Boundedness of the velocity derivative skewness in various turbulent flows

R. A. Antonia, S. L. Tang, L. Djenidi, and L. Danaila

1School of Engineering, University of Newcastle, NSW 2308, Australia
2Institute for Turbulence-Noise-Vibration Interaction and Control, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
3CORIA CNRS UMR 6614, Université de Rouen, 76801 Saint Etienne du Rouvray, France

(Received ?; revised ?; accepted ?. - To be entered by editorial office)

The variation of S, the velocity derivative skewness, with the Taylor microscale Reynolds number R_λ is examined for different turbulent flows by considering the locally isotropic form of the transport equation for the mean energy dissipation rate $\overline{\epsilon_{iso}}$. In each flow, the equation can be expressed in the form $S + 2G/R_\lambda = C/R_\lambda$, where G is a non-dimensional rate of destruction of $\overline{\epsilon_{iso}}$ and C is a flow dependent constant. Since $2G/R_\lambda$ is found to be very nearly constant for $R_\lambda \geq 70$, S should approach a universal constant when R_λ is sufficiently large, but the way this constant is approached is flow dependent. For example, the approach is slow in grid turbulence and rapid along the axis of a round jet. For all the flows considered, the approach is reasonably well supported by experimental and numerical data. The constancy of S at large R_λ has obvious ramifications for small scale turbulence research since it violates the modified similarity hypothesis introduced by Kolmogorov (1962) but is consistent with the original similarity hypothesis (Kolmogorov 1941a).

1. Introduction

The skewness S of the longitudinal velocity derivative, usually defined as

$$S = \frac{(\partial u/\partial x)^3}{(\partial u/\partial x)^{5/2}}$$

(u is the longitudinal velocity fluctuation, x is in the flow direction; the overbar denotes time averaging for experimental data and space/time averaging for numerical data), is an important quantity in turbulent research since it is closely linked to the production of the mean enstrophy or mean energy dissipation rate due to vortex stretching. In particular, the variation of S with the Taylor microscale Reynolds number $R_\lambda (=u'\lambda/\nu$, where λ is the longitudinal Taylor microscale $u'/\overline{(\partial u/\partial x)'^2}$ and ν is the kinematic viscosity of the fluid, a prime denotes a r.m.s value) has received a great deal of attention following Kolmogorov’s (Kolmogorov 1962) third hypothesis. The majority of the observations and predictions have tended to indicate a slow, though continuous increase of $|S|$ with R_λ, viz.

$$|S| \sim R_\lambda^\alpha \quad (\alpha > 0)$$

(1.2)

when atmospheric surface layer data are included, e.g. Wyngaard & Tennekes (1970); Gibson et al. (1970); Champagne et al. (1977); Van Atta & Antonia (1980); Sreenivasan & Antonia (1997). However, when the latter data are disregarded (a major reason for doing so is

† Email address for correspondence: lyazid.djenidi@newcastle.edu.au
that these data were obtained at a relatively small height above the ground or ocean surface), the bulk of the laboratory data (e.g. Fig. 5 of Sreenivasan & Antonia (1997)) does not exclude the possibility that \(-S\) becomes constant when \(R_\lambda\) approaches \(10^3\). Since the laboratory data have been collected from a wide range of different flows, \(|S|\) may be flow dependent, a possibility that has not been formally acknowledged in the past. How and whether \(S\) becomes constant at sufficiently large \(R_\lambda\) should be of special interest to both the engineering and physics turbulence communities. \(S\) plays an important role in turbulence modelling, and in particular in the \(k - \epsilon\) model where it is involved in the transport equation of \(\tau\), the mean turbulent energy dissipation rate. One consequence of Kolmogorov (1962) (hereafter \(K62\)) is that \(|S|\) continues to increase with \(R_\lambda\) whereas the earlier phenomenology of Kolmogorov (1941a), widely known as \(K41\), predicts that all normalized velocity derivative moments should remain constant with \(R_\lambda\), provided the latter is sufficiently large. Note that the constancy of \(S\) at sufficiently large \(R_\lambda\) was underlined by Batchelor (1953).

It should be recognized from the outset that the finite Reynolds number effect (e.g. Qian 1999; Danaila et al. 1999; Lindborg 1999) cannot be ignored when \(R_\lambda \leq 10^3\). As an example, the non-stationarity in the Karman-Howarth (K-H) equation (Karman & Howarth 1938), neglected by Kolmogorov (1941b) and Frisch (1995), needs to be retained to account for this effect. Indeed, Antonia & Burattini (2006) showed that Kolmogorov's 4/5 law is approached more rapidly for forced than decaying turbulence and that the nature of the forcing also matters. The retention of the non-stationarity in the K-H equation, strictly valid for homogeneous and isotropic turbulence, essentially accounts for the inhomogeneity of the large scales and hence the physical processes associated with the initial injection of energy into the flow and its subsequent distribution among the different scales. This virtually ensures that the small scale motion (SSM) will exhibit non-universal features at finite Reynolds numbers, i.e. a dependence on initial and boundary conditions and on the individual nature of the flows. Whereas Antonia & Burattini (2006) focused on inertial range scales, we concentrate here on the limiting behaviour as the scale goes to zero, of the generalized form of the K-H equation, or equivalently the transport equation for \((\delta q)^2\) \((-\langle \delta u \rangle^2 + \langle \delta v \rangle^2 + \langle \delta w \rangle^2\)), the velocity increment \(\delta \alpha = \alpha(x + r) - \alpha(x)\) between two points separated by a distance \(r\) along \(x\), the flow direction; \(\alpha\) stands for either \(u\), \(v\), or \(w\), \(v\) and \(w\) being velocity fluctuations in the \(y\) and \(z\) directions respectively. The transport equation for \(\tau\) represents an important constraint on how \(S\) varies in different flows. Although local isotropy is assumed, we will show that differences in large scale inhomogeneities between different flows result in a non-universal approach of \(-S\) towards a constant value as \(R_\lambda\) increases. The different flows we consider are stationary forced periodic box turbulence (or SFPBT), decaying grid turbulence, and the flow along the axis in the self-preserving region of a circular jet. In each case, local isotropy is expected to be reasonably satisfied.

2. Theoretical considerations

An appropriate starting point for our analysis is the transport equation for \((\delta q)^2\) in flows or flow regions where departures from local isotropy are small, viz.

\[
-\delta u(\delta q)^2 + 2\nu \frac{\partial}{\partial r}(\delta q)^2 + I_q = \frac{4}{3} \tau r. \tag{2.1}
\]

The first and second terms on the left side of (2.1) represent the energy transfer and viscous diffusion of energy, respectively. The third term accounts for the inhomogeneity...
Boundedness of the velocity derivative skewness in various turbulent flows

or non-stationarity associated with the large scales. τ is defined by

$$\tau = \nu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_i}{\partial x_j} \quad (i, j = 1, 2, 3)$$ (2.2)

where u_i are the velocity fluctuations in the x_i directions and the double indices convention applies. In the framework of Kolmogorov (1941a), I_q is set to zero, thus ensuring universality. Clearly, any departure from universality will arise from the term I_q which must be retained if turbulence is to be described accurately at all scales. At large r, (2.1) reduces to the one-point energy budget equation whereas in the limit $r \to 0$, (and after some manipulations detailed in Antonia et al. (2000)), it reduces to the one-point transport equation of τ.

For decaying grid turbulence, I_q reflects the streamwise decay of turbulent energy, viz.

$$I_q(r) = -\frac{U}{r^2} \int_0^r s^2 \frac{\partial (\delta q(s))}{\partial x} ds,$$ (2.3)

where the mean velocity U is constant. When $r \to 0$, and assuming isotropy, the transport equation for τ simplifies to the equation first considered in detail by Batchelor & Townsend (1947)

$$-U \frac{\delta \tau_{iso}}{\partial x} = \frac{7}{3\sqrt{15}} \nu^{3/2} \left[S + 2 \frac{G}{R_\lambda} \right],$$ (2.4)

where

$$G = \frac{\overline{u^2} (\partial^2 u / \partial x^2)^2}{(\partial u / \partial x)^2}$$ (2.5)

can be thought of as a destruction coefficient of τ_{iso}, the isotropic mean energy dissipation rate. Equation (2.4) can be recast in the form (see for example Thiesset et al. (2014))

$$S + 2 \frac{G}{R_\lambda} = \frac{C}{R_\lambda},$$ (2.6)

where

$$C = \frac{90}{7(1 + 2R)} \frac{n + 1}{n}$$ (2.7)

(n is the power-law decay exponent of the longitudinal velocity variance, viz. $\overline{u^2} \sim x^{-n}$, and $R = \sqrt{v_i^2 / u^2}$) is constant if n is constant.

As noted in the introduction, the possible flow dependence of C is of importance both in terms of turbulence modelling and also when testing for the so-called small-scale or internal intermittency effects, first introduced by K62. In the former case and the specific context of the $k - \epsilon$ model, the value of C determines the constant in the model. It is now well accepted that the concept of a universal constant is not tenable (see for example George et al. (2001)). In the latter case, it seems likely-as will be seen later in this section-that for the same (finite) value of R_λ, the value C may differ in different flows. This in turn implies that the value of S may differ, for nominally the same value of R_λ, in different flows, thus leading to an ambiguity when testing for the effect of intermittency on different small-scale statistics.

With respect to (2.7), it is evident that a large family of curves can be plotted for $S + 2G/R_\lambda$ as a function of R_λ in grid turbulence given the scatter in the magnitude of n that exists in the literature (e.g. George 1992). A power-law decay is tenable strictly when R_λ is constant which corresponds to self-preservation at all scales ($n = 1$, e.g.
Meldi & Sagaut (2013) and Djenidi & Antonia (2015)). For most experiments, the power-law decay is only approximate and R_λ continues to decrease with x during the decay. It is worth recalling here Speziale and Bernard’s argument (Speziale & Bernard 1992) that $n = 1$ is "the asymptotic state toward which a self-preserving isotropic turbulence is driven at high Reynolds numbers in order to resolve the fundamental imbalance between vortex stretching and viscous diffusion. In the process of resolving this imbalance, compatibility with Kolmogorov scaling is achieved for the small-scale correlations."

On the other hand, there are flow regions e.g. along the axis in the far field of an axisymmetric jet and the far plane wake where self-preservation is satisfied. Provided the initial Reynolds number (based on the jet diameter D and jet velocity U_j or the cylinder diameter d and free stream velocity U_∞) is sufficiently large, there will be a range of x/D or x/d over which R_λ is constant, thus removing any ambiguity when plotting $S + 2G/R_\lambda$ versus R_λ. Since self-preservation is valid, S and $2G/R_\lambda$ do not vary with x. The consequence of self-preservation on various turbulence statistics in these two flow regions have been explored in some detail (Thiesset et al. 2014) for axis of axisymmetric jet and Tang et al. (2015a) far plane wake). Here we only briefly recall the main steps obtained in Thiesset et al. (2014) which lead to the expression for $S + 2G/R_\lambda$.

Along the axis of a round jet, the inhomogeneous term in (2.1) is

\[
I_q(r) = -\frac{U}{r^2} \int_0^r s^2 \frac{2\delta q(s)}{ds} ds - \frac{2}{r^2} \frac{dU}{dx} \int_0^r s^2 (\delta u(s))^2 - (\delta v(s))^2 ds.
\]

(2.8)

At large r, (2.1) reduces to the one-point energy budget, viz.

\[
-\frac{U d\overline{q}^2}{2} - (\overline{u^2} - \overline{v^2}) \frac{dU}{dx} = \tau,
\]

(2.9)

since the 1st and 2nd terms of the left side of (2.1) become zero when r is large. In contrast to grid turbulence, the mean velocity U ($\sim x^{-1}$) decays with x. Equation (2.9) reflects the balance between τ and the sum of the advection and production of the turbulent energy, the latter arising through the interaction between the normal Reynolds stresses and the mean strain rate $\partial U/\partial x$. The jet axis region satisfies self-preservation exactly for $x/D \gtrsim 50$, since R_λ does not vary with x in this region (Burattini et al. 2005). The limiting form of (2.1) as $r \to 0$ can be simplified using axisymmetry ($w^2 = v^2$) and local isotropy (Thiesset et al. 2014)). The final expression is identical to (2.6), except that C is now given by

\[
C = \frac{90}{7(2 + R)}.
\]

(2.10)

Since all the flows mentioned above are of the "decaying" type, it seems appropriate to consider "forced" turbulence flows which are in general less affected by finite Reynolds number or FRN effects (e.g. Antonia & Burattini 2006) than decaying flows. We start by writing Eq. (2.6) in a generalized form

\[
S + \frac{2G}{R_\lambda} = D,
\]

(2.11)

where D is exactly given by

\[
D = \lim_{r \to 0} \frac{LS(r)}{\left(\frac{dU}{dx}\right)^{3/2}}.
\]

(2.12)

where the term $LS(r)$ reflects the large-scale effects. Its particular form in isotropic
decaying turbulence is

\[LS_{\text{decay}}(r) = U \frac{\partial (\delta q)}{\partial x}, \]

(2.13)
or, in forced turbulence,

\[LS_{\text{forced}}(r) = \delta u_i \delta u_j \frac{\partial U_i}{\partial x_j}. \]

(2.14)Term \(D \) may further be written in the form

\[D = \lim_{r \to 0} \frac{LS(r)}{r^2} \equiv \lim_{r \to 0} \left[r \frac{LS(r)}{(\delta u)^{3/2}} \right]. \]

(2.15)

For decaying turbulence, and considering the expression of the large-scale term \(LS \propto u' L (\delta u)^{2/3} \), together with

\[\lim_{r \to 0} \frac{(\delta u)^{3/2}}{r} = \frac{u_K}{\eta} = \frac{u'}{\lambda}, \]

(2.16)
term \(D \) becomes

\[D_{\text{decay}} = \frac{u'}{L} \frac{u'}{\lambda} \propto \frac{1}{\lambda} \propto \frac{1}{R\lambda}. \]

(2.17)Here, \(u_K = (\nu \tau)^{1/4} \) and \(\eta = (\nu^3 / \tau)^{1/4} \) are the Kolmogorov scales. This demonstration \textit{a priori} circumvents the explicit dependence of the constant \(C \) on the decaying exponent \(n \) (Eq. (2.7)), which actually depends on \(R\lambda \) for FRN.

Note here that a similar development holds for the case when several large-scale effects coexist, such as production (due to mean velocity gradients, or coherent motion strain), turbulent diffusion, decay etc. This can be the case of non-equilibrium flows. In these cases also, the final result is that the sum of all large-scale effects behaves as \(\propto \frac{1}{R\lambda} \) for sufficiently high Reynolds numbers.

For forced turbulence, two cases will be considered.

First, an experimental box turbulence produced by pairs of opposed streams that point towards the central area of the flow. Shear turbulence, characterized by \(\frac{\partial U_i}{\partial x_j} \) with \(i \neq j \) is at this point excluded, because it is characterized by small-scale anisotropy, which is not compatible with the locally isotropic context of this derivation. Therefore, the box turbulence will be characterized by mean velocity gradients along the directions of the mean streams themselves, e.g. \(\frac{\partial U_i}{\partial x_j} \propto \frac{u'}{L} \), where \(L \) is the scale over which the mean stream is stopped, or the scale at which the kinetic energy is injected. The large-scale term becomes

\[LS_{\text{forced}}(r) \sim \frac{(\delta u)^{2} dU}{dx}, \]

(2.18)and with a similar development as above, term \(D_{\text{forced}} \) also scales as \(1/R\lambda \).

Second, we consider numerically simulated forced box turbulence or SFPBT, for which the energy injection is ensured at a given scale \(L_f \), or a wavenumber \(k_f \sim 1/L_f \). Then, energy \(E(k_f) \) is continuously provided at the wavenumber \(k_f \). Term \(LS_{\text{forced}}(r) \) is proportional to the energy at that scale times velocity gradients at that scale, so it can be written as the energy at the scale \(r \) times the strain felt by that scale because of the energy injected at scale \(L_f \). Since the characteristic strain felt at any wavenumber \(k \) is
R. A. Antonia, S. L. Tang, L. Djenidi, and L. Danaila

given by (Danaila & Antonia 2009)

\[\tau(k) \sim \left[\int_0^k k^2 E(k) \, dk \right]^{-1/2}, \]
(2.19)

the strain at the scale \(r \) becomes \(s(k) \propto \left[E(k_f) + k_f^2 \right]^{1/2} \), or, in real space

\[s(r) \propto \left[\frac{(\delta u)(L_f)}{L_f^2} \right]^{1/2} = \frac{(\delta u)^{1/2}(L_f)}{L_f}, \]
(2.20)

which is a constant in \(r \), as it is directly given by the large-scale injection. The last step is to write \(LS_{\text{forcing}} \sim (\delta u)^2 \cdot s(r) \) and it is straightforward to show that

\[\mathcal{D}_{\text{forcing}} = \frac{\lambda}{u} \cdot s(r) \equiv \frac{\lambda}{u} \cdot \frac{(\delta u)^{1/2}(L_f)}{L_f}. \]
(2.21)

It is very reasonable to consider that the energy injected will be proportional to the typical fluctuation \(u' \), so \(u' \sim \left[(\delta u)^2(L_f) \right]^{1/2} \). Then,

\[\mathcal{D}_{\text{forcing}} = \frac{\lambda}{L_f} \propto \frac{1}{R_\lambda}. \]
(2.22)

Therefore, for forced box turbulence, the constant \(C \) is not zero, as suggested by some data at small and moderate Reynolds numbers in Fig. 5, but is likely to be much smaller than the values of \(C \) for either decaying turbulence, or when turbulence is forced over a range of scales. For example, the estimated ratio of the large scale forcing term to \(S \) for the SFPBT of Fukayama et al. (2000) is about 1.6% at \(R_\lambda = 70 \) (estimated from their Fig. 5), while it is several orders of magnitude smaller than \(S \) at \(R_\lambda = 460 \) for the SFPBT of Gotoh et al. (2002). In this case, one expects \(S + 2G/R_\lambda \) to be very nearly zero.

3. \(G/R_\lambda \)

The considerations of section 2 point to \(S + 2G/R_\lambda \) approaching zero at sufficiently large \(R_\lambda \) although the approach will differ in each flow. This is summarized in Fig. 1. At any finite \(R_\lambda \), grid turbulence is furthest from stationarity. One expects the SFPBT data to lie close to the \(x \) axis. Given the uncertainties (e.g. noise contamination and/or inadequate spatial resolution in hot-wire measurements) in estimating \(S \) and \(G \), it is unlikely that for \(R_\lambda \gtrsim 300 \), one will be able to distinguish unambiguously how \(S + 2G/R_\lambda \) departs from zero between different flows.

The term \(G \), defined by (2.5), can be rewritten

\[G = \frac{u^2(\partial^2 u^+ / \partial x^+)^2}{(\partial u^+ / \partial x^+)^2} \]
(3.1)

where the asterisk denotes normalization by the Kolmogorov scales. If local isotropy holds, so that \(\tau = \tau_{iso} = 15\nu(\partial u / \partial x)^2 \), (3.1) can be rewritten as

\[\frac{2G}{R_\lambda} = 2 \times 15^{3/2} \int_0^\infty k_1^4 \phi_u(k_1) \, dk_1, \]
(3.2)

where \(\phi_u(k_1) \) is the one-dimensional spectral density of \(u \), defined such that \(\int_0^\infty \phi_u(k_1) \, dk_1 = \)
Boundedness of the velocity derivative skewness in various turbulent flows

Figure 1. Dependence of $S + 2G/R_\lambda$ (Eq. (2.6)) on R_λ in different flows. (a) grid turbulence (red), $R=0.9$, and $n=1.1$; (b) along the axis of a round jet (black), $R=2/3$; (c) ideal stationary state (green); (d) Eddy-Damped Quasi-Normal Markovian (ED QNM) simulation of decaying homogeneous isotropic turbulence (HIT) (light blue) (Meldi & Sagaut 2013).

If there is a departure from local isotropy, then $2G/R_\lambda$ is estimated using

$$
2G/R_\lambda = 2\nu \frac{\int_0^\infty k_1^4 \phi_u(k_1)dk_1}{\int_0^\infty k_1^2 \phi_u(k_1)dk_1}^{3/2}.
$$

(3.3)

Departure from local isotropy occurs when the large scale anisotropy is felt in the inertial range. However, when this occurs, it does not affect the results discussed in this paper. Indeed, the inertial range does not extend beyond $k^* \approx 0.05$ irrespective of the R_λ (e.g. Ishihara et al. (2009), Yoffe (2012)). As it will be seen later (see for example Fig. 7), the contribution to $\int_0^\infty k_1^4 \phi_u(k_1)dk_1$ from the wavenumber range $0 \leq k^* < 0.05$, which include the inertial range, is negligible in comparison to the contribution from the spectra region above $k^* = 0.05$. Thus, any large-scale anisotropy within the inertial range cannot affect the calculation of G/R_λ.

There is ample evidence in the literature to indicate that the integrals in (3.2) or (3.3) will rapidly converge to constant values with increasing R_λ. This behaviour follows from the collapse of the dissipative part of $\phi_u(k_1)$ when it is normalized with u_K and η, e.g. Saddoughi & Veeravalli (1994). This collapse does not require R_λ to be large (Antonia et al. 2014), nor does it require local isotropy (LI) to be satisfied rigorously; it does however break down when R_λ is small enough, typically smaller than 40. A value as small as 20 was identified by Djenidi et al. (2014).

4. Results for S in a wide range of turbulent flows

Estimates of $2G/R_\lambda$ for the flows considered in Fig. 1 are shown in Fig. 2. Also included are estimates inferred from measured spectra along the axis of a pipe by Rosenberg et al. (2013) (the maximum value of R_λ for their measurements was 1362) also on the axis of a plane far-wake (Champagne 1978). Since hot-wire measurements have good temporal and spatial resolution for $R_\lambda \leq 30$, the measured spectra were used to estimate $2G/R_\lambda$ directly in this range of Reynolds numbers. For $R_\lambda > 30$, a uniform treatment was applied.
to the measured distributions of $\phi^*_n(k_\parallel)$ primarily to avoid the effects of noise contamination and possible inadequate spatial resolution. The portion of the measured spectra beyond $k_\parallel^*\approx 0.3$ was ignored and the distributions were extrapolated using a reference spectrum. There is now cogent analytical arguments describe by Antonia et al. (2014), supported by strong experimental and numerical evidence at low Reynolds numbers, for extrapolating the dissipative range of the spectrum. Antonia et al. (2014) showed that the collapse of the Kolmogorov-normalized spectrum in the dissipative range does on hinge on local isotropy. Nor does it require the Reynolds number to be large. It is important to stress that the collapse is supported by experimental and numerical data at low Reynolds numbers (for which spatial resolution is not an issue), hence justifying the extrapolation as R_λ increases. The extrapolation avoids both the spatial resolution and high frequency (measurement) noise issues as R_λ increases. Further, the arguments underpinning the extrapolation become all the more justifiable since there is a decreasing likelihood that the inhomogeneities in the large scales will affect the small scales when R_λ increases. Thus, any sufficiently well resolved numerical or experimental spectrum can be used for extrapolating the measured spectra whose dissipative range is not fully resolved. Here we used the model spectrum of Pope (2000) mainly for convenience. The constants were calibrated against well resolved DNS spectra (Abe et al. 2009a) on the centreline of a channel flow, where the departure from LI is small and remained unchanged for all the flows used in Fig. 2 (details of the procedure can be found in Tang et al. 2015b; see also Lee et al. (2013)). It is important to stress that the model is mainly used as a curve fit to the DNS data in the region $k^* \geq 0.3$ to carry out the extrapolation of the measured spectra. Further, the use of $k^{*-5/3}$ in the model has not biased the values of G/R_λ that have been estimated from the extrapolated spectra, since, as commented earlier, the contribution from this part of the spectrum is insignificant. As an example, one set of extrapolated spectra for active grid turbulence (Larssen & Devenport 2011) with R_λ in the range 100-1360 are shown in Fig 3. For $R_\lambda > 30$, $2G/R_\lambda$ was estimated using the extrapolated spectra. The larger values of $2G/R_\lambda$ at small R_λ in Fig. 2 reflects, to a large extent, the systematic departure of Kolmogorov normalized spectra of u, in particular the systematic increase of the spectral density in the dissipation range (e.g. Mansour & Wray 1994; Djenidi et al. 2014).

For grid turbulence, and along the axis of a round jet, $2G/R_\lambda$ is constant ($\approx 0.53 \pm 0.1$) for $R_\lambda > 70$. For SFPBT, the constancy of $2G/R_\lambda$ (≈ 0.53) is achieved at small R_λ; however, it would now seem that, for this type of forced turbulence, $2G/R_\lambda$ starts to increase slowly with R_λ, when the latter exceeds a value of about 300 (e.g. Ishihara et al. 2007; Gauding 2014). The light blue curve, inferred from the EDQNM simulation (Meldi & Sagaut 2013), approaches the same constant value (≈ 0.53) as the other experimental data in Fig. 2 only for $R_\lambda \approx 10^3$. This slow approach, which can also be seen in Fig. 1, is different from that exhibited by all the other data and may reflect differences in the initial conditions between simulation and experiments.

In what follows, we consider data for $-S$ obtained by various authors in a wide range of flows. Separate plots are used (Figs. 4, 5, 6), with the same x and y scales. The theoretical distribution of Qian (1994) is shown, as reference, on each plot. The value of 0.53 inferred from Fig. 2 is also shown in each plot. With the exception of the channel and pipe flows, the flows in Fig. 4 are of the decaying type. The red and black curves are estimated from $S + 2G/R_\lambda = C/R_\lambda$ by assuming that $2G/R_\lambda = \text{constant} (\approx 0.53$, when $R_\lambda > 70$). For the red curve (grid turbulence), C, estimated from Eq. (2.7), is equal to 8.8 (n was 1.2 as in the experiment of Lee et al. (2013) and $R = 0.9$). For the black curve (axis of axisymmetric jet), C, estimated from Eq. (2.10), is equal to 4.8 ($R = 2/3$, (Thiesset et al. 2014)). Although there are relatively few data available in the literature
Boundedness of the velocity derivative skewness in various turbulent flows

Figure 2. Dependence of $2G/R_\lambda$ on R_λ in different flows. (a) grid turbulence: ▼, unpublished passive grid data of Zhou & Antonia (2000); ▽, Larssen & Devenport (2011), active grid; ×, Lee et al. (2013), passive grid; (b) axis of pipe: △, Rosenberg et al. (2013); (c) axis of plane far-wake, ◆, Champagne (1978); (c) SFPBT: ◇, Jimenez et al. (1993); ○, Yeung & Zhou (1997); (d) jet axis: ■, Lefeuvre et al. (2015); (e) light blue curve: EDQNM (Meldi & Sagaut 2013) for HIT. The horizontal line indicates the value of 0.53.

Figure 3. Measured and extrapolated spectra for the active grid turbulence, data of Larssen & Devenport (2011) with R_λ in the range 100-1360. The extrapolated spectra are offset by two orders of magnitude along both x and y axes.

in the range $10^2 < R_\lambda < 10^3$, the trend with R_λ of these data provides reasonable support for the curves. The smallest values of $-S$ correspond to the centreline of the channel and the axis of the pipe (Antonia & Pearson 2000). There seems little doubt that for $R_\lambda \leq 200$, where the FRN effect must be important, $-S$ can vary significantly from flow to flow. This variation is reflected in the variation of C, which in essence represents the different physical processes at large scales that contribute to the one-point energy
Figure 4. Dependence of measured values of $-S$ on R_λ in different flows and from two separate EDQNM simulation for decaying HIT. (a) centreline of a fully developed channel flow (☐) and pipe (✩), Antonia & Pearson (2000). (b) along the axis of a round jet: ●, Mi et al. (2013); ▽, Friehe et al. (1971); +, Kahalerras et al. (1998); △, (Burattini, private communication); ■, Lefeuvre et al. (2015). (c) grid turbulence: ✶, Lee et al. (2013); ⊲, Mydlarski & Warhaft (1996); ☐, unpublished data of Zhou & Antonia (2000). (d) along the axis of a plane jet, ●, Zhou et al. (2005); along the axis of the ONERA wind tunnel, ●, measurements of Kahalerras et al. (1998); see Bos et al. (2012); blue curve, Qian (1994); pink and red dashed curves correspond to EDQNM of Meldi & Sagaut (2013) and Bos et al. (2012) respectively. Red and black curves, inferred from Eq. (2.6) by assuming $2C/R_\lambda$–constant (≈ 0.53 for $R_\lambda > 70$), correspond to grid turbulence, and the axis of a round jet, respectively. The horizontal line indicates the value of 0.53.

Figure 5. Dependence of $-S$ on R_λ for SFPBT. ○, Jimenez et al. (1993); ✶, Kerr (1985); △, Gotoh et al. (2002); ☉, Yeung & Zhou (1997); ◻, Gauding (2014) (k_{max}=2.53~4.99); ✱ (k_{max}=1) and ✴ (k_{max}=2) correspond to Ishihara et al. (2007); blue curve, Qian (1994).
budget in different flows. For example, one expects the large scale contribution to the one-point energy budget in the channel and pipe by turbulent diffusion (Tang et al. 2015b). It is also evident that for a given flow, \(-S\) may depend on the initial conditions (e.g. Lavoie et al. 2007; Lee et al. 2013); we also note that, for the HIT simulations of Antonia & Orlandi (2004); Burattini et al. (2008), \(-S\) is 0.5 for \(50 < R_\Lambda < 60\) whereas most of the measured values are somewhat smaller at such Reynolds numbers. Despite the scatter, the data for \(-S\) on the jet axis (Mi et al. 2013; Friehe et al. 1971; Kahalerras et al. 1998) are in satisfactory agreement with the black curve. The major difficulty here is the high turbulence intensity level on the jet axis and its effect on Taylor’s hypothesis (TH). We suspect that the large values of \(-S\) (=0.68 and 0.80) reported by Champagne et al. (1977) (they are not included in Fig. (4)) were adversely affected by the corrections that were applied to TH. The two EDQNM distributions in Fig. 4 approach different values at large \(R_\Lambda\), possibly reflecting differences in the initial conditions. We recall once again that self-preserving HIT \((n = 1)\) at all scales is possible only when \(R_\Lambda\) is constant, regardless of its value (see Meldi & Sagaut (2013); Djenidi & Antonia (2015)). In this case, \(S\) can only be constant, in conformity with \(K_{41}\) (see the discussion in section 2).

Only SFPBT data are shown in Fig. 5; \(-S\) is virtually constant for \(R_\Lambda > 20 - 40\). This is in quite good accord with the analytical prediction \((-S=0.515\text{ for }R_\Lambda > 40\text{) of}Qian\ (1994, 2003). DNS data of Gotoh et al. (2002) indicated that for \(38 \leq R_\Lambda \leq 284\), \(-S\) is approximately constant (\(\approx 0.53\)). For \(R_\Lambda=381\) and 460, \(-S\) was 0.574 and 0.545 respectively, suggesting a possible small increase in \(-S\) with increasing \(R_\Lambda\). This has since been confirmed by the DNS data of Ishihara et al. (2007) which suggest an increase of \(-S\) according to (1.2) with \(\alpha= 0.11\). Since this turbulence should be stationary, the increase reflects an increase of \(2G/R_\Lambda\) with \(R_\Lambda\); this issue will be discussed later in the context of Fig. 7.

Various statistics for \(\partial u/\partial x\) were presented by Tabeling et al. (1996) and Belin et al. (1997) for a flow of helium gas at low temperature between two counter-rotating disks over an impressively large range of \(R_\Lambda\): 150 to 5040 (Tabeling et al. 1996) and 150 to 2300 (Belin et al. 1997). In the context of this paper, these results are useful for two reasons.
Firstly, S has been collected in the same flow. Secondly, since the flow is of the forced type, the range of R_λ should be large enough to allow an exploration of α beyond the range of R_λ that is associated with FRN effects. Moisy et al. (1999) showed that for this flow, $(\delta u)^*/r^*$ displays a reasonable plateau, with a magnitude of about 0.77, which is quite close to Kolmogorov’s 4/5 law, when R_λ exceeds 1000. Antonia & Burattini (2006) showed that for this type of flow, $R_\lambda \approx 1000$ should be sufficient for FRN effects to cease being important. The data of Tabeling et al. (1996) were not included in Sreenivasan & Antonia’s compilations (Sreenivasan & Antonia 1997) for S and F, the flatness factor of $\partial u/\partial x$, mainly because of a (slow) drop off in S & F beyond $R_\lambda \approx 700 - 800$, which was reported to coincide with a transition to a new state of turbulence. This behaviour was reproduced in the later experiment by Belin et al. (1997) and the values of S and F seemed unaffected at least up to $R_\lambda \approx 1000$. Both sets of data for S are shown in Fig. 6, up to $R_\lambda \approx 2000$. The transitional behaviour is difficult to discern in $-S$ but can be more easily seen in F and higher order moments of $\partial u/\partial x$ (which are not shown here). It is clear however, that, allowing for the scatter, the Belin et al. (1997) data suggest, as the authors indicate, that $-S$ remains constant (≈ 0.50) over the whole range of R_λ, up to $R_\lambda \approx 2000$. This is consistent with our expected behaviour (section 2) of $-S$ when forcing is applied.

The high wavenumber part of $k^\ast E^\ast(k^\ast)$ (see blue curves in Fig. 7), where $E(k)$ is the 3D energy spectrum, increases systematically with R_λ implying nonconformity with Kolmogorov scaling. This contrasts with the arguments put forward in Antonia et al. (2014), the behaviour of spectra from lower R_λ DNSs of SFPBT as well as that for experimental data in a wide range of flows at comparable if not larger R_λ than for Ishihara et al. (2007). Figure 7 also shows the distributions of $k^\ast E^\ast(k^\ast)$ of Gotoh et al. (2002) ($R_\lambda=38 \sim 460$), Jimenez et al. (1993) ($R_\lambda=35 \sim 168$) and Yeung & Zhou (1997) ($R_\lambda=38 \sim 240$) for SFPBT. Whilst the spectra of Gotoh et al. (2002), Jimenez et al. (1993), and Yeung & Zhou (1997) collapse at high wavenumbers over the range $38 \leq R_\lambda \leq 460$, those of Ishihara et al. (2007) exhibit a systematic increase with R_λ (a similar trend has been observed by Gauding (2014), private communication); this is consistent with the increase of $-S$ with R_λ in Fig. 5. It is not clear why the spectra of Ishihara et al. (2007) do not conform with Kolmogorov scaling, in particular with the 1st similarity law. Nevertheless, Ishihara et al. (2005, 2007, 2009) leave open the possibility, based on fitting to $k^\ast E^\ast(k^\ast)$ for $k^\ast > 0.5$, that as $R_\lambda \rightarrow \infty$, $-S$ approaches a constant independent of R_λ but the approach may be slow*.

Contrary to Fig. 7, the distributions of $k_1^\ast \phi_1^\ast(k_1^\ast)$ in Fig. 8, where the maximum R_λ is larger than in Fig. 7, do not exhibit any obvious dependence on R_λ. Notwithstanding the scatter and the peeling off at decreasing values of k_1^\ast with increasing R_λ of some of the data, the distributions cluster together in accord with Kolmogorov scaling and the constancy of G/R_λ in Fig. 2.

We conclude this section by examining the dependence on R_λ of S_{3u}, the skewness of δu, viz. $S_{3u} = (\langle \delta u \rangle^3/(\delta u)^3)^{1/2}$, for most of the flows used in Fig. 4. Figure 9 highlights the relatively strong variation with R_λ of both the shape and magnitude of S_{3u} at least up to $R_\lambda \approx 1000$. Whilst the variation with R_λ is systematic for a given flow, e.g. the centreline of the channel (solid red curves) or grid turbulence (broken blue curves), the magnitude of S_{3u} is larger for grid turbulence than the channel flow despite R_λ being smaller in grid turbulence. This behaviour is of course consistent with Fig. 4. For all the data in Fig. 9, the resolution of the single hot wire, as measured by the ratio l_w/η (l_w is the length of the wire) is adequate since l_w/η remains in the range 0.5-3. For $R_\lambda \geq 500$ (the plane & circular jet data as well as the Modane data at $R_\lambda=2500$), the distributions
Boundedness of the velocity derivative skewness in various turbulent flows

Figure 7. Normalized three-dimensional DNS spectra $k^{+4}\Phi^*(k^*)$ for SFPBT. Blue curves, (Ishihara et al. 2007), R_λ=94, 173, 268, 429, and 675 respectively; the arrow indicates the direction R_λ increases. Black curves, (Gotoh et al. 2002), R_λ=38, 54, 70, 125, 284, 381, and 460 respectively. Red curves, (Jimenez et al. 1993), R_λ=35, 61, 94, and 168 respectively. Green curves, (Yeung & Zhou 1997), R_λ=38, 90, 140, 180, and 240 respectively.

Figure 8. Normalized one-dimensional spectra $k_1^{+4}\phi_1^*(k_1^*)$. Red curves, Antonia et al. (2014), R_λ=41-140; blue curves, Rosenberg et al. (2013), R_λ=109-788; ×, Larssen & Devenport (2011), R_λ=100-1360; black curve, DNS data of Gotoh et al. (2002), R_λ=460; green curves, DNS data on the centreline of a channel flow (Abe et al. 2009b), R_λ=34-66.

of $S_{\delta u}$ seem to collapse reasonably well at small r^*, up to $r^* \approx 200$. The rate at which $S_{\delta u}$ decreases as r^* increases slows down for $r^* \geq 20$ but there is no clear indication that $S_{\delta u}$ becomes constant, even for $R_\lambda=25000$. K41 requires the constant value, $(-S_{\delta u})_{IR}$ say, to be equal to $4/5C_K^{-3/2}$ where C_K is the Kolmogorov constant, i.e. $(\delta u)^2 = C_K(\tau)^{2/3}$. The EDQNM result of Bos et al. (2012) appears to approach a plateau in the inertial range; their data suggest that $C_K \approx 2.2$ so that $(-S_{\delta u})_{IR} = 0.25$. Despite the very large R_λ, the
5. Concluding discussion

Overall, Fig. 4 strongly supports the idea that in each flow \(-S\) approaches the same constant value as \(R_\lambda\) increases but this approach differs from flow to flow. This vindicates the suggestion by Thiesset et al. (2014) that previous attempts at testing the \(R_\lambda\) dependence of properties of the SSM, which indiscriminately lumped together data from all types of laboratory flows, are either not meaningful or, at the very least, should be treated with caution. Further, even when the exponent is estimated from the same flow, one needs to be sure that \(R_\lambda\) is sufficiently large for the FRN effect to have disappeared. This is unlikely to be an easy task in decaying-type flows in view of the results in Antonia & Burattini (2006).

Since the flow dependent constant \(C\) is positive (although varying from flow to flow and possibly from position to position in a given flow), \(-S\) should remain smaller than its asymptotic constant \((\approx 0.53)\) until \(C/R_\lambda\) becomes negligible. As predicated by Qian (1994), \(-S\) cannot grow unboundedly as \(R_\lambda\) increases. This is contrary to the predictions from lognormal and fractal models, (e.g. Van Atta & Antonia 1980; Frisch et al. 1978), but is consistent with the vortex tube model of Tennekes (1968) and the heuristic model of Saffman (1970).

Interestingly, the constancy of \(S\) which is equal to \(S_{\delta u}\) in the limit \(r^* \to 0\), reflects complete self-preservation, or self-preservation at all scales of motion when \(R_\lambda\) is very high. In this case, \(S_{\delta u}\) should collapse onto a single curve, regardless of \(R_\lambda\) and exhibit...
3 plateaux, one at small r^* ($S_{\delta u} = S=$const), one in the IR ($S_{\delta u} = (S_{\delta u})_{IR}=$const), and one ($S_{\delta u} =0$) at large r^* ($> L^*$). The constraint imposed by K_{41}, viz. $S=$const, and $(S_{\delta u})_{IR}=$const, is therefore subsumed within this more general framework. Although Figs. 4, 6 and 9 support the constancy of S for laboratory flows, Fig. 9 is a reminder that the constancy of $(S_{\delta u})_{IR}$ may be out of reach in the laboratory, at least for decaying turbulence. One expects the constancy of S and $(S_{\delta u})_{IR}$ to be obtained in forced HIT but, as illustrated in Figs. 5 and 7, this has yet to be confirmed by DNSs for forced periodic box turbulence.

The constancy of $-S$ at sufficiently large R_λ implied by Figs. 4 and 6, which contrasts with (1.2), should not be too surprising given that the constraint of equation (2.6) is based on the Navier-Stokes (N-S) equations. It is worth recalling, in the context of the phenomenological model of Kolmogorov (1962), that, over the inertial range, $(\partial u/\partial x)^3$ is constrained to vary proportionately to r, provided R_λ is sufficiently large. All small scale intermittency models have had to satisfy this constraint. Future research may be able to verify that normalised higher order moments of $\partial u/\partial x$, e.g. the flatness factor ($F = (\partial u/\partial x)^4/(\partial u/\partial x)^2$) of $\partial u/\partial x$, may like $-S$, be also bounded at sufficiently large R_λ, once the appropriate constraint derived from the N-S equations is understood. Such a possibility was considered by Qian (1986).

The financial support of the Australian Research Council (ARC) is acknowledged.

REFERENCES

Batchelor, G.K. 1953 The theory of homogeneous turbulence. CUP.

Lee, S. K., Djenidi, L., Antonia, R. A. & Danaila, L. 2013 On the destruction coefficients...
Boundedness of the velocity derivative skewness in various turbulent flows

