
Available from: http://dx.doi.org/10.1016/j.tetlet.2016.06.007

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Accessed from: http://hdl.handle.net/1959.13/1324554
A multicomponent access to 1,3-thiazine-6-phenylimino-5-carboxylates

Trieu N. Trinh and Adam McCluskey

Chemistry, Centre for Chemical Biology, School of Environmental & Life Sciences, The University of Newcastle, University Drive Callaghan NSW 2308, Australia; Phone: +61(0)249216486; Fax: +61(0)249215472; Email: Adam.McCluskey@newcastle.edu.au

ARTICLE INFO

Article history:
Received
Received in revised form
Accepted
Available online

Keywords:
Multicomponent reaction
isothiocyanate
1,3-thiazine
anhydride
ethyl 3-aminocrotonate

ABSTRACT

The multicomponent reaction of ethyl 3-aminocrotonate (1), substituted phenylisothiocyanates (2a-i) and acetic anhydride (7), afforded facile access to a series of substituted 1,3-thiazine-6-phenylimino-5-carboxylates under mild conditions in 15-65% yields. Limited tolerance for modification of the anhydride moiety was noted with significant reduction in yield for propionic and trifluoroacetic anhydrides. The use of benzoic anhydride favoured a two component coupling product.

2009 Elsevier Ltd. All rights reserved.

Keywords: Multicomponent reaction
isothiocyanate
1,3-thiazine
anhydride
ethyl 3-aminocrotonate

Introduction

Isothiocyanate multicomponent reactions (MCRs) have proved to be extremely versatile entry points to a wide array of novel biologically active scaffolds.1-4 MCRs, by virtue of this simplicity and the diversity of potential individual components can permit the exquisite positioning of key pharmacophoric moieties in the correct chemical space to enable critical interactions within protein binding sites.5-10

The use of a one-pot MCR is particularly appealing, especially in light of the increasing drivers towards sustainable synthetic methodologies and approaches with high atom economy.11-14 We were particularly interested in a recent report from Vasu and co-workers that detailed the one-pot MCR synthesis of quinazolin-2-yl-tetrasubstituted thiophenes.15 While the thiophene moiety has had widespread use in medicinal chemistry, it was the transient formation of the ammonium thiolate zwitterion (4) in the postulated mechanism that attracted our initial attention (Scheme 1).16-18

Examination of Vasu’s proposed mechanism, suggested that replacement of the activated halide by acetic anhydride would permit in situ trapping of the anion, which would then follow a similar sequence of intramolecular additions to yield compounds such as 6, or possibly those lacking the exocyclic -NH2 (from loss of NH3).15 Thus our interest lay in the possible generation of a family of phenylimino-1,3-oxathiane-5-carboxylates (Figure 1), a scaffold that is currently very poorly described in the chemical literature.19

Figure 1. Representative example of a phenylimino-1,3-oxathiane-5-carboxylate.

Ethyl 3-aminocrotonate (1) was stirred with phenylisothiocyanate (2) under a nitrogen atmosphere followed by the addition of acetic anhydride (7). TLC analysis showed clear evidence for the consumption of starting materials, however, examination of the crude NMR showed no evidence of a NH2 moiety, nor did the FTIR spectrum. No NH stretch was observed, but there was clear evidence of the ester C=O (υC=O 1728 cm-1) and additional signals in the aromatic region of the spectrum. Rather than the proposed phenylimino-1,3-oxathiane-5-carboxylate, all spectroscopic evidence was consistent with the synthesis of a similarly poorly described scaffold, 2,4-dimethyl-6-phenylimino-6H-[1,3]thiazine-5-carboxylic acid ethyl ester (8a) which was isolated in a 65% yield (Scheme 2).20

Scheme 1. Reagents and conditions: THF:CH3CN (1:1), 45-50 ºC, DMF

Scheme 2. Synthesis of 1,3-thiazine (8a): Reagents and conditions: CH3CN, 24 h, RT under N2.

Most probably the observed 1,3-thiazine-6-phenylimino-5-carboxylate (8a) arose via the coupling of ethyl 3-aminocrotonate with phenyl isothiocyanate to yield the ammonium thiolate zwitterion (10). The thiolate was intercepted by the addition of acetic anhydride and following acetyl loss and H-abstraction, yielded enamine (12). Under the reaction condition, either directly via protonation of the ketone, nucleophilic attack by the amine...
moiety followed by protonation (2x) and subsequent loss of water affords the protonated 1,3-thiazine-6-phenylimino-5-carboxylate which is neutralized via acetate H-abstraction to give 8a. This mechanism differs from Vasu’s only in the final stages where the loss of ammonia is not favoured over intramolecular condensation with the carbonyl moiety (Figure 2).

![Figure 2. Proposed mechanism for the formation of 1,3-thiazine-5-carboxylate from the one pot MCR of ethyl 3-aminocrotonates, phenylisothiocyanate and acetic anhydride.](image)

The use of a variety of substituted isothiocyanates afforded 1,3-thiazines 8a-8i in low (15%, 8i; Table 1, Entry 9) to good (65%, 8a; Entry 1) yields. The introduction of a bromine substituent (64%, 8d; Entry 4) was well tolerated with no change in yield (65 vs 64%), but strong electron withdrawing substituents, e.g. 4-CF₃ (35%, 8e; Table 1, Entry 5) and 3,5-Cl₂ (20%, 8f, Entry 6) resulted in a significant reduction in yield. Both 3,4-methylenedioxy and 2-naphthyl isothiocyanates were reasonably tolerated with yields of 29% and 29%, respectively (8g and 8h; Entries 7 and 8). Alkyl isothiocyanates were not well tolerated with the 1,3-thiazene-5-carboxylate originating from ethyl isothiocyanate obtained in low yield (15%, 8i; Entry 9). The addition of additional equivalents of EtNCS, failed to increase the yield. The poor results in this instance meant that we did not further explore the use of alkyl isothiocyanates.

Table 1. Synthesis of substituted 1,3-thiazin-6-imino-5-carboxylates 8a-8i.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8a</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8b</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8c</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8d</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8e</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Reagents and conditions: CH₃CN, 24 h, RT under N₂

This path to 1,3-thiazine-6-phenylimino-5-carboxylates, unlike that reported by Vugts and co-workers,¹¹ and Glasnov and co-workers²² does not require the use of harsh reagents (n-BuLi) nor low temperatures (−78 ºC; to generate the phosphonate anion) and thus represents a significantly more facile entry point.

To further explore the scope of this reaction we next examined modifications of the anhydride moiety. We examined the use of propionic, benzoic and trifluoroacetic anhydrides and while 1,3-thiazine-6-imino-5-carboxylates 8j-8l were isolated, they were typically in very low yields (4–29%; Table 2). This most likely is a consequence of the multiple roles that the anhydride moiety plays during the course of this reaction, including as an electrophile, with the corresponding carboxylate then acting as a base.

Table 2. Synthesis of substituted 1,3-thiazin-6-imines 8k-8l using propionic, benzoic and trifluoroacetic anhydrides.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R’</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH₃CH₂</td>
<td>7b</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>7c</td>
<td>8k</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>CF₃</td>
<td>7d</td>
<td>12</td>
</tr>
</tbody>
</table>

Reagents and conditions: CH₃CN, 24 h, RT under N₂

In the case of benzoic anhydride, we further explored this reaction with phenyl- and 4-bromophenyl-isothiocyanate. In both instances the addition of the initial isothiocyanate (2a and 2d) to ethyl 3-aminocrotonate (1) proceeded well with the thioamides formed in good yield (~70%). However, only limited evidence of thiolate interception was noted with the major isolated product arising from benzoylation of the free amino moiety (28%) (Scheme 3).
The reaction of ethyl 3-aminocrotonate (1), a range of phenyl isothiocyanates (2a–m) and acetic anhydride has provided a rapid access to 1,3-thiazine-6-phenylimino-5-carboxylates that avoids the use of strong bases and restrictive reaction conditions. This process requiring only stirring at room temperature.

Scheme 3. Reagents and conditions: CH₃CN, 24 h, RT, under N₂

Conclusions


General procedure of synthesis, represented by 8a: 2,4-Dimethyl-6-phenylisothiocyanate-6H-[1,3]thiazine-5-carboxylic acid ethyl ester. A mixture of ethyl 3-aminocrotonate (0.3 mL, 2.373 mmol) and phenylisothiocyanate (2a) (0.283 mL, 2.373 mmol) was stirred, under solvent free conditions, at room temperature overnight under a nitrogen atmosphere. To the stirred mixture was added acetic anhydride (0.26 mL, 2.61 mmol) and acetonitrile (5 mL). The reaction mixture was stirred for 24 h at room temperature and the crude material was subjected to silica gel chromatography (1:4 ethyl acetate : petroleum ether) to afford 2a (0.304 g, 65%) as a bright yellow solid (mp 145.3-146.5 ºC). IR (cm⁻¹): 2984 (CH), 1728 (COO), 1231 (CO). 1H NMR (400 MHz, CDCl₃) δ 7.65 (J = 7.1 Hz, 2H), 2.31 (s, 3H), 2.22 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H), 1.2 (t, J = 7.1 Hz, 3H). 13C NMR (400 MHz, CDCl₃) δ 183.0, 166.1, 159.2, 153.9, 140.6, 132.3, 130.5, 129.7, 127.1 (Cx2), 129.7, 127.1 (Cx2), 62.0, 25.1, 21.9, 14.0. LRMS (ESI+) m/z 288, 288 [M] + 40%. HMR (ESI+) for C₁₅H₁₆N₂O₂S, calculated 289.1005, found 289.1004.


Conclusions

The reaction of ethyl 3-aminocrotonate (1), a range of phenyl isothiocyanates (2a–m) and acetic anhydride has provided a rapid access to 1,3-thiazine-6-phenylimino-5-carboxylates that avoids the use of strong bases and restrictive reaction conditions. This process requiring only stirring at room temperature.

Acknowledgements

The authors thank the NHMRC (Australia) for project support and T.N.T. is the recipient of a Prime Minister's Australia Asia Postgraduate Endeavour Award.

Notes and References


Supplementary Material

Supplementary material comprising full experimental detail, ¹H, ¹³C NMR and LCMS evaluation of compounds 8a–8j and 10a and 10b in PDF format is available as a separate electronic file.