4.1, if the
trajectories of healthy sensors (34) are evolving in the

corresponding set Ŝi, then they remain in this set.

4.1.2 Faulty sensors

Assuming that the switching scheme only selects healthy
sensors l ∈ {1, · · · , N}, l 6= j, then using equations from
Sections 2.1 and 3.1 together with (36), Bli in (33) and

νFlj ,
[
z′ x̃′l ξ̃

′
l η
′
l − ξ′j,ref ηFj

′]′
, (37)

we have the following closed-loop estimator tracking er-
ror subsystems during the fault:[

ẑ+j

ζ̂+j

]
= ALj

[
ẑj

ζ̂j

]
+Bljν

F
lj , j = 1, . . . , N, (38)
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and l varying in {1, . . . , N}, l 6= j. Comparing (38)–(37)
with (34)–(33), we observe that some of the inputs to the
tracking error subsystems have changed after the fault.
However, under Assumption 4.1, the signals z, x̃l, ξ̃l, for
all operational sensors l ∈ {1, . . . , N}, l 6= j, satisfy the
same bounds as before the fault. In addition, ξj,ref and
ηFj , for j = 1, . . . , N , are bounded by assumption (we
can readily obtain bounds on ξj,ref from (5) since, in
practice, bounds on the reference signal xref are known).
Hence, as before, we can use these different bounds to
obtain a bound ν̄Flj such that |νFlj | ≤ ν̄Flj . Using (30) (with

ε = 0) we can then compute the “under-fault” set

ŜFj ,

{[
ẑj

ζ̂j

]
∈ Rn+nj :

∣∣∣∣∣V −1j

[
ẑj

ζ̂j

]∣∣∣∣∣ ≤
(I − |Λj |)−1 max

l∈{1,...,N}
|V −1j Blj |ν̄Flj

}
, (39)

where the maximum is taken elementwise [cf. (29)].
Thus, it follows from Theorem 3.2 and the previous anal-
ysis that, under Assumption 4.1, the trajectories of (38)

remain in ŜFj defined in (39) if started inside or will

asymptotically converge towards ŜFj if started outside.

We are now ready to close the circle of ideas by making
provisions to ensure that our working hypothesis is satis-
fied. This will be performed in two steps in the following
subsection. The first step is to specify a fault scenario
which describes the kind of fault situations that the pro-
posed framework allows. The second step involves deriv-
ing conditions which ensure that, while the trajectories
associated with healthy sensors are in the sets (35) and
those associated with faulty sensors are in the sets (39),
the optimisation (21)–(23) used by the switching scheme
always favours a healthy sensor over any faulty sensor.

4.2 Conditions for closed-loop stability

The analysis of Section 4.1 motivates us to impose the
following assumption, which describes the less conserva-
tive fault scenario that allows us to obtain fault toler-
ance guarantees within the proposed framework.

Assumption 4.2 (Fault scenario)

(1) At any time instant, at least one of the following two
situations is true:
(a) all sensors are operational;
(b) at least one sensor is operational; in addition,

all operational sensors have estimation errors
inside the invariant sets S̃i (31), and at least
one operational lth sensor has the states of the
corresponding estimator tracking error subsys-
tem (34) in the invariant set Ŝl (35).

(2) Any time a jth sensor fails, for any j ∈ {1, . . . , N},
the states of the corresponding estimator track-
ing error subsystem (38) belong to the invariant

set ŜFj (39), and this set contains Ŝj (35), that is,

ŜFj ⊃ Ŝj . (40)

The above fault scenario allows any sequence of persis-
tent sensor faults, including simultaneous faults of sev-
eral sensors, as long as the first fault occurs after suffi-
ciently long time of operation without fault (such that
all variables have entered the corresponding invariant
sets) and at least one sensor remains operational.

The following theorem provides conditions to guarantee
closed-loop stability under sensor fault.

Theorem 4.3 Suppose that bounds on the sensor noises
ηi, on the “fault noises” ηFi and on the sensor reference
signals ξj,ref , for i = 1, . . . , N , are given in the form
ηi ∈ Ni, ηFi ∈ NF

i and ξi,ref ∈ Ξi,ref , respectively, where
Ni, N

F
i and Ξi,ref are polyhedral sets. Also let Zi be an

ultimate-bound set for the sensor tracking error dynamics
(28). 4 Suppose that the following conditions hold for all
j = 1, . . . , N :

max
i
{Jmaxi : i ∈ {1, . . . , N}, i 6= j} < Jminj , (41)

where

Jmaxi , max
{

(ẑUPi )′P ẑUPi : ẑUPi = Tiθi,

θi ∈ Ŝi ×Ni × Zi
}
, (42)

Jminj , min
{

(ẑUPj )′P ẑUPj : ẑUPj = Tjθ
F
j ,

θFj ∈ ŜFj ×NF
j × (−Ξj,ref )

}
,

(43)

Ti ,
[
I −MiCsi Mi MiCsi

]
, (44)

θi ,
[
ẑ′i ζ̂

′
i ηi
′ ζ ′i

]′
, θFj ,

[
ẑ′j ζ̂

′
j η

F
j
′ −ξ′j,ref

]′
.

(45)

Then, under the fault scenario of Assumption 4.2,
the closed-loop dynamics of the multisensor switching
scheme described in Section 2 remain stable in the event
any sensor fails.

PROOF. For all healthy sensors, using (18), (19), (4),
(15), (17), (44)–(45) we can write ẑUPi = ẑi + γi = Tiθi.
On the other hand, using (18), (19), (36), (17), (44)–
(45), we can write for the faulty sensor ẑUPj = ẑj + γj =

4 The set Zi can be computed using ultimate bounds on z
and applying Theorem 3.2 to (28).
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Tj θ
F
j . Thus, using (25), conditions (41)–(43) ensure that

the largest possible value of the switching cost over all
healthy sensors whose estimator tracking error states
belong to Ŝi (35), is smaller than the smallest possible
cost value achievable by the faulty jth sensor, whenever
the latter has estimator tracking error states in ŜFj (39).

Suppose now that a jth sensor fails. At the time of the
fault, Condition 1-(b) of Assumption 4.2 guarantees that
there exists at least one operational lth sensor that has
the states of the corresponding estimator tracking error
subsystem (34) in the invariant set Ŝl. In addition, by
Condition 2 of Assumption 4.2, the states of the estima-
tor tracking error subsystem corresponding to the failed
sensor are in ŜFj . Conditions (41)–(43) then ensure that
the lth sensor has smaller cost than the failed jth sensor
and thus the latter cannot be selected by the switching
controller. It follows that at the time of the fault the con-
troller selects any of the available healthy sensors (not
necessarily the lth sensor) which, by Condition 1-(b)

of Assumption 4.2 has estimation errors inside S̃i (31),
hence satisfying the bounds (32). Thus Assumption 4.1
holds at the time of the fault and the analysis of Sec-
tion 4.1 shows that the states of the estimator tracking
error subsystems corresponding to healthy sensors and
to the failed jth sensor remain in Ŝi and ŜFj , respectively.
The previous argument can be repeated inductively for
the duration of the fault, concluding that the switching
controller never selects faulty sensors to implement the
control law and that the resulting dynamics remain in
the respective invariant sets. The result then follows. 2

5 Implementation issues

The on-line implementation of the switching controller
involves simple comparisons needed to evaluate (24).
The fault tolerance guarantees of the scheme, on the
other hand, can be tested off line. Indeed, for a given
set of system parameters (such as bounds on the sen-
sor noises, maximum and minimum values of the refer-
ence signal, etc.), conditions (40) and (41)–(43) can be
checked before the implementation of the scheme. To
check condition (40), note that it holds if and only if

(I − |Λj |)−1
∣∣∣∣∣V −1j

[
LjCsj Lj

LsjCsj Lsj

]∣∣∣∣∣
[
ξ̄j,ref − ζ̄j
η̄Fj − η̄j

]
> 0,

(46)
where the ‘bars’ denote bounds on the elementwise mag-
nitude of the corresponding signal [see (35), (39) and
the definitions (33) and (37)]. Thus (40) can be satisfied
by appropriate selection of bounds on |ξj,ref | and |ηFj |.
The evaluation of conditions (41)–(43) is particularly
simple if the sets Zi are polyhedral (see footnote 4) and
the eigenvalues of the matrices ALj

are real (which im-
plies that the sets (35) and (39) are polyhedral, see Re-
mark 3.4). In this case, the maximum in (42) is achieved

at one of the vertices of the set Ŝi × Ni × Zi and the
minimisation in (43) is a (semidefinite) quadratic pro-
gramme. Thus, the optimisations required by the off-line
tests can be easily solved using standard numerical al-
gorithms (see also Section 6 below).

6 Geometric interpretation

In this section we give a geometric interpretation of con-
ditions (41)–(43). We require the following definitions.
If X ⊂ Rn and Y ⊂ Rn are some sets, their sum is the
set X+Y = {z ∈ Rn : z = x+ y, x ∈ X, y ∈ Y }. If T ∈
Rn×m is a matrix andX ⊂ Rm is a set, the set TX ⊂ Rn
is defined as TX = {z ∈ Rn : z = Tx, x ∈ X}.

Next, introduce the variable si , P 1/2ẑUPi , where P 1/2

is the symmetric square root of the switching cost ma-
trix P . Using the definitions (44)–(45) and the sets

Smaxi , P 1/2
{

[I −MiCsi ] Ŝi +MiNi +MiCsiZi,
}
,

(47)

Sminj ,P 1/2
{[
I −MjCsj

]
ŜFj +MjN

F
j −MjCsjΞj,ref

}
,

(48)

we have that (42) and (43) have the equivalent form

Jmaxi = max
{
‖si‖2 : si ∈ Smaxi

}
, (49)

Jminj = min
{
‖sj‖2 : sj ∈ Sminj

}
, (50)

where ‖·‖ is the vector 2-norm. Thus, Jmaxi is the max-
imum squared-norm over all vectors in Smaxi and Jminj

is the minimum squared-norm over all vectors in Sminj .
Clearly, for (41) to hold for a particular index i, the sets
Smaxi and Sminj must be separated by a sphere in Rn
centred at zero. Figure 2 shows an illustration of a case
where condition (41) holds for particular indices i and j.

Ji

Jj

Si
Sj

Fig. 2. Geometric interpretation of conditions (41)–(43).

7



We next explain a mechanism by which the above sepa-
ration can be achieved in practice. The sets Ŝi, Zi and
ŜFj are centred at zero since, in their computation, the
process and (operational) measurement noise bounds are
considered centred at zero (recall, for example, that in

the computation of ŜFj in (39) we used bounds of the

form |νFlj | ≤ ν̄Flj ). Hence, if Ni is also centred at zero

(which is typically the case), then the same is true for
the set Smaxi in (47), which is thus equal to the sum of
three sets centred at zero. The set Sminj in (48) is also the

sum of three sets. The first set, P 1/2
[
I −MjCsj

]
ŜFj , is

centred at zero as just discussed. Therefore, to achieve
the desired separation, the “fault noise” sets NF

j and/or
the reference related sets Ξj,ref must necessarily be cen-
tred away from zero. Depending on the application, the
former can be achieved, for example, by utilising prelim-
inary “built-in” fault detection mechanisms in the sen-
sors (Hsiao and Tomizuka, 2005) while the latter can be
achieved if the reference coordinate frame is off set away
from zero. Note then that regulation problems around
zero can only be handled by the scheme using prelimi-
nary fault detection mechanisms in the sensors.

Once the conditions for separation of the sets are ful-
filled, then one could, in principle, perform fault de-
tection and isolation using this information. Here we
have chosen to achieve faulty sensor detection and iso-
lation “implicitly” by guaranteeing that the switching
cost avoids selecting faulty sensors. This feature of the
proposed scheme, we believe, departs from other avail-
able techniques to achieve fault detection and isolation.
Notice also that the proposed switching scheme is mo-
tivated by a control performance criterion and has a
good performance in the absence of sensor failure. The
possibility to provide fault tolerance guarantees with
the scheme without any modification comes as a bonus.
Moreover, a nice property of the proposed scheme is the
simplicity of its on-line implementation, which requires
only to compare cost values. On the other hand, the use
of the separation of the sets as a mechanism for fault
detection and isolation would result in a relatively more
complex scheme requiring more involved on-line tests.

7 Automotive vehicle longitudinal control

We consider here the longitudinal control problem for
a car following scenario. In this scenario, the follower
car approaches the leader car at a high speed until
the follower car velocity equals the leader’s one and
the interdistance between the two cars takes the de-
sired value and remains constant thereafter (Mart́ınez
and Canudas de Wit, 2004). The automotive longi-
tudinal control is generally composed by an inner
control loop which compensates the nonlinear vehicle
dynamics, and an outer control loop which is responsi-
ble for tracking of the desired interdistance reference.

This example is concerned with the outer interdis-
tance control loop. The interdistance dynamics are
represented by the discretisation of a double integrator
plant, for a sample time of 0.1s, and satisfy (1) with

A =

[
1 0.1

0 1

]
, B = [0 0.1]

′
, E = B and |w| ≤ 0.02. The

two sensor dynamics are modelled by (3)–(4) with 5

C = [1 0] and As1 = 0.6065, Bs1 = 0.5, Cs1 = 0.7869,
As2 = 0.8187, Bs2 = 0.5, Cs2 = 0.3625, |ηi| ≤ 0.1,
|ηFi | ≤ 1 [cf. (36)], for i = 1, 2. The estimators are given

by (6)–(9) with L1 = [1.1064 0.3010]
′
, Ls1 = 1.3089,

L2 = [1.1945 0.2985]
′
, Ls2 = 2.8405 (computed by pole

placement) and

[
Mi

Msi

]
=

[
A 0

BsiC Asi

]−1 [
Li

Lsi

]
, for

i = 1, 2. The Jordan decompositions ALi
= ViΛiV

−1
i

of (10) are computed using Matlab’s eig function.
The controller is designed as in Section 2.3 with Q =[

0.1007 0

0 6.3187

]
, R = 7.2598, K = [0.1118 1.0091].

We assume that the leader car has a constant velocity of
20m/s, the initial interdistance between leader and fol-
lower cars is 75m, and the initial velocity of the follower
car is 30m/s. Using the interdistance reference model
of Mart́ınez and Canudas de Wit (2004) with the above
problem data gives an elementwise bounded reference
tracking signal [33 − 10]

′ ≤ xref ≤ [75 0.08]
′
.

With the above data, the set condition (40) [and equiv-
alently (46)], for i = 1, 2, and conditions (41)–(43) are
satisfied. Hence the system is guaranteed to be closed-
loop stable under sensor fault. The geometric conditions
for (41)–(43), described in Section 6, are shown for this
particular example in Figure 3.

In the simulation, each sensor fails for a period of 20s
and then recovers, with no fault periods overlapping be-
tween sensors (since we require at least one operational
sensor at all times). Sensor 1 fails during 20 ≤ t ≤ 40
and sensor 2 fails during 70 ≤ t ≤ 90. Figure 4a) depicts
the interdistance reference signal (dotted) and the ac-
tual interdistance between vehicles (solid). The switch-
ing sequence, shown in Figure 4b), commutes between
both sensors in the absence of fault and chooses exclu-
sively the healthy sensor during faults. The updated es-
timate of the interdistance between vehicles is shown in
Figure 4c) for sensor 1’s estimator, and in Figure 4d) for
sensor 2’s estimator. The shaded areas in Figures 4b)–
4f) indicate the period when a sensor is failed. Notice
that the switching system exhibits a stable behaviour
for the fault scenario described in Assumption 4.2.

5 We simulate a slow sensor (stereo-vision), and a fast sensor
(laser). They are both modelled as low pass filters, where
the chosen bandwidths characterise the necessary time for
signal processing (Gavrila et al., 2001).
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Fig. 3. Geometric interpretation of the multisensor switching
stability conditions (41)–(43) for longitudinal control.

Fig. 4. Longitudinal vehicle control using the multisensor
switching scheme. a) Interdistance reference signal (dotted)
and actual interdistance (solid). b) Switching sequence. c),
d) Interdistance reference (dotted) and updated estimate of
the interdistance using sensor 1 and 2, respectively.

8 Comparison with a fusion-based scheme

In this section we compare the tracking performances be-
tween the multisensor switching control scheme of Sec-
tion 2 and an ad-hoc fault tolerant control scheme, based
on sensor fusion, proposed in Zhuo et al. (2006). We con-

sider a system of the form (1) with A = 1, B = 0.1,
E = 0.01 and |w| ≤ 0.5. The state x is measured via
a set of 3 identical sensors of the form (3)–(4) with
BsiC = 0.5, Asi = 0.6065, Csi = 0.7869, |ηi| ≤ 0.5, and
|ηFi | ≤ 0.5 [cf. (36)], for i = 1, 2, 3. The reference signal
xref satisfies (2) and is bounded as 4 ≤ xref ≤ 6.

8.1 Fault tolerant multisensor switching scheme

The estimators are given by (6)–(9) with Li = Mi =
0.9999, Lsi = Msi = 1.2707, for i = 1, 2, 3 (Li and Lsi
are computed by pole placement). The Jordan decompo-
sitions ALi

= ViΛiV
−1
i of (10) are computed using Mat-

lab’s eig function. The controller is designed as in Sec-
tion 2.3 with Q = 1, R = 16, yielding K = 0.2469. The
above data satisfy the invariant set condition (40) [and
equivalently (46)], for i = 1, 2, 3, and conditions (41)–
(43). Thus, Theorem 4.3 guarantees closed-loop stability
of the ensuing feedback control system using the multi-
sensor switching scheme described in Section 2.

8.2 Fusion-based scheme

In the scheme of Zhuo et al. (2006), each sensor has
an associated Kalman filter (KF) of the form (6)–(9).
For each KF, a fault detection and isolation (FDI) unit
performs fault detection using hypothesis testing proce-
dures (Mehra and Peschon, 1971). For all sensors con-
sidered healthy by the FDI unit, the corresponding up-
dated tracking error estimates ẑUPi [cf. (18)] are com-
bined to form the optimal (in the linear minimum vari-
ance sense) information fusion Kalman filter estimate
ẑo (Sun and Deng, 2004). The feedback control action
is then computed using ẑo with the feedback gain K of
Section 8.1. The disturbances w, ηi and ηFi , i = 1, 2, 3,
are i.i.d zero mean Gaussian white noise sequences with
variance 0.0156, independent from each other. The ini-

tialisation values for the KFs are x̂i(0|0) = 0, ξ̂i(0|0) = 0
and the error covariance Pi(0|0) = 0 for i = 1, 2, 3.

8.3 Simulation comparison

We perform 100 runs under identical conditions but with
different noise realisations. To satisfy the assumptions
required by both schemes, all 100 realisations of the
Gaussian noises for the simulation are selected as ex-
plained in Section 8.2 and such that they are bounded
as |w| ≤ 0.5, |ηi| ≤ 0.5, and |ηFi | ≤ 0.5, i = 1, 2, 3. In
all 100 runs, sensor 1 fails during 50s ≤ t ≤ 100s and
sensors 2 and 3 fail during 150s ≤ t ≤ 200s. Figure 5a)
depicts the reference signal xref (dotted), and the av-
erage over all runs of the plant state responses using
the switching scheme (solid) and using the fusion-based
scheme (dashed). Figure 5b) plots the average tracking
error z using the multisensor switching scheme (solid)
and the fusion-based scheme (dashed). Both schemes ex-
hibit similar tracking performances during the periods
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Fig. 5. Tracking comparison between the proposed switching
scheme (solid) and the fusion-based scheme of Zhuo et al.
(2006) (dashed).

when all sensors are healthy, with a slightly better per-
formance for the fusion-based scheme. Thus, although
the switching scheme might seem to discard useful in-
formation by selecting only one healthy sensor at each
time, the performance is not degraded with respect to
that of the fusion-based scheme. When two sensors fail
the average performance of the fusion-based scheme is
noticeably degraded. This is due to the fact that, espe-
cially during 150s ≤ t ≤ 160s the FDI unit gives false
alarms in most runs, that is, it wrongly deems all sen-
sors faulty and hence the scheme works in open loop.
On the other hand, the switching mechanism maintains
a similar performance during all simulation. We observe
that the proposed switching scheme is relatively easy
to implement (see Section 5), whereas the fusion-based
scheme requires the execution of several tests in the FDI
units. Moreover, there are not known guaranteed stabil-
ity properties for the fusion-based scheme while in con-
trast, as proved in this paper, closed-loop stability can
be guaranteed for the multisensor switching scheme un-
der the fault scenario of Assumption 4.2.

9 Conclusions

We have proposed a new multisensor switching strat-
egy for feedback control and have established closed-
loop stability under fault-free operation. In addition, we
have shown that closed-loop stability is preserved under
a multiple fault scenario if a set of conditions on the pa-
rameters of the problem is satisfied. We have discussed
how an appropriate selection of the parameters (in par-
ticular, sensor-under-fault characteristics and reference
signals) can be made to satisfy the required conditions.
When compared with other fault tolerant multisensor
schemes, our strategy has the important advantage that
robust closed-loop stability under sensor fault can be
guaranteed a priori, provided the aforementioned condi-
tions are satisfied. We have applied the strategy to an
example of automotive longitudinal control.
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