Accepted Manuscript

Concentrations of arsenic in water and fish in a Tropical Open Lagoon, Southwest-Nigeria: Health risk assessment, Part 1

Amii Usese, Obinna Lucian Chukwu, Mohammad Mahmudur Rahman, Ravi Naidu, Shofiqul Islam, E.O. Oyewo

PII: S2352-1864(16)30176-6
DOI: http://dx.doi.org/10.1016/j.eti.2017.06.005
Reference: ETI 135

To appear in: Environmental Technology & Innovation

Received date: 14 December 2016
Revised date: 10 June 2017
Accepted date: 24 June 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
PART 1

Concentrations of arsenic in water and fish in a tropical open lagoon, Southwest-Nigeria: health risk assessment

Amii Usese¹*, Obinna Lucian Chukwu¹, Mohammad Mahmudur Rahman²,³, Ravi Naidu²,³, Shofiqul Islam²,³ and E. O. Oyewo⁴

1Department of Marine Sciences, Faculty of Science, University of Lagos, Nigeria
2Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan Campus, Callaghan, NSW 2308, Australia
3Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, Callaghan, NSW 2308, Australia
4Nigerian Institute of Oceanography and Marine Research, Victoria Island, Lagos, Nigeria

*Corresponding author. ausese@unilag.edu.ng; useseamii@gmail.com
ABSTRACT

This study assesses the concentrations of arsenic (As) in water, muscle tissue of four demersal fish species (Chrysichthys nigrodigitatus, Mugil cephalus, Liza falcipinnis and Bathygobius soporator) and whole tissues of periwinkle (Tympanotonus fuscatus) in Lagos Lagoon, Nigeria. The observed mean total As concentration in water (1.29 μg l⁻¹) during the wet and dry seasons did not exceed the World Health Organization (WHO) guideline value of 10 μg l⁻¹. Among the examined biota, Tympanotonus fuscatus recorded higher As levels (2.31 ± 0.24 mg kg⁻¹) and Chrysichthys nigrodigitus recorded the least As content (0.67 ± 0.08 mg kg⁻¹). A significant positive correlation (p < 0.05) was observed between As concentrations in fish muscles and water during both dry and wet seasons. The health risks associated with human consumption of fish estimated using Target Hazard Quotient (THQ) were lower than the USEPA guideline value of 1 for all fish species examined except in populations that consume larger amounts of fish. However, higher THQ values (>2) were obtained for Tympanotonus fuscatus, suggesting the potential for non-carcinogenic health outcomes in adults after a prolonged period of consumption. This calls for continuous monitoring and enforcement of regulations to ensure safety of fishery resources from Lagos Lagoon.

Keywords:
Arsenic
Water
Muscle tissue
Health risk
Lagos lagoon
1. Introduction

Increasing levels of heavy metals and metalloids reaching aquatic ecosystems from natural or anthropogenic sources have generated many concerns worldwide. This is largely due to their non-biodegradability and tendency to accumulate in environmental media, plants and animals tissues. These elements potentially bio-accumulated by edible biota are subsequently transferred through food chain ultimately creating public health problems for people (Agusa et al., 2005; Rahman et al., 2013). Fish and shellfish are major sources of animal protein and known to be the most significant sources of toxic metals/metalloids including arsenic (As) in the human diet. The ability of fish to bio-accumulate these heavy metals/metalloids in their muscle tissues and other organs is usually considered to indicate the concentrations in water and their accumulation in food chains (Pintaeva et al., 2011).

Arsenic is a metalloid and ubiquitous in open ocean and seawater with typical levels from 1–2µg l⁻¹ or less than 2.0µg l⁻¹ (Ng, 2005; WHO, 2001). The presence of As can be natural in many environments with natural As contamination of groundwater being reported in many regions worldwide. Highly toxic inorganic forms of As (arsenite and arsenate) are usually present in groundwater. Arsenic is released into the aquatic environment through natural processes and anthropogenic activities such as mining, wood preservatives, use of pesticides and herbicides (Mandal and Suzuki, 2002). Metal distribution in fish is determined mainly by its content in water and food (Farkas et al., 2000). Runoff of As-contaminated waste materials and their accumulation in aquatic plants such as sea grass, a food source for aquatic organisms might also lead to the contamination of edible biota (Bhattacharya et al., 2007). As reported in literature, the largest quantity of As in the US diet accounting for about 90% of total As exposure is derived from saltwater finfish and seafood (Adams et al., 1994; US Food and Drug Administration (US-FDA) 1993). Since fish and shellfish, the cheapest sources of animal protein for most coastal communities and villagers are known to be the most significant source of As in the human diet, elevated levels of As in edible fish tissues can
cause health risks (EFSA, 2009). Consequently, several researchers have attempted to
document the status of As in some contaminated aquatic ecosystems in recent years; studies
focusing on As in water, food and seafood with the associated human health risk have
received considerable attention globally. Human exposure to As and other toxic metals via
food chain transfer, surface, ground and drinking water has been reported to result in both
acute and chronic effects (Fidan et al., 2008; Rahman et al., 2013).

In Nigeria, some studies have reported low levels of As in water and edible biota
(Atobatele and Olutona, 2015) and others reported values greater than the provisional WHO
limit (10 μg l\(^{-1}\)) in surface water and fish from reservoirs and freshwater ecosystems (Benzer,
2016; Egbinola and Amanambu, 2014; Garba et al., 2012a; Garba et al., 2012b; Kayode et al.,
2011; Musa et al., 2008). Of particular concern are the symptoms of As poisoning observed in
the inhabitants who live in parts of Biu Volcanic Province in North-Eastern Nigeria. Arsenic
levels exceeding 10μg l\(^{-1}\) in drinking water sourced from surface waters in the area have been
reported (Usman and Lar, 2013). With the exception of a few, most studies on metal pollution
in Lagos Lagoon did not incorporate As in their investigation. Aderinola et al. (2009) reported
As levels in the Lagos lagoon as 0.10mg l\(^{-1}\), 0.36mg kg\(^{-1}\) and 0.01mg kg\(^{-1}\) for water, finfish and
shellfish (periwinkles), respectively. Despite this, information is still scarce on the potential
public health risk associated with levels of As in water and edible fisheries resources based on
current and internationally acceptable maximum allowable limits. It is important to note that
metals/metalloids recorded at low levels in water and sediment could at most times be higher
in aquatic organisms through bio-concentration and bioaccumulation processes, resulting in
progressively higher concentrations at higher trophic levels in the food chain. Furthermore,
estimation of risk via food chain transfer of any toxic metal is usually based on the proportion
of bio-accumulated heavy metals in edible biota. Several methods have been proposed to
estimate the potential risks to human health of heavy metals in species of fish which may be
divided into carcinogenic and non-carcinogenic effects (Yi et al., 2011). These methods for
estimating risk typically based on the Target Hazard Quotients (THQ) as used by many researchers (Chien et al., 2002; Wang et al., 2005) have been shown to be valid and useful. The THQ-based risk assessment method does not provide a quantitative estimate of the probability of an exposed population experiencing an adverse health effect; however, it does provide an indication of the risk level associated with pollutant exposure. This study estimates the levels of As in water and fish as well as periwinkle from Lagos Lagoon to determine the risk associated with As when humans consume it.

2. Materials and methods

2.1. Site description and sampling

Sampling was conducted in Lagos lagoon, a habitat that has a wide array of fishery resources and is well known for its multiple usages. The Lagoon which receives a number of important rivers (Yewa, Ogun, Ona and Osun) draining more than 103,626km² of the country (Don-Pedro et al., 2004) also serves as a source of livelihood for many people.

Seventy-five bottom water samples (500 ml, approximately 15-30 cm below the surface) were collected from fifteen stations and approximately 50ml was filtered using 0.45 μm syringe filters and transferred to acid-washed sample bottles, then acidified with nitric acid (7M) and stored at 4°C prior to analysis. Sixty-four samples of four demersal fish species (Chrysichthys nigrodigitatus, Mugil cephalus, Liza falcipinnis and Bathygobious soporator) were also caught with the help of a professional fisherman using gill nets of 1-3cm diameter (Ayoola and Kuton, 2009) at designated locations (Fig. 1) from September 2013 to February 2015. Fish samples were thoroughly washed with water immediately after collection to remove mud or other fouling substances and labelled before being transported to Aquatic toxicology and Ecophysiology laboratory located at the University of Lagos. Twenty-four samples of Tympanotonus fuscatus ‘periwinkles’ (Mollusca, Gastropoda, Mega gastropoda, Melanidae) of 32-35mm in length with an aperture diameter of 0.7-9.0mm were also collected. This was done by handpicking at the edge of the lagoon in most zones rather than
the designated sampling stations because macrobenthic animals have a preference for shallow waters. The collection was done in three replicates during both dry and wet seasons.

2.2. Pre-treatment of samples, samples processing and analysis

In the laboratory, the samples were kept at 4°C until further processing was required. Fish samples were filleted, the muscle tissues were separated, washed with distilled water and excessive water removed by air drying. Subsequently, the air-dried samples were oven dried at 60°C until a constant weight (wt) was obtained. The dried samples were powdered in porcelain mortar, sieved through 1 mm mesh and stored in airtight zip lock bags. Also, soft tissue of whole periwinkles was properly cleaned (by copiously rinsing all exposed and partially enclosed parts) with double distilled water to eliminate debris and all external adherents prior to processing for analysis. The processed samples (water and fish) were thereafter transported under strict quarantine procedure for further processing at the laboratory located at the University of South Australia, Adelaide, Australia.

Powdered dry muscle tissues of biota (0.5g) were placed in Teflon digestion tubes. 3ml of ultra-pureHNO₃ and 1 ml of hydrogen peroxide (H₂O₂-Merck) were added. Then the vessels were covered and left in a fume-hood overnight. The closed vessel microwave digestion system (Mars 6, CEM) was employed to digest homogenized fish samples after heating according to the digestion program (program: power 1600W (100%), ramp time 15 mins, temperature 200°C, hold time 15mins and cooling time 15mins). After digestion, sample solutions were cooled to room temperature and then transferred into a 25 ml volumetric flask, to which Milli-Q water was added (ELGA Lab-pure system). Water samples were analyzed directly without any chemical treatment.

An Agilent 7500c (Agilent Technologies, Tokyo, Japan) inductively coupled plasma mass spectrometer (ICP-MS) was used to determine the amount of As in water, fish and shellfish. The detection limit of As in solution matrix of the ICP-MS was 0.1 µg/l.

2.3 Quality control and analysis of certified reference materials (CRMs)
Certified reference materials such as trace elements in natural water from the National Institute of Standard and Technology (NIST SRM 1640a) and DORM-3 (dog muscle fish) from the National Research Council, Canada were used to verify the results of As in water, fish and shellfish, respectively. DORM-3 was digested after utilizing the same procedure as biota samples. The analytical results for As in trace elements in natural waters and DORM-3 indicate that the differences between certified and measured results were less than 5% (Table 1).

2.4. Statistical analysis

In this study, averages of duplicate samples collected and examined for As in water and all species of fish were used to represent the data. SPSS (version 21.0) and Paleontological Statistics (PAST Version 3.14) helped to test the relationship between As concentrations in water and biota. Other calculations were also done utilizing Microsoft Excel 2010 and the results were expressed as mean ± SE. Data of As in water and fish tissues were tested for normality. Statistical comparisons of the As level in muscles of different fish species were also conducted using two-way ANOVA.

2.5. Estimating ecological and health risk

2.5.1. Evaluation of the risk associated with As in water

The risk associated with the levels of As in bottom water to ecological receptors was assessed by comparing with the guideline value (10μg l⁻¹) set by the WHO and Standard Organization of Nigeria (SON).

2.5.2 Human health risk from consumption of fish and shellfish

The risk associated with levels of As from human consumption of demersal fish and the shellfish, *Tympanotonus fuscatus* from Lagos Lagoon was estimated using Bioconcentration factors (BCFS), THQ and Target Cancer Risk (TR). THQ and TR were calculated as per USEPA Region III Risk-Based Concentration Table (USEPA, 2011) using risk estimation assumption values as reported by Bhupander and Mukherjee (2011).
comparison was also made with THQ assumption values as reported by Osakwe et al. (2014) for Nigerian populations that consume larger quantities of fish. The THQ which expresses the risk of non-carcinogenic effects signifies non-obvious risk. Conversely, an exposed population of concern will experience health risk if the dose is equal to or greater than the RfD. The Target cancer risk (TR) was used to indicate carcinogenic risks. The equation used for estimating THQ was as follows:

\[
\text{THQ} = \frac{(\text{MC} \times \text{IR} \times 10^{-3} \times \text{EF} \times \text{ED})}{(\text{RfD} \times \text{BWa} \times \text{ATn})}
\]

Where,

THQ is the target hazard quotient,

MC is the mean As concentration in fish (mg kg\(^{-1}\), dry wt.) = 0.79

IR is the fish ingestion rate (g day\(^{-1}\)) = 19.5, as described by (Little et al., 2002; Speedy, 2003) and adopted from Bhupander and Mukherjee (2011).

EF is the exposure frequency (day year\(^{-1}\) or number of exposure events per year of exposure = 287 days per year, as described by (Little et al., 2002; Speedy, 2003) and adopted from Bhupander and Mukherjee (2011).

ED is the exposure duration for adult (year) = 30 (USEPA, 2011).

RfD is the reference dose (\(\mu g\ \text{g}^{-1}\ \text{day}^{-1}\)) = 3 x 10\(^{-4}\) (USEPA, 2011)

BWa is the body wt of an adult (kg) = 56 as suggested by (Shukla et al., 2002) and adopted from Bhupander and Mukherjee (2011).

ATn is the averaging time, non-carcinogens (day year\(^{-1}\)) = 10950 (USEPA, 2011).

3. Results and discussion

3.1. Concentrations of As in water

Concentrations of As (mean and range) in bottom water, fish and periwinkle are provided in Table 2. Fig. 1 presents the mean spatio-temporal variation of As in bottom water from 15 sites on the Lagos lagoon. Arsenic levels in water varied from below detectable level to 4.0 \(\mu g\ l^{-1}\) (mean: 1.5 and 1.0; and 1.0 \(\mu g\ l^{-1}\) for wet and dry seasons, respectively) depicting
insignificant (P <0.05) and irregular seasonal fluctuation. Generally, As contents in water samples were observed to be slightly higher during the wet season compared to the dry season although the differences were not significant. The result, however, shows a strong positive correlation (R=0.768; P <0.05) between the examined wet and dry season samples. This may probably be due to loads of contaminants drained via rivers, streams, creek and residential areas that are in the vicinity of Lagos lagoon or related to the Lagoon water level. Consequently, samples from the western axis which receives municipal and domestic wastes had relatively higher levels while a significant decrease (P < 0.05) was observed in mean As levels towards the north-east sites (Fig. 1). The observed mean value for all sites examined (1.3± 0.16μgl⁻¹) was below the WHO limit of 10μgl⁻¹ as accepted by the SON’s and the Federal Ministry of Environment. The value of As in Lagos lagoon surface water as investigated in this study was much higher than the value of 0.06μgl⁻¹ reported from Tuskegee Lake, in the United States (Ikem et al., 2003).

Similarly, other researchers reported levels of As lower than the WHO guideline value (10μgl⁻¹) for uncontaminated underground waters in Nigeria and freshwater ecosystems in sub-Saharan Africa (Amori et al., 2013; Ouédraogo and Amyot, 2013; Oyem et al., 2015). However, Aderinola et al. (2009) reported a relatively higher mean content of As of up to 10μgl⁻¹ in the Lagos lagoon surface water while Atobatele and Olutona (2015) recorded concentrations of 1.5± 0.22μgl⁻¹ in Aiba Reservoir, Iwo, Nigeria. Unlike this study, Egbinola and Amanambu (2014) and Kayode et al. (2011) reported very high concentrations of As(>275 μgl⁻¹) in underground and surface waters from Ibadan, Oyo state and major towns in Ogun State, Nigeria. High As concentrations in water from wells and boreholes in the range of 20 μgl⁻¹ to 810 μgl⁻¹ in northern Nigeria were also documented (Garba et al., 2008; Garba et al., 2012b; Musa et al., 2008). These high concentrations of As were attributed to the disposal of As-containing materials, burning of solid wastes, natural processes, agricultural and other human activities (Garba et al., 2008; Garba et al., 2012b; Musa et al., 2008). Arsenic levels in
water samples from this study were much lower compared to reported concentrations of 23.8
µg l$^{-1}$ in surface waters close to abandoned mining area (Rapant et al., 2006) and 97.5 µg l$^{-1}$
for Manchar Lake (Arain et al., 2009).

3.2. Arsenic concentration and bioaccumulation in fish muscles and periwinkle

The mean concentration of As in fish muscles and periwinkle (0.79 mg kg$^{-1}$), which
ranged from below detection limit to 2.41 mg kg$^{-1}$, was within the maximum limit (1.4 mg kg$^{-1}$)
of FAO/WHO (1983). The highest mean concentration for all examined biota (2.31 mg kg$^{-1}$)
was recorded in *Tympanotonus fuscatus*. The mean As contents for species of demersal fish
ranged from 0.47 - 2.26 mg kg$^{-1}$ in *Liza falcipinnis* to 0 - 2.41 mg kg$^{-1}$, 0.25 - 2.27 mg kg$^{-1}$ and
0.21 - 1.41 mg kg$^{-1}$ in muscles of *Bathygobious soporator*, *Mugil cephalus* and *Chrysichthys
nigrodigitatus*, respectively. Although spatial differences in mean As contents were observed
in muscles of examined fish, there was no significant difference in the recorded values. The
highest mean concentrations of 0.98 mg kg$^{-1}$ were observed in the muscle of *Liza falcipinnis
while the lowest mean content of As (0.67 mg kg$^{-1}$) was recorded in *Chrysichthys
nigrodigitatus*. None of the investigated fish samples exceeded the Food Standards Australia
New Zealand (FSANZ) recommended value of 9.6 mg kg$^{-1}$, dry wt As (assuming 79%
mockture content). The concentrations of As detected in examined fish in this study varied
widely in As content when compared to other studies (depending on the species and location).

The present result is similar to values for As in fish muscle from the Black Sea along
Turkey’s north coast recorded as ranging from 0.11 to 0.32 mg kg$^{-1}$ (Tuzen, 2009). Contrary
to this report, a study from some sections of the Lagos lagoon showed that the finfish,
Oreochromis niloticus (0.36 ± 0.42 mg kg$^{-1}$) and periwinkles (0.01 mg kg$^{-1}$) accumulated
relatively lower levels of As as compared to this study (Aderinola et al., 2009). Other
published reports also reveal significant differences in As concentrations ranging from 2.0 -
14.8 mg kg$^{-1}$ in the muscles of fishes from Manchar Lake, Pakistan (Shah et al., 2009) to 3.01 –
3.90 mg kg$^{-1}$ and 4.70 – 14.90 mg kg$^{-1}$ total average As concentrations detected in culture and
wild sea breams from the coasts of Croatia, respectively (Rožič et al., 2014). In another study, it was indicated that average total As concentrations in striped marlin (*Tetrapturus audax*) and sailfish (*Istiophorus platypterus*) caught in the Gulf of California were 4.0mg kg\(^{-1}\) and 5.1 mg kg\(^{-1}\), respectively exceeding the international legal limit of 1 mg kg\(^{-1}\), wet wt. (Soto-Jiménez et al., 2010).

The presence of As in fish has also been detected in several species such as sardine, chub mackerel, horse mackerel (Vieira et al., 2011), blue fish, carp, mullet tuna, and salmon (Castro-González and Méndez-Armenta, 2008). These results, including As concentration in muscle tissue of ten fish species from Bangshi River during pre-monsoon and post-monsoon seasons in the range of 1.97–6.24 mg kg\(^{-1}\), dry wt basis (Rahman et al., 2012) were higher than the results obtained for demersal fish species in this study.

Arsenic level in muscles of different species of fish revealed significant differences between tissue concentrations (p<0.05). A mostly negative (r= -0.533) but significant correlation was observed for As in *Mugil cephalus* and water during the wet season. Comparison of derived concentration factors confirmed that the bio-concentration factors based on As concentration in water samples was also the highest for *Tympanotus fuscatus* and about five to seven times higher than bioaccumulation factors in demersal fish species (Table 2). The computed bio-concentration factors also show that the fish species and *Tympanotus fuscatus* accumulated between 10 to 100 times more As when compared with the levels in water. It has been reported that the concentrations of toxic metals in water reflected a possible correlation between metal content of fish (Jallet Tariq et al., 1996). Atobatele and Olutona (2015) observed marked differences in As distribution in fish species from Aiba Reservoir, Iwo, Nigeria. They also noted that bagrid fishes of the genus *Chrysichthys* and *H. odoe*, a piscivore with a higher trophic status, have relatively lower levels of As in their systems (Atobatele and Olutona, 2015). From their report, the total As content in three cichlid species (*T. zillii, S. Galilaeus* and *O. niloticus*) was higher than two bagrid
species (Chrysichthys nigrodigitatus and Chrysichthys auratus) and piscivore Hepsetus odoe with a higher trophic status. These differences were largely attributed to their trophic level in the food chain. According to De Gieter et al. (2002), interspecies differences in As levels of fish are directly related to their food source and the fact that As is metabolized and does not seem to biomagnify along the food chain. The statistical tests such as normality and homogeneity for As in water and biota are presented in Table 3 which shows that chi-square goodness of fit test distribution is normal (p > 0.05) for As in water and biota. Bartlett’s test (Table 3) also revealed that the distribution is non-homogeneous for As in water (p < 0.05) but homogeneous for As in biota (p > 0.05).

3.3. Risk estimation from human consumption of fish and periwinkle

The risk assessments in terms of human health revealed that none of the investigated species of fish exceeded the critical value of 1 which is the international guideline value except for the shellfish, T. fuscatus. Total As THQ derived from potential human consumption of fish caught in Lagos lagoon were within the 0.61 (Chrysichthys nigrodigitatus) to 2.11 (T. fuscatus) range in adults. The estimated THQ of As was found to be 0.61, 0.68, 0.89 and 0.78 through the consumption of Chrysichthys nigrodigitatus, Mugil cephalus, Liza falcipinnis, and Bathygobious soporator, respectively (Table 4). A THQ value of 0.61 for Chrysichthys nigrodigitatus was the lowest compared to other fish species. The obtained THQ does not underline any potential non-carcinogenic risk for human consumers. THQ values for risk assessment of As greater than 1 (1.22) were derived from the consumption of Tilapia (Oreochromis mossambicus) cultured in southwest Taiwan by Kar et al. (2011) while lower values for THQ which ranged between 0.1–0.5 for adults were obtained in a study by Copat et al. (2013) conducted in Italy. Tympanotonus fuscatus also recorded higher TR values (7.9 x 10^{-4}) when compared to values obtained for demersal fish species (Table 4).
Since the annual per capita fish consumption in African countries including Nigeria is usually above 20 kg per person, especially among people living in coastal communities, there is more chance of non-carcinogenic health outcomes being experienced due to increased fish consumption rate and frequency. As such, in contrast to the lower THQ values (0.61, 0.68, 0.89 and 0.78 for *Chrysichthys nigrodigitatus*, *Mugil cephalus*, *Liza falcipinnis*, and *Bathygobious soporator* respectively) obtained with a fish ingestion rate of 19.5g per day (Bhupander and Mukherjee (2011), significantly higher values of THQ for mean total As were derived as 2.54, 2.82, 3.75, 3.26 and 8.79 for *Chrysichthys nigrodigitatus*, *Mugil cephalus*, *Liza falcipinnis*, *Bathygobious soporator* and *Tympanotonus fuscatus*, respectively. In this computation as given by Osakwe et al. (2014), fish consumption was 68gday⁻¹ (i.e. fish consumption rate of an average Nigerian). Consumption at this rate and frequency suggests that people who regularly eat fish will experience increased adverse effects.

4. Conclusion

Lagos Lagoon was found to accumulate As in varying and sometimes very low but measurable concentrations throughout the study. While the concentrations of As in water, muscles of fish and shellfish were not uniformly distributed throughout the study period, they nonetheless revealed concentrations that were below action levels and guidelines for human consumption. Among all stations examined, those on the western axis contained the highest levels of As. Despite the relatively higher content of As recorded in *Tympanotonus fuscatus* as compared to other fish species examined, the observed levels in all fish samples were lower than the permissible levels in fish and shellfish as per FAO/WHO (1.4 mg kg⁻¹) and FSANZ set values (9.6 mg kg⁻¹, dry wt). Inspite of these irregular concentrations between sites, fish and shellfish samples did not show elevated As concentrations relative to the observed spatio-temporal variations. However, exposure of people from the Lagos area to lower levels of As in these fish species may still pose a public health risk due to consumption of increased quantity of fish from the area.
In the present study, risk was not assessed for children who regularly consumed these species of fish. Therefore, further temporal studies that take into account risk to children, other commercially valuable fish resources and intake levels by human consumers are needed.

Acknowledgements

We extend our thanks for the laboratory support offered by the Centre for Environmental Risk Assessment and Remediation (CERAR), Mawson Lakes Campus of the University of South Australia, Adelaide. The first author is grateful to CRC CARE, Australia for the financial support which enabled her to conduct an analysis of samples in Australia as part of her PhD study.

References

ChemClass Journal 5.

Soto-Jiménez, M., Amezgua, F., González-Ledesma, R., 2010. Nonessential metals in striped marlin and Indo-Pacific sailfish in the southeast Gulf of California, Mexico: concentration...

Tuzen, M., 2009. Toxic and essential trace elemental contents in fish species from the Black Sea, Turkey. Food and Chemical Toxicology 47(8), 1785-1790.

Table 1
Arsenic concentration in CRMs

<table>
<thead>
<tr>
<th>CRM</th>
<th>Certified values (µg l⁻¹)</th>
<th>Observed values (n=4)</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIST 1640a</td>
<td>26.67 ± 0.41</td>
<td>25.36 ± 1.42</td>
<td>95.1</td>
</tr>
<tr>
<td>DORM-3 (mg kg⁻¹, dry weight)</td>
<td>6.88 ± 0.30</td>
<td>6.61 ± 0.43</td>
<td>96.1</td>
</tr>
</tbody>
</table>
Table 2
Concentrations (mean, median, and range) of As in water, sediment and bioaccumulation in fish species and shellfish

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Water (μg/l), (n=75)</th>
<th>Edible biota (mg/kg), dry weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wet season</td>
<td>Dry season</td>
</tr>
<tr>
<td>Number of samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SE</td>
<td>1.54± 0.22</td>
<td>1.04± 0.21</td>
</tr>
<tr>
<td>Range</td>
<td>0.04 - 2.90</td>
<td>0.2 - 3.40</td>
</tr>
<tr>
<td>BWAF</td>
<td>514.3</td>
<td>569.7</td>
</tr>
</tbody>
</table>

BWAF: Bio-water accumulation factor
Table 3

Statistical tests (normality and homogeneity) for water and biota

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Number of samples</th>
<th>Chi-square goodness of fit test (normality)</th>
<th>Bartlett’s test (homogeneity)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>chi2stat</td>
<td>df</td>
</tr>
<tr>
<td>Arsenic in water</td>
<td>75</td>
<td>3.0004</td>
<td>2</td>
</tr>
<tr>
<td>Arsenic in biota</td>
<td>88</td>
<td>0.1127</td>
<td>3</td>
</tr>
</tbody>
</table>

chi2stat – Chi-square statistics; df- degree of freedom; bartstat: Bartlett’s statistics

Table 4

Estimated target hazard quotients (THQ) and target cancer risk (TR) and estimated daily intake (EDI) of As in fish species and *Tympanotonus fuscatus*

<table>
<thead>
<tr>
<th>Fish species</th>
<th>Mean concentration (mg/kg dry wt.)</th>
<th>EDI</th>
<th>THQ(^a)</th>
<th>TR(^a)</th>
<th>THQ(^b)</th>
<th>TR(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrysichthys nigrodigitatus</td>
<td>0.67</td>
<td>0.65</td>
<td>0.61</td>
<td>1.2 x 10(^{-4})</td>
<td>2.54</td>
<td>7.63 x 10(^{-4})</td>
</tr>
<tr>
<td>Mugil cephalus</td>
<td>0.74</td>
<td>0.72</td>
<td>0.68</td>
<td>1.3 x 10(^{-4})</td>
<td>2.82</td>
<td>8.46 x 10(^{-4})</td>
</tr>
<tr>
<td>Liza falcipinnis</td>
<td>0.98</td>
<td>0.96</td>
<td>0.89</td>
<td>1.7 x 10(^{-4})</td>
<td>3.75</td>
<td>1.12 x 10(^{-3})</td>
</tr>
<tr>
<td>Bathygobious soporator</td>
<td>0.86</td>
<td>0.84</td>
<td>0.78</td>
<td>1.5 x 10(^{-4})</td>
<td>3.26</td>
<td>9.77 x 10(^{-4})</td>
</tr>
<tr>
<td>Tympanotonus fuscatus</td>
<td>2.31</td>
<td>2.26</td>
<td>2.1</td>
<td>3.9 x 10(^{-4})</td>
<td>8.79</td>
<td>2.64 x 10(^{-3})</td>
</tr>
</tbody>
</table>

\(^a\)Risk estimation assumption values as reported by Bhupander and Mukherjee (2011)

\(^b\)Risk estimation assumption values as reported by (Osakwe et al., 2014)
Figure caption

Fig.1. Study area, sampling sites and spatio-temporal variations in As levels in bottom water of Lagos Lagoon during the wet and dry seasons.
Highlights

- Concentrations of arsenic in water, sediment, fish and periwinkle
- Distribution pattern influenced by adjoining land based activities
- Potential health risk estimated by comparing USEPA/WHO values
- Relatively higher arsenic levels in *Tympanotonus fuscatus* with THQ