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Abstract

We present a closed form expression for the Fischer’s information matrix associated with
the identification of Wiener models. In the derivation we assume that the input signal is
Gaussian. The analysis allows the linear sub-system in the Wiener model to have a generic
rational transfer function of arbitrary order. It also allows the static nonlinearity of the
Wiener model to be a polynomial of arbitrary degree. In addition, we show how this analysis
can be used to design tractable algorithms for D-optimal input design. The idea is further
extended to design optimal inputs consisting of a sequence of Gaussian signals with differ-
ent mean values and variances. By combining Gaussian inputs with different means we can
tune the amplitude distribution of the input to achieve the best identification accuracy in
D-optimal sense. The analytical results are also illustrated with some numerical simulations.
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1 Introduction

In this paper we study the design of optimal input signals using a mixture of Gaussian excitations
with optimized input spectrum and dc-offsets. We first explain the main ideas in the introduction,
next a detailed technical description is given in the rest of this paper.

1.1 Contributions

We analyze how the input signal used to identify a nonlinear Wiener system influences the accuracy
of the estimated model. We assume the input signal is a Gaussian stochastic process with some
known power spectral density. The analysis presented herein can accommodate a very general
model structure. A Wiener model consists of a linear, time-invariant, dynamic sub-system followed
by a static nonlinearity. Our analysis allows a linear sub-system with a rational transfer function
of arbitrary order, and a static polynomial non-linearity of arbitrary degree. To the best of our
knowledge such an analysis with a very general assumption on the model structure is new in
literature. The results obtained from this accuracy analysis is also used to choose the input power
spectral densities that lead to optimal accuracy of the resulting model. To this end we give a
tractable algorithm for solving the underlying optimization problem. We show that the set of
all input power spectral densities can be parameterized using a finite number of parameters. In
addition, there is a special parameterization which allows us to solve the optimization problem
via an one dimensional search over a finite interval. This method shows a new tractable way to
handle input design problems for nonlinear systems, which, so far, has been regarded as a problem
of substantial difficulty.

We extend the D-optimal design approach to design Gaussian mixture inputs. This novel input
design framework utilizes multiple identification experiments using Gaussian inputs with different
mean values and variances, and thereby, allows us to tune the effective input amplitude distribution
as well as the power spectral distributions at the same time.

1.2 The input design problem

Consider a causal dynamic system S with an input u(t) and output y(t). We wish to use the
input-output data to identify a parametric model M(ϑ,ut) of the system S. Here ϑ denotes the
vector of unknown parameters, and

ut := [ u(t) u(t− 1) u(t− 2) · · · ]
is potentially an infinite dimensional vector consisting of all the samples of u up to time point t,
which determine the output y(t). If we assume the structure of M is rich enough to represent the
dynamic behavior of S with ϑ̊ representing the true value of ϑ, then we can write

y(t) = M(ϑ̊,ut) + e(t).

Here e(t) represents the measurement noise, which is assumed to be zero mean, white, with a
variance σ2

e .
The prediction error estimate ϑ̂ obtained from N samples of input-output data is given by [28]

ϑ̂ = argmin
ϑ

1

N

N
∑

t=1

{y(t)−M(ϑ,ut)}2.
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The quality of the identified model depends on the covariance matrix of ϑ̂. For large N the
normalized covariance matrix of

√
Nϑ̂ is given by σ2

eJ
−1, where J is the normalized Fischer’s

information matrix [28]

J := E{vtv
⊺

t }, vt =
∂M(ϑ̊,ut)

∂ϑ
.

The input design problem, in one way or other, involves optimizing the statistical properties of ut

in order to maximize some monotonic function of J [1–3, 21, 22, 24]. In particular, the D-optimal
design maximize the determinant of J [18].

Note that we need to know the true value ϑ̊ to calculate J, and thus to design the input. In
practice, one often uses an estimate in place of ϑ̊. For this reason, it is common practice in the
input design literature to assume that ϑ̊ is known.

1.3 Input design for linear models

When S is linear then the situation is somewhat simplified in the sense that there is a linear filter
G1(z) such that

vt = G1(z)u(t).

Several papers have explored the relation between J and the statistics of ut, see e.g., [17, 27, 29–
31, 39]. These methods utilize the relation

J =
1

2π

∫ π

−π

G1(e
iω)Φ(eiω)G∗

1(e
iω) dω,

which essentially describes a linear map from the input power spectral density Φ(eiω) to the in-
formation matrix J. This map has been analyzed in detail by [29]. It has been shown that the
maximization of any concave function of J can be cast as a convex programming problem in a
finite dimensional parameter, see, e.g. [1–3,21,22,24]. Consequently, we can solve the input design
problem efficiently via convex optimization tools [4, 19, 20, 37].

1.4 Input design for nonlinear models: the fundamental issues

When S is a non-linear system, vt is no longer linear in u. Hence J depends on the higher order
statistics of ut. If we compare this scenario with the linear case, we see that J does not only
depend on the power spectral density Φ, but also on the amplitude distribution of u(t). There are
two major problems that one must address here:

i) Realization of designed input process

The first problem concerns the realization of the optimal input. Suppose that we have an in-
put design algorithm that allows us to calculate the optimal power spectral density Φ∗ and the
amplitude distribution of u(t). To the best of our knowledge there is no known way to generate
a realization of u(t) with pre-specified power spectral density and amplitude distribution. The
standard way to generate a signal u(t) with a pre-specified power spectral density Φ∗ is to pass a
white noise sequence ǫ(t) through a filter corresponding to a stable spectral factor of Φ∗. But this
process allows no scope for tuning the amplitude distribution of u(t). That is because computing
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u(t) involves computing an weighted average of ǫ(t), ǫ(t−1), ǫ(t−2), . . .. The rationale behind the
celebrated central limit theorem tells us that the distribution of u(t), so generated, is very close to
Gaussian (thereby its amplitude distribution is fixed). This phenomenon is rather prominent even
with an FIR filter of an order as low as 3 or 4.

ii) Computation of optimal input attributes

The second problem concerns formulating and solving the optimization problem required to cal-
culate the optimal amplitude and power spectral distributions. This problem is likely to be non-
convex and involves a large number of joint statistics of the potentially infinite dimensional vector
ut. To the best of our knowledge, it has not yet been possible formulate the underlying optimization
problem in a manner that can be solved via a numerical approach.

Since no satisfactory solutions to the above problems are available, the line of research in the
nonlinear input design has undergone a significant paradigm shift. Most of the preliminary studies
reported so far [10,16,23,26,38], have considered a deterministic setting. Among these the multi-
level excitation approach [6, 7, 10, 26] appears to be popular lately. These deterministic methods
do have their limitations. The multi-level approach is often not tractable when we increase the
number of levels. The majority of these methods are unable to handle IIR-type non-linear systems.

1.5 Significance of our results relative to the existing literature

In this paper we address the two key problems described above in the context of Wiener systems.
Following [16], we assume the input is a Gaussian stochastic process. The Gaussian assumption
is justified by the fact mentioned above - we do not yet know a way to generate a non-white non-
Gaussian process. Our solution to the problem of generating inputs with pre-specified amplitude
and power spectral distributions is to employ a Gaussian mixture design. We propose to optimally
mix the data obtained from a number of system identification experiments while estimating ϑ.
Each of these experiments employ a Gaussian input signal with a different mean. By shifting
the means of these different inputs and combining them with appropriate weighting factors we
can control the effective amplitude distribution of the input. The Gaussian mixture approach
decouples the problem of tuning and generating the amplitude distribution from that of the power
spectral distribution.

For a single Gaussian, we give a tractable solution to the second problem under very general
assumptions. A Wiener system consists of a linear sub-system G followed by a static nonlinearity.
Our methods allow a rational model for G. The rational transfer function can be of arbitrary
order. We model the static nonlinearity as a polynomial, and can allow an arbitrary polynomial
degree. By allowing a rational transfer function for G, we let ut to have an infinite length. Thus,
it is very challenging to optimize any criterion of J with respect to the higher order moments of
ut. In fact, it is quite difficult to just compute J. Firstly, the available formulae for calculating
higher order moments are quite challenging to program. More importantly, the complexity of
the resulting algorithms typically grows exponentially with the length of ut [25]. In fact, to the
best of our knowledge no previous authors have considered handling this issue when G is not a
finite impulse response system. Even when a finite impulse response system is considered in the
literature, the order of the system have been restricted to 4 or less in the case studies considered
therein. In this paper we show when the input process is Gaussian there is a simple algorithm to

4



compute J, and the complexity of our algorithm can be given as a polynomial in the system order.
This analysis also reveals some interesting mathematical structures, that allow us to parameterize
the set of all admissible information matrices with a finite number of parameters. Furthermore,
J is linear in all but one of these parameters. In effect, the D-optimal input design problem
can be cast as a non-convex optimization problem over a finite interval in one dimension, and
such problems can be solved reliably by some suitable line search method. The parameters that
we use to parameterize J are related to the input power spectral density via some interpolation
constraints [29]. Therefore, the power spectral density of the optimal input can be computed by
solving an analytic interpolation problem.

1.6 Outline of the paper

In Section 2 we present our Gaussian mixture solution to deal with the problem of tuning the
amplitude distribution and the power spectral distribution of the input at the same time.

In Section 3.1 we discuss the fundamental constraints that we must consider while parameteriz-
ing a Wiener model for the purpose of identification. These constraints must be considered because
of underlying non-uniqueness of the Wiener model representation. Suppose G(z) is the transfer
function of the linear subsystem, and ℘(x) is the static nonlinear function of a Wiener system.
Take any scalar α 6= 0, and construct a second Wiener system with a transfer function αG(z), and
static nonlinearity ℘(x/α). In terms of the input-output relationship the second model is identical
to the first model. Since α can take uncountably many values, one can construct uncountably
many models for the same Wiener system. Therefore, to ensure unique identifiability we must
impose some additional constraint to remove this unwanted degree of freedom. In Section 3.1 we
present a unified framework that allows us to cover several popular ways to impose this constraint.
The advantage of using this general framework becomes clear in Remark 6, where we can clearly
see the connection between identifiability and the Fischer’s information matrix for Wiener model
identification problem.

In Section 3.2 we summarize all the main analytical results. It starts with a key observation
made in Lemma 1. It is observed that under very general conditions J is a function of some
finite number of moments of a finite dimensional vector valued stationary stochastic process x.
In addition, x is obtained by passing the input u through a single input multiple output linear
time-invariant filter. Lemma 1 is valid whenever the input u is a stationary stochastic process,
and makes no assumption on the distribution of u.

The fact that J can be given in terms of finitely many moments of x is exploited further in
Theorem 1, where we obtain a convenient closed form expression of J for a Gaussian u. This
expression is easily computable, and useful, e.g. in input design. Theorem 2 takes the analysis one
step further where we show that the determinant of J admits a simple expression. This expression
allows us to derive tractable D-optimal design methods in Section 4.

Section 4 addresses the problem of D-optimal design of Gaussian inputs. The main result is
Theorem 3, which gives a tractable algorithm for computing the D-optimal input attributes. The
main contribution here is to show that the underlying infinite dimensional problem with infinitely
many possible solutions admits a finite dimensional parameterization in terms of a parameter vector
h. Moreover, the resulting non-convex problem can be solved via a line-search. This is possible
because det(J) is convex in all but one dimensions in the h-space, and the set of all admissible h
is compact.
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The ideas presented in the paper were verified and tested via numerical simulations, and some
main findings appear in Section 5. It turns out that the D-optimal design approach with Gaus-
sian inputs is quite comparable with the D-optimal designs with deterministic inputs in terms of
estimation accuracy. Furthermore, it has the advantage that it can handle very generic model
structures unlike its deterministic counterparts.

2 Gaussian mixture design

In a nonlinear system identification problem we typically identify a model for a pre-specified range
of input amplitude. Without of any loss of generality let us assume that the input must satisfy

−1 ≤ u(t) ≤ 1, ∀t. (1)

As mentioned above, we decouple the problem of tuning and generating the input amplitude
distribution from that of the power spectral distribution by using a Gaussian mixture design. We
propose to optimally mix the data obtained from a number of system identification experiments
while computing the estimate ϑ̂. Each of these experiments employ a Gaussian input signal
with a different mean. By shifting the means of these different inputs and combining them with
appropriate weighting factors we can control the effective amplitude distribution of the input. We
re-emphasize that the Gaussian assumption here is not by choice, but is imposed on us from the
practical need of generating a non-white input signal.

Suppose we have decided to do p experiments where in the k th experiment we plan to set the
mean of the Gaussian input to ηu(k). One intuitive way choose ηu(k) is to take

ηu(k) = −1 +
2k

p+ 1
, k = 1, 2, . . . , p. (2)

generating an uniform grid. This ensures that |ηu(k)| < 1 for all k ∈ {1, 2, . . . , p}. We point out
that this is not necessarily the best choice. It might be possible to optimally choose the grid based
on some prior knowledge, but such an investigation is beyond the current scope. We offer in this
section an optimal solution to the global problem.

Although we need a Gaussian u(t) in order to realize a given power spectral density, a Gaussian
signal does not satisfy (1) in a strict sense. However, by properly choosing the variance of the
Gaussian signal we can ensure that (1) is satisfied with very high probability. For instance if
ηu(k) = 0 then we take the input variance ςk = 1/16 to ensure Prob{|u(t)| > 1} < 10−4. This idea
can be generalized in mathematical terms as

ςk =

(

1

κ
min{ηu(k) + 1, 1− ηu(k)}

)2

, (3)

where the parameter κ controls the value of Prob{|u(t)| > 1}, e.g., if κ = 4 then Prob{|u(t)| >
1} = 0.001. This way of choosing ςk allows us to maximize the input energy for a target value of
the boundary violation probability Prob{|u(t)| > 1}.

Now suppose that for each combination (ηu(k), ςk) we can maximize the information matrix in
some sense. Let Jk be the resulting optimal information matrix for the k th optimal experiment
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obtained in this way. Now we wish to find out the length Nk (in the number of samples) of k-th
experiment such that resulting normalized information matrix

J̄ =
N1J1 +N2J2 + · · ·+NpJp

N1 +N2 + · · ·+Np

is optimized in some sense. In practice, the total length of experiment N1 + · · · + Np is known,
and we need to determine the fractions

κj =
Nj

N1 +N2 + · · ·+Np
, j = 1, 2, . . . , p.

The resulting optimiztion problem takes the general form

maximize
κ1,κ2,...,κp

ρ(J̄) (4a)

subject to J̄ = κ1J1 + κ2J2 + · · ·+ κpJp (4b)

κk ≥ 0, k = 1, 2, . . . , p, (4c)

κ1 + κ2 + · · ·+ κp = 1, (4d)

which requires to be solved with respect to κ1, . . . , κp. Here ρ(J̄) is some monotonic function of J̄
of our choice. Some popular choices include det(J̄), λmin(J̄), etc. For these choices (4) is convex,
and can be solved using well-known techniques implemented in popular packages like CVX [20].

The Gaussian mixture design described above allows us to get around the first problem in
nonlinear input design. This makes it possible to find an optimum amplitude distribution of the
input without worrying about the power spectral density. The decoupling also makes it possible
to realize the desired amplitude distribution. Next we address the second problem, where we find
the optimum power spectral density for a given pair (ηu, ς).

3 Information matrix and its determinant

In this section we present our main findings about the information matrix J and its determinant.
We start in Section 3.1 with the basic notation and introduce the formal problem setting. In
particular, we introduce a generalized framework for setting up the constraint to ensure unique
identifiability of the Wiener model. Next in Section 3.2 we list the main results. In particular
we use a state space representations of underlying transfer functions. We believe this approach
simplifies the analysis, and illuminates the underlying mathematical structures to a significant
extent.

3.1 Model parameterization and identifiability

A Wiener system is a cascade of a linear time invariant system followed by a static nonlinearity.
We assume that the linear sub-system has a rational transfer function

G(z, θ) =
g0 + g1z

−1 + · · ·+ gnz
−n

1 + a1z−1 + · · ·+ anz−n
, (5)
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parameterized by the parameter vector θ defined as

θ = [ a1 · · · an g1 · · · gn g0 ]⊺. (6)

The output of the linear model is denoted by w:

w(t, θ) = G(z, θ)u(t). (7)

The static nonlinearity is modeled by a polynomial ℘ of order m:

℘(x, ᾱ) = α0 + α1x+ · · ·+ αmx
m,

parameterized by the vector of polynomial coefficients

ᾱ = [ α0 α1 · · · αm ]⊺.

Therefore, the Wiener model equation takes the form

M(ϑ,ut) = ℘{G(z, θ)u(t), ᾱ}. (8)

It is tempting to choose ϑ = [ ᾱ⊺ θ⊺ ]⊺. But this parameterization fails to ensure unique
identifiability. We cannot allow all the components of θ and ᾱ to vary freely while remaining
independent of each other. The reason is straightforward. The transfer operator between u and y
does not change by dividing G by a scalar ̺ 6= 0, and multiplying αk by ̺k for all k = 1, 2, . . . , m.
For this reason we must impose some additional constraint on the parameters. In this paper we
allow varying the static gain of G freely, and impose a normalization constraint on ᾱ.

Assumption 1. There is a known vector

υ = [ υ0 υ1 · · · υm ]⊺ (9)

such that
α0υ0 + α1υ1 + · · ·+ αmυm = 1, (10)

where υℓ 6= 0 for some known ℓ ∈ {1, 2, . . . , m}.

The choice of ℓ is often governed by the prior knowledge on the type of nonlinearity. Typically
ℓ 6= 0, because it is often the case that α0 = 0. For an odd (even) nonlinearity ℓ must be an odd
(even) number. In our experience, the choice of ℓ does not influence the asymptotic large sample
accuracy of the estimated model.

Example 1. It is common to take υ = (0, 1, . . . , 0) or υ = (0, . . . , 0, 1). Another possibility would
be to take υ = (1, . . . , 1) implying ℘(1) = 1. Note that the choice υ = (1, 0, · · · , 0) is forbidden. It
leads to a model that is not identifiable.

Since υℓ 6= 0 under Assumption 1, we can rewrite (10) as

αℓ =
1

υℓ



















1−
m
∑

k = 0
k 6= ℓ

υkαk



















. (11)
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Equation (11) can be built into the identification algorithm. We do not identify αℓ separately, but
express it using (11). We define the parameter vector

α := [ αi1 · · · αim ]⊺, (12)

where the indices ik ∈ {0, 1, . . . , m} are chosen such that ik 6= ℓ for all k, and ik 6= ij whenever
k 6= j. Note that mapping k → ik is quite flexible, and we need not impose any further restriction
on this mapping. The identification algorithm estimates

ϑ = [ α⊺ θ⊺ ]⊺

from the data. Defining

L =











1 0 · · · 0 −υi1/υℓ
0 1 · · · 0 −υi2/υℓ
...

...
...

...
0 0 · · · 1 −υim/υℓ











,

P = [ ei1 · · · eim eℓ ]
⊺, (13)

with ek denoting the k+1 th column of (m+1)× (m+1) identity matrix, it can be verified from
(11) that

[ α⊺ αℓ ]
⊺ = Pᾱ = L⊺α. (14)

3.2 Main theoretical results

Let a = [ a1 · · · an ]⊺, and g = [ g1 · · · gn ]⊺. Then we can write (5) as

G(z, θ) = g0 + (g − ag0)
⊺(zI−A1)

−1b1, (15)

where (A1,b1) is in controllable canonical form, i.e.

A1 =











−a1 · · · −an−1 −an
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0











, b1 =











1
0
...
0











. (16)

Note that we can impose the structure (15) and (16) without any loss of generality. We make the
following assumption throughout the paper, where θ̊ denotes the true value of θ.

Assumption 2. G(z, θ̊) is asymptotically stable. Consequently, all the eigenvalues of Å1 (which
denotes the true value of A1) are located inside the unit disc in the complex plane. In addition,
the state space realization (15) is minimal.

Lemma 1. Define the matrices A,b, c and C̄ as

C̄ =





I −g̊0I 0
0 I 0
0 −å⊺ 1



 , b =





0n×1

0n×1

1



 , c =





0n×1

g̊
g̊0



 ,

A = C̄





Å1 −b1(̊g − å̊g0)
⊺ 0n×1

0n×n Å1 b1

01×n 01×n 0



 C̄−1, (17)
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where Å1, g̊0, etc are obtained by setting θ = θ̊ in A1, g0, etc. Consider the stochastic process x
which is given in state space form as

x(t) = Ax(t− 1) + bu(t). (18)

Then w(t, θ̊) = c⊺x(t), and

vt =

[

LPz(t, θ̊)

x(t)α⊺

2z(t, θ̊)

]

, (19)

where we define
z(t, θ) := [ 1 w(t, θ) {w(t, θ)}2 · · · {w(t, θ)}m ]⊺, (20)

α2 = [ α̊1 2α̊2 · · ·mα̊m 0 ]⊺, (21)

with α̊k being the true value of αk.

Proof: See Appendix A.

Remark 1. Lemma 1 does cover the case when G is of finite impulse response type, i.e.,

G(z, θ) = g0 + g1z
−1 + · · ·+ gnz

−n.

In this case θ = [ g⊺ g0]
⊺, and a = 0. The expressions (15) and (16) still hold with a = 0. While

finding a realization of G1 we do not need to consider the derivatives with respect to a. As a result
we get

A =

[

Å1 b1

01×n 0

]

, b =

[

0n×1

1

]

,

C̄ = I and c = θ.

The consequence of Lemma 1 is that J = E{vtv
⊺

t } is a function of the moments of the state
vector x. For the purpose of setting up an input design problem we can parameterize J in terms of
the moments of the random vector x. In particular, when u(t) is Gaussian, then so is x(t). Hence
for a Gaussian input J is a function of the mean and the covariance matrix of x(t). As the next
Theorem reveals, we can obtain a closed form expression for J.

Assumption 3. The input process u(t) is stationary Gaussian with mean ηu.

Under Assumption 3, x is a Gaussian random vector with mean

η := E{x(t)} = (I−A)−1bηu. (22)

Let us define
Σ = E{[x(t)− η][x(t)− η]⊺}. (23)

Consequently, c⊺x(t) is a Gaussian random variable such that

γ := E{c⊺x(t)} = c⊺η. (24a)

σ := E{c⊺x(t)− γ}2 = c⊺Σc. (24b)

In the rest of the paper we denote

Λ := E{z(t, θ̊)[z(t, θ̊)]⊺}.
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Remark 2. It is possible to express Σ as well in terms of A, b, and the power spectral density
Φ of u. However, we postpone that for a while. We first express J in terms of Σ and η, and later
connect Φ with Σ. This approach suits the purpose of input design, where it is simpler to work
with a parameterization of Σ than to work with Φ directly.

Remark 3. The correlation matrix Λ can be given entirely as a function of the mean γ and
variance σ of c⊺x(t). Many different ways are used in the literature to express the moments of
the scalar valued normal density. There are some explicit formulae for smaller orders. We find it
convenient to use a recursive formula in the implementation. Let us denote µk(γ, σ) := E{(c⊺x)k}.
So µk is a function of σ and µ. Then µk(γ, σ) satisfies the recursion [32, Chapter 5]:

µk(γ, σ) = γk +
k(k − 1)

2

∫ σ

0

µk−2(τ, σ) dτ. (25)

Note that the recursion (25) needs to be carried out separately for even and odd values of k. For
even valued k one can initialize the recursion with µ0(γ, σ) = 1, and for the odd values of k we
initialize with µ1(γ, σ) = γ. This allows us to form

Λ =











µ0(γ, σ) µ1(γ, σ) · · · µm(γ, σ)
µ1(γ, σ) µ2(γ, σ) · · · µm+1(γ, σ)

...
...

...
µm(γ, σ) µm+1(γ, σ) · · · µ2m+1(γ, σ)











.

Since x is Gaussian, all the moments of x can be expressed as functions of η and Σ. This
allows us to derive manageable expressions of J as a function of η and Σ. This is shown next.

Theorem 1. Define

α1 = [ 0 α̊1, 2α̊2 · · · mα̊m ]⊺, β = α⊺

2Λα2, (26)

Q =

[

1
σ

−γ
σ

0 1

]

, F := [ Σc η ], H =

[

βσ 0
0 0

]

.

Partition J as

J =

[

J11 J⊺

21

J21 J22

]

,

where J11 is of size m×m, while J22 is of size (2n+ 1)× (2n+ 1). Then

J11 = L1ΛL⊺

1, (27)

J21 = FQL2ΛL⊺

1

J22 = FQ(L2ΛL⊺

2 −H)Q⊺F⊺ + βΣ,

where

L1 := LP, (28)

L2 :=

[

α
⊺

1

α
⊺

2

]

=

[

0 α̊1 2α̊2 · · · mα̊m

α̊1 2α̊2 · · · mα̊m 0

]

.
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Proof: See Appendix B.

Remark 4. Expressions given by Theorem 1 allow us to compute J in a simple way. To the
best of our knowledge there is no similar expressions in the literature allowing this computational
advantage.

The matrices Q,H,Λ,L1,L2 and β share an interesting property. They depend only on the
true parameter vector ϑ̊ and the second order statistics (consisting of γ and σ) of the stochastic
process w(t, θ̊) = c⊺x(t). These quantities remain constant so long γ and σ remain constant, even
though the input power spectral density (and thus Σ) may vary. This is due to the fact that
the estimation accuracy of the static nonlinearity depends only on the amplitude distribution of
w(t), regardless of Σ (or equivalently, Φ). This observation plays a key role in the sequel, and is
formalized via the following definition.

Definition 1. A quantity is called w-dependent if it is a function of ϑ̊, σ and γ only.

The expressions given in Theorem 1 may not seem appealing from the point of view of setting
up an optimization problem for input design that can be solved in a tractable manner. The next
result is more attractive in that regard.

Theorem 2. The determinant of J is given by

det(J) =
β2nr21
σ

det(J11) det(Σ). (29)

where r1 = α
⊺

1υ(υ
⊺Λ−1υ)−1/2.

Proof: See Appendix C

Remark 5. The expression of det(J) in (29) has some nice structure. The factor

f := β2nr21 det(J11)/σ (30)

is w-dependent, and remains constant when the statistics of w(t, θ0) remain invariant. On the
other hand it is well-known from the literature on the input design for linear systems that we can
parameterize det(Σ) in a convex manner using a finite number of parameters. When the mean
ηu of the input is kept fixed, then the above facts let us solve the D-optimal design problem for
Wiener models via an one dimensional search in σ. To emphasize the w-dependence of f we write
it as f(γ, σ). When we consider a situation where γ is fixed and known, then we write it as f(σ).

Remark 6. Note that J is singular when r1 = 0. This means that the normalization of the form
described in Assumption 1 ensures identifiability (and thus a non-singular information matrix)
only when

0 6= α⊺

1υ = υ1α̊1 + 2υ2α̊2 + · · ·+mυmα̊m, (31)

see the definition of r1 in the statement of Theorem 2. We can easily construct a case where (31)
fails to hold. That is υ = (1, 0, . . . , 0). It is straightforward to see why this choice leads to lack
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of identifiability: it still allows us to simultaneously vary the gain of the linear subsystem and the
factors {αk}mk=1, while the constraint (10) is satisfied.

By imposing the constraint (10) we restrict the search space to the hyperplane

H =

{

(α0, α1, · · ·αm) :

m
∑

k=0

αkυk = 1

}

By assumption, (α̊0, α̊1, · · · , α̊m) ∈ H. The model is identifiable when H intersects with the
manifold

M = {(α̊0, ̺α̊1, · · · , ̺mα̊m) : ̺ 6= 0}
only at the point (α̊0, α̊1, · · · , α̊m), which corresponds to ̺ = 1. We have local identifiability at
(α̊0, α̊1, · · · , α̊m) only if M is not oriented along H at (α̊0, α̊1, · · · , α̊m), i.e., ̺ = 1. In other
words, we do not want the directional derivative (0, 2α̊1, · · · , mα̊m) =: α1 of M at ̺ = 1 to be
perpendicular to υ, which is identical to (31).

4 D-optimal design

Having a Gaussian input enables us to express J (and thus J−1 and det(J) solely as a function
of Σ and η. Therefore the problem of optimizing the information matrix J becomes the problem
of fine tuning η and Σ appropriately by choosing the right input power spectral density Φ, and
ηu. In Section 2 we have already shown how we use ηu as a tool to fine tune the amplitude
distribution. In this section we give a tractable algorithm to compute the D-optimal Φ for a fixed
ηu. In Section 4.1 we summarize the main findings in form of Theorem 3, and subsequently, focus
on how the underlying algorithm could be implemented to compute an optimal Φ. In Section 4.2
we discuss the underlying theory and the proofs leading to Theorem 3.

4.1 The main result and algorithm implementation

Consider the D-optimal input design problem for a fixed mean ηu and a fixed variance ς of u(t):

maximize det(J) (32a)

subject to
1

2π

∫ π

−π

Φ(eiω) dω = ς, (32b)

which needs to be solved by finding an optimal input power spectral density Φ. Now solving for
Φ is equivalent of finding the ‘positive real half spectrum’ Φ‡ defined as

Φ‡(z) =
1

4π

∫ π

−π

1 + ze−iω

1− ze−iω
Φ(eiω) dω, |z| < 1. (33)

The “equivalence” of Φ and Φ‡ follows once we expand the integrand in (33) in a convergent power
series in z for |z| < 1 yielding an expansion

Φ‡(z) =
φ0

2
+

∞
∑

k=1

φ−kz
k,
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with the expansion coefficients being the Fourier coefficients:

φk =
1

2π

∫ π

−π

Φ(eiω) eiωk dω.

Now we give the main result of this section as the next theorem. We need a few definitions to
state it. First we define the linear map L from the set of all 2n+ 1 dimensional vectors to the set
of all (2n+1)× (2n+ 1) Hermitian matrices such that Π = L(h) satisfies the Lyapunov equation
Π = AΠA⊺ + bh⊺ + hb⊺. In addition, we define the set

K = {h ∈ R
2n+1 : L(h) � 0, b⊺C̄−1h = ς/2 }.

Here we write M � 0 to convey that M is a non-negative definite matrix. That K is convex is
readily verified as it is characterized via a linear equality and a linear matrix inequality in h.

Theorem 3. Let us define σmin and σmax as the solutions to the convex problems

σmin = min c⊺L(h)c, subject to h ∈ K, (34)

σmax = max c⊺L(h)c, subject to h ∈ K. (35)

Then the optimum value d of the D-optimal design problem (32) is given by the solution to the one
dimensional search

d = max
σmin≤σ≤σmax

χ(σ)f(σ), (36)

where f is defined in (30), and the function χ(σ) is defined for any σ satisfying σmin ≤ σ ≤ σmax

as the solution to the convex problem

χ(σ) = max
h

det{L(h)}

subject to h ∈ K,

c⊺L(h)c = σ. (37)

Let the σ dependent argument minimizer of the problem (37) be denoted by h∗(σ), and suppose
that the argument minimizer of (36) is σ∗. Then

h∗(σ∗) = Φ‡(A)b (38)

for any solution Φ of the D-optimal design problem (32).

Theorem 3 will be established in the next section. Here we note some key points on the
implementation of the algorithm outlined by Theorem 3.

4.1.1 Computing h∗(σ∗)

The optimization problems appearing in (34), (35) are semidefinite programs, while (37) is a max-
det problem subject to semidefinite constraints. To express these in the standard semidefinite
programming form we characterize K via a linear matrix inequality and a linear equality. To see
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the details let us define Πi = L(ei), where ei denotes the i th column of the (2n + 1) × (2n + 1)
identity matrix. By definition of Πi and L we can find Πi by solving the Lyapunov equation

Πi = AΠiA
⊺ + eib

⊺ + be⊺i .

If hi denotes the i th component of h, then we can write

h =
2n+1
∑

i=1

eihi, ⇒ L(h) =
2n+1
∑

i=1

L(ei)hi =
2n+1
∑

i=1

Πihi.

Hence by definition of K, and the definition of b in (17) we have h ∈ K if and only if

Π1h1 + · · ·+Π2n+1h2n+1 � 0, b⊺C̄−1h = ς/2.

The above characterizations of K and L can be used in (35), (34) and (37) to reduce them in the
familiar forms involving linear matrix inequalities, and linear equalities in h. Each of the convex
problems (35), (34) and (37) are solved in an 2n+ 1 dimensional variable h, and thus the number
of floating point operations per iteration needed to solve these is at most of the order of (2n+1)3.

Theorem 3 outlines a three step procedure to find h∗(σ∗):

1. Solve σmin and σmax by solving the semidefinite programs (34) and (35).

2. Use a convenient line search method1 to solve (36). The line search algorithm needs to
evaluate the functions f and χ for different values of σ ∈ [σmin, σmax]. Evaluation of f can be
done using the formula (30), while the evaluation of χ can be done by solving the semidefinite
program (37).

3. The solution to the line search (36) yields σ∗. We need to calculate h∗(σ∗) by solving (37)
once more by setting σ = σ∗ in (37).

For a numerical illustration of the above procedure see Section 5.2.

Remark 7. Note that f(σ)χ(σ) is a non-concave function in general, and may have multiple local
maximum points in [σmin, σmax]. In fact, we have no proof to establish the uniqueness of the global
optimum point. However, in the cases examined while producing this manuscript we found that
f(σ)χ(σ) is often concave on [σmin, σmax], as in the example in Figure 2a.

Remark 8. Whether or not the 3-step approach will reach the global optimum point, depends
on the power of the line search method employed. This statement of course assumes that all the
convex programs (35), (34) and (37) can be solved globally, which is valid in theory, and is very
reasonable in practice. Typically, a line search over a finite interval is a simple problem, and most
solvers do find the global optimum. In fact, a plot f(σ)χ(σ) with σ over the interval [σmin, σmax] is
often informative enough to find σ∗. Therefore, it is reasonable to expect that the 3-step strategy
yields the global optimum solution.

1In our simulations we have used the fminbnd function of Matlab.
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4.1.2 From h∗(σ∗) to Φ

Once we know h∗(σ∗), the next task is to find a suitable Φ such that (38) holds. This amounts to
solving a Nevanlinna-Pick interpolation problem, see [13], and in general there are infinitely many
possible choices of Φ for which h∗(σ∗) = Φ‡(A)b. The freedom in choosing Φ can be exploited
further to obtain a some spectral shape of our liking [29]. In this section we briefly cover a simple
way to construct multi-sine excitations, where Φ is of the form

Φ(eiω) = 2π

M
∑

k=1

qk{δ(ω − ωk) + δ(ω + ωk)}, (39)

where δ denotes the Dirac’s delta function, qk ≥ 0, and 0 < ωk ≤ π for all k, and the frequency
grid {ω1, ω2, . . . , ωM} is given.

We note that there are many methods of finding a Φ with a rational power spectral density,
see e.g., [5,8,9,11,12,15,33,34,36]. In particular, [5] gave the celebrated spectral zero assignment
approach. When considered in our context, the algorithm in [5] allows us to find a 2n + 1 order
rational Φ with spectral zero locations chosen by the user. In [15] the spectral zero assignment
approach is generalized. This algorithm allows us to start with a target function Φ0 and then find
an order 2n+1 rational Φ such that the Kullback-Leibler distance between Φ and Φ0 is minimized.
The contributions in [33,34] gave a more sound numerical algorithm to solve the Kullback-Leibler
and the spectral zero assignment problems. In [8] an algorithm to minimize the Hellinger distance
between Φ and Φ0 is proposed. Multi-variable generalizations of the above approach are available
in [9, 11, 36]. Some illustrative examples in the context of input design are available in [29].

To explain our approach to contruct Φ as in (39), let us recall that the matrix Φ‡(A) denotes
the evaluation of the function Φ‡ at A. This makes sense because Φ‡ is analytic whenever |z| < 1,
and at the same time all eigenvalues of A are inside the unit disc, (see Assumption 2). Thus, we
can write, see (33),

Φ‡(A)b =
φ0

2
I+

∞
∑

k=1

φ−kA
kb,

=
1

4π

∫ π

−π

Φ(eiω)(I−Ae−iω)−1(I+Ae−iω)b. dω. (40)

When Φ is of the form (39), then (38) holds if and only if

h∗ =

M
∑

k=1

ψkqk = Ψq, (41)

where by (40) we have

ψk =
1

2
{(I−Ae−iωk)−1(I+Ae−iωk)

+ (I−Aeiωk)−1(I+Aeiωk)}b, (42)

Ψ = [ ψ1 ψ2 · · · ψM ], q = [ q1 q2 · · · qM ]⊺.
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Remark 9. We emphasize that the set {ω1, ω2, . . . , ωM} should be sufficiently ‘rich’ to ensure
that there exists a q with nonnegative components such that (41) holds. Typically one takes
ωk = kπ/M . In that case we often need M > 100. However, in practice one takes M large,
typically of the order of 10000 [35]. Hence the feasibility issue is not of much practical importance.

Remark 10. Recall that the analysis presented herein assumes Gaussian input signal. Given a
power spectral density function of the form (39), we can synthesize a input signal consistent with
(39) as

u(t) =
M
∑

k=1

2
√
qk cos(ωkt+ φk). (43)

By taking {φk}Mk=1 as mutually independent random variables distributed identically and uniformly
over [0, 2π), this signal will be asymptotically (M → ∞) Gaussian distributed [35]. See Figure 2c
in Section 5.2 for an illustration in the present context.

In practice (41) is an over-determined system, with infinitely many solutions even in presence
of the constraint qk ≥ 0, ∀k. We have found that a robust way is to pick a solution which leads
to a spectrum as flat as possible. One possible way to get such a solution is to choose q with the
smallest infinity-norm by solving the linear program

minimize
ℓ,q

ℓ

subject to 0 ≤ qk ≤ ℓ,

h∗ = Ψq.

(44)

See Figure 2b for an illustration of the nature of solution generated by the optimization (44).

4.2 Proof of Theorem 3 and some relevant discussion

The expression of det(J) given by Theorem 2 factors det(J) in two terms. The first term f(γ, σ)
is w-dependent, and depends only on γ and σ. The second term is det(Σ). Since ηu is fixed and
given, we know γ, while σ = c⊺Σc can be calculated if we know Σ. Hence the power spectral
density Φ controls det(J) “via” the covariance matrix Σ. Now Σ being a (2n+1)×(2n+1) positive
definite matrix, resides in the positive semidefinite cone embedded in the finite dimensional vector
space of all (2n+ 1)× (2n+ 1) symmetric matrices. On the other hand Φ, being a function, is an
infinite dimensional object. In addition, Φ resides in the cone of all positive functions over [−π, π].
That is because Φ(eiω) ≥ 0 for all frequency ω. Using (18) and the definition of Σ in (23) we know

Σ =
1

2π

∫ π

−π

(I−Ae−iω)−1bΦ(eiω)b⊺(I−A⊺eiω)−1 dω. (45)

Equation (45) reveals that there is a linear map from Φ to Σ, and [14] investigated this relation
in a comprehensive manner. The result thereof can be summarized as follows.

Theorem 4. Given a matrix Σ there exists some valid power spectral density function Φ(eiω) (i.e.,
Φ(eiω) ≥ 0, ∀ω) satisfying (45) if and only if Σ = L(h) � 0 for some 2n + 1 dimensional vector
h.
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Proof: See [14].

Remark 11. Suppose that we are given a function Φ(eiω) such that Φ(eiω) > 0, ∀ω. Then we can
calculate the integral in the right hand side of (45) to find Σ. Then Theorem 4 says there is a h
such that

Σ = AΣA⊺ + hb⊺ + bh⊺, (46)

which is a linear matrix valued equation in h. Considering the symmetry of the underlying matrices
this matrix equality implies (n + 1)(2n + 1) scalar equations in the 2n + 1 dimensional unknown
vector h. However, it can be shown that the system has only 2n+1 linearly independent equations,
and the solution h is unique.

Remark 12. Conversely, suppose that h is given, and we have calculated Σ = L(h) by solving
the the Lyapunov equation (46). In addition it turns out that Σ � 0. Now we seek a positive
function Φ such that (45) holds. In general, we have infinitely many Φ that will solve (45). Only
when Σ is positive semidefinite the solution is unique.

Next result shows a direct connection between h and Φ.

Lemma 2. Given Φ such that Φ(eiω) ≥ 0, ∀ω, compute the integral in the right hand side of (45)
to obtain Σ. Then Σ = L{Φ‡(A)b}. Consequently

h = Φ‡(A)b. (47)

Conversely, if Σ is a non-negative definite matrix satisfying (46) for some h, then every solution
Φ to (45) satisfies (47).

Proof: The proof is available in [14] for a general setting. For a more direct (and easier) sequence
of arguments see Appendix D.1.

Remark 13. Suppose that we are given a h satisfying L(h) � 0. We are required to find Φ‡

satisfying (47). This problem is a Nevanlinna-Pick interpolation problem. In particular h specifies
the interpolation data at the eigenvalues of A. This can be checked by transforming the pair
(A,b) into Jordan canonical form representation. This has many interesting consequences in
analyzing the role of input in system identification [29]. For instance, it turns out in linear system
identification that the variance error is independent of the zeros of the system, and depends solely
on the interpolation conditions specified by h.

We need the following result to impose some constraint that the variance of u(t) is ς.

Lemma 3. If h = Φ‡(A)b, then

b⊺C̄−1h =
1

4π

∫ π

−π

Φ(eiω) dω = ς/2.

Proof: See Appendix D.2.

Using Theorem 4 and Lemma 3 the following Lemma is immediate.
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Lemma 4. Given a positive definite matrix Σ there exists a power spectral density Φ(eiω) satisfying
(45) and (32b) if and only if Σ = L(h) for some h ∈ K.

Now combining (24), Theorem 2 and Lemma 4 we can convert the infinite dimensional problem
(32) into an equivalent finite dimensional problem in h:

maximize
σ,h

f(σ) det{L(h)} (48a)

subject to σ − c⊺L(h)c = 0, (48b)

h ∈ K. (48c)

Clearly, due to constraints (48b) and (48c), and by definitions of σmin and σmax in (34) and (35),
the feasible set of σ must be [σmin, σmax]. Now by the definition of χ in (37), the maximum possible
value of the cost function (48a) for any given σ ∈ [σmin, σmax] is f(σ)χ(σ). Hence the D-optimal
problem (48) can be solved by solving the line search (36).

If σ∗ denotes that optimum value of σ ∈ [σmin, σmax], then the above argument also implies that
the optimum value of h in (48) is h∗(σ∗). Consequently, Lemma 2 implies (38). This completes
the proof of Theorem 3.

5 Numerical simulation results

5.1 Verification of the accuracy results

In this section we present some simulation results to illustrate the results presented above. First
we verify the result in Theorem 1. We consider a Wiener system with

G(z, θ̊) =
0.1z−1 + 0.05z−2

1− 1.5z−1 + 0.7z−2
, (49)

and the polynomial non-linearity is taken as

℘(x, ˚̄α) = x− 0.5x3. (50)

For this system m = 3 and n = 2. Hence ϑ is of dimension 2n+ 1 +m = 8. We take

υ = [ 0 1 0 0 ]⊺. (51)

Verify that (10) holds. For this choice of υ we must take ℓ = 1, see Assumption 1. We excite the
system with Gaussian input process with mean ηu = −0.5 and a power spectral density

Φ(eiω) =
(1 + eiω)(1 + e−iω)

(1− 0.7eiω)(1− 0.7e−iω)
.

The variance of the additive, zero mean white measurement noise is set to 1.
In the following ϑ̂N denotes the PEM estimate of ϑ̊ obtained from N samples of input-output

data. We plot the results obtained from the Monte-Carlo simulation in Figure 1, where we compare
the normalized analytical mean squared errors of G(eiω, ϑ̂N) and ℘(x, ϑ̂N) predicted by Theorem
1 with that obtained empirically from Monte-Carlo simulations for three different values of N .
For each value of N the empirical variance plots are obtained by averaging the results of 1000
independent simulations. As can be seen in Figure 1 the analytical predictions are very well in
agreement with the numerical findings for N ≥ 1000.
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Figure 1: The comparison between the normalized analytical variance obtained from Theorem 1
and the empirical variance obtained from Monte-Carlo simulations.

5.2 Max-det design

In this section we present a numerical example illustrating the max-det design approach outlined
in Section 4. For this purpose we consider identification of the Wiener system given in (49) and
(50). For this example

A =













1.5 −0.7 −0.1 −0.05 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 −0.7 0 1.5













.

We take ηu = −0.13, and ς = 0.0618. For this value of ς it is ensured that |u(t)| ≤ 1 with a
probability more that 0.999. By solving (34) and (35) we get σmin = 1.51×10−5, and σmax = 0.0755.
In Figure 2a we plot log{χ(σ)}, log{f(σ)} and log{χ(σ)f(σ)} as functions of σ. Note that in this
case the logarithm of the cost function in (36) is concave, and it has a unique maximum point.
The value of σ∗ is 0.0569, and

h∗(σ∗) = [ 0.2005 0.2201 0.1085 − 0.0321 0.2161 ]⊺.

Corresponding to this value there are infinitely many choices of Φ satisfying (38). We can construct
a rational Φ satifying (38), for instance via spectral zero assignment [5]. For instance, if we like
all minimum phase zeros of Φ to be located at the origin then we get

Φ(eiω) =
0.1702

|1− 2.9eiω + 3.8e2iω − 2.4e3iω + 0.7e4iω|2 .

20



0 0.02 0.04 0.06
−140

−120

−100

−80

−60

−40

−20

0

σ

L
o
g
o
f
D
et
er
m
in
a
n
ts

 

 

log{χ(σ)}
log{f(σ)}
log{χ(σ)f(σ)}

(a)

0 0.5 1 1.5 2 2.5 3
0

1

2

x 10
−4

ωk (radian)

q k

(b)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Time domain amplitude

C
um

ul
at

iv
e 

di
st

riu
tio

n

 

 

Empirical
Analytical

(c)

Figure 2: Numerical illustration of the 3-step algorithm for the system (49)-(50). (a) The plots of
log{χ(σ)}, log{f(σ)} and log{χ(σ)f(σ)} as functions of σ in the range [σmin, σmax] (b) The plot
of qk as a function of ωk, k = 1, 2, . . . ,M obtained by solving (44). (c) The empirical cumulative
amplitude distribution of a realization of the form (43) of the optimal amplitude spectrum shown
in Figure 2b (in solid line) is compared with the corresponding Gaussian cumulative distribution
function (in dotted line). The empirical plot is hardly distinguishable from the plot of Gaussian
CDF.

For another example, if we like the minimum phase zeros of Φ to be located at 0.9e±iπ/2 and
0.9e±i5π/6 then we get

Φ(eiω) =
|2.8− 4.4eiω + 4.5e2iω + 3.5e3iω + 1.8e4iω|2
|1− 3.1eiω + 4.1e2iω − 2.7e3iω + 0.7e4iω|2

× 10−6.

On the other hand, if we use the algorithm (44) to design a multisine amplitude spectrum, then
we get a solution plotted in Figure 2b. Here we have taken M = 1000, and ωk = kπ/(M +1), k =
1, 2, . . . ,M (note that the domain is discrete, not continuous, and the plot in Figure 2b should
not be interpreted as the power spectral density). We synthesize a time domain signal consistent
with this solution as in (43), and plot its empirical cumulative amplitude distribution function in
Figure 2c. We compare this empirical distriution with the cumulative distribution function of a
Gaussian density with zero mean and variance ς = 0.0618. Note that the empirical distribution is
very well in accordance with Gaussian distribution.

5.3 Gaussian mixture design

In this section we illustrate the Gaussian mixture design approach. We consider the simple example
given in [6], where the global optimal input is obtained for identification of a Wiener system with

G(z, θ̊) = 3 + z−1,

and the polynomial non-linearity is taken as

℘(x, ˚̄α) = −0.25x+ x3.
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For this system m = 3 and n = 1. Hence ϑ is of dimension n+ 1 +m = 5. We take

υ = [ 0 − 4 0 0 ]⊺.

Verify that (10) holds. For this choice of υ we must take ℓ = 1, see Assumption 1.
We consider a Gaussian mixture design approach described above. As above, we use p to

denote the number of Gaussian considered. We do four different experiments for p = 1, 5, 11, 19
respectively. For a given p, we set the means ηu(k) of the p Gaussians as in (2), and set the input
variance ςk as in (3), which depends on the parameter κ. Recall that by allowing a smaller κ we
increase the input variance, and increase the probability of violating the constraint |u(t)| < 1. For
each p we do several sub-experiments, while in each sub-experiment we set a new value for κ in
the range 0.5 to 5.

Now consider a particular sub-experiment with fixed p and κ. For k = 1, 2, . . . , p we calculate
ηu(k) and ςk using (2) and (3). For each k we calculate Jk by solving the D-optimal design problem
in (48) by setting ηu = ηu(k) and ς = ςk. Subsequently, we find out the numbers κ1, . . . , κp, see
(4b), by solving

maximize
κ1,κ2,...,κp

det(κ1J1 + κ2J2 + · · ·+ κpJp)

subject to κk ≥ 0, k = 1, 2, . . . , p,

κ1 + κ2 + · · ·+ κp = 1.

Because the function − log{det(·)} is convex, the above optimization problem is convex, and can
be solved using the dispersion method, see for example [6, 40].

The above procedure yields an optimal Gaussian mixture design. Next we test the optimal
design via Monte-Carlo simulations. Recall that for each k the D-optimal design process gives an
optimal h along with the optimal Jk, see (48). We use this optimal h to generate an associated Φ by
solving the Nevanlinna-Pick interpolation problem, see Section 4.1.2. Due to Gaussian assumption
the realizations of input u consistent with Φ may fail to satisfy the constraint |u(t)| < 1. Hence
we clip the input as

u(t) = max{min{u(t), 1},−1}.
Therefore the input signal is always restricted in the interval [−1, 1]. However, this approach
violates the Gaussian assumption to an extent that depends on the value of κ. The experimental
results are plotted in Figure 3, where for each p we compare the analytically predicted value of
det(J̄) with the corresponding empirical value obtained fromMonte-Carlo simulations after clipping
of the optimal input. As can be seen in Figure 3, the empirical results agree very well with the
analytical predictions for κ > 3. However, the empirical curves diverge from their analytical
counterparts for smaller values of κ. This divergence phenomenon for small κ is expected because
the analytical design allows some significant probability that |u(t)| > 1, while the Monte-Carlo
simulations apply clipping to restrict |u(t)| ≤ 1. It is also interesting to compare the performance
obtained by the single Gaussian design with that obtained by multiple Gaussian inputs and mixing
them optimally. Note that multiple Gaussian design can achieve significant performance boost for
medium and large κ values. The best performance is achieved for κ = 0.5, for which det(J̄) obtained
from our method was found about 8 times smaller than that obtained via the deterministic design
approach presented in [6]. Given that there are 5 parameters being estimated, this performance
loss in determinant is rather insignificant.
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Figure 3: The optimal determinant of J̄ plotted as a function of κ for the FIR model considered
in the numerical simulations.

We have also computed the information matrix for the system corresponding to a binary white
excitation taking its values in {−1, 1} using a Monte-Carlo method. The value of det(J) in this
case turns out to be 1.2392. With a binary process with passband [−π/2, π/2] the value of det(J)
turns out to be 0.7008.

6 Conclusions

We have presented several new results on the analysis of Wiener model identification using Gaus-
sian input processes. One of the main results in this paper is Theorem 1, which gives a closed
form expression of the associated information matrix J. This expression holds under very generic
assumptions on the model structure. In addition, unlike other similar formulae available in the
literature, our expression for J is easy to compute. This aspect makes it attractive in input design
problems. Theorem 2 gives a simple expression for the determinant of J.

The second major contribution of this paper is to show that the set of all admissible information
matrices can be completely parameterized via the finite dimensional parameter vector h. Given
an admissible h there are potentially infinitely many input power spectral densities Φ leading to
the same h, and consequently the same J. These input power spectral densities, consistent with a
particular h, are characterized by some Nevanlinna-Pick interpolation problem. We reemphasize
that the fallibility of having non-unique Φ for a particular J of our liking can be exploited fur-
ther. We have the possibility of choosing a Φ of some desirable shape without changing J. This
observation might be useful in robust input design.

The accuracy analysis leads to the concept of w-dependence in Definition 1. This concept,
which is due to the fact that the estimation accuracy of the static nonlinearity depends only on
the amplitude distribution of w(t), plays a vital role in deriving tractable algorithms for D-optimal
design. In particular, the expression of detJ given by Theorem 2 shows that detJ can be factored
in two factors. The first factor is w-dependent. The other term is statistically independent of w.
This observation is exploited to derive a tractable algorithm to solve the D-optimal input design
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problem.
Another main contribution of this paper is to introduce the idea of Gaussian mixture design.

This approach allows us to control the effective amplitude distribution and the power spectral
density of the excitation at the same time. While the power spectral density controls the accuracy
of identifying the linear subsystem, the amplitude distribution determines how well we identify the
static nonlinearity.

We have presented some simulation results in support of the claims made in the paper. We
found that by using Gaussian input we can indeed achieve an estimation accuracy that is quite close
to the global optimum achieved by the deterministic design techniques. While the deterministic
design technique can be applied only for FIR Wiener systems with small order, Gaussian design
technique can be applied to IIR Wiener systems of any finite order, and finite degree of the static
nonlinearity.
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A Proof of Lemma 1

By definition of P in (13) we have PP⊺ = I. Using this in (14) gives

ᾱ = P⊺L⊺α. (52)

Using (52) and the definition of z(t, θ) in (20) in (8) we have

M(ϑ,ut) = ᾱ
⊺z(t, θ) = α⊺LPz(t, θ). (53)

Hence
∂M(ϑ̊,ut)

∂α
= LPz(t, θ̊). (54)

Also using the definition of z(t, θ) in (20) and differentiating M(t,ϑ) in (53) with respect to θ we
get

∂M(ϑ̊,ut)

∂θ
=

∂w(t, ϑ̊)

∂θ
α̊⊺LP















0
1

2w(t, θ̊)
...

m{w(t, θ̊)}m−1















=
∂w(t, ϑ̊)

∂θ
α

⊺

2z(t, θ̊), (55)

where the last equality follows from the definition of α2 in (21) and the definition of z(t, θ) in (20).
The proof for the expression of vt in (19) will be complete if we can show

∂w(t, ϑ̊)

∂θ
=

∂G(z, θ̊)

∂θ
u(t) = x(t). (56)

This is done next. By differentiating G with respect to a, g and g0 we get

∂G(z, θ)

∂a
= −(zI −A1)

−1b1g0

− (zI−A1)
−1b1(g − ag0)

⊺(zI−A1)
−1b1, (57a)

∂G(z, θ)

∂g
= (zI −A1)

−1b1, (57b)

∂G(z, θ)

∂g0
= 1− a⊺(zI −A1)

−1b1. (57c)
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Using (57) and (17) it can be verified by direct calculations that

∂G(z, θ̊)

∂θ
= (I−Az−1)−1b, (58)

implying (56).
To show w(t, θ̊) = c⊺x(t) verify from (15) and (57) that

G(z, θ̊) = [ 0⊺ g̊⊺ g̊0 ]
∂G(z, θ̊)

∂θ
= c⊺(I−Az−1)−1b.

B Proof of Theorem 1

Since Σ is positive definite, Σc 6= 0. Hence there exists a full column rank (2n+ 1)× (2n) matrix
C such that the column space of C is the orthogonal complement of Σc, i.e., C⊺Σc = 0. Hence

[

c⊺

C⊺

]

Σ [ c C ] =

[

σ 0
0 Σ1

]

, (59)

The block diagonal structure of the matrix in the right hand side of (59) ensures that by premul-
tiplying x by [ c C ]⊺ we get two mutually uncorrelated components c⊺x and

x1 := C⊺x,

with

γ := E{x1} = C⊺η,

Σ1 := E{[x1 − γ][x1 − γ]⊺} = C⊺ΣC. (60)

Because x is a Gaussian random vector, we conclude that [ c⊺x x⊺

1 ]⊺ too is a jointly Gaussian
random vector. Since uncorrelated Gaussian variables are independent, c⊺x and x1 are mutually
independent.

Define the (m+ 2n+ 1)× (m+ 2n+ 1) matrix

T =





I 0
0 c⊺

0 C⊺



 , (61)

where the identity matrix appearing in (61) in the north-west corner is of size m×m. Premulti-
plying vt in (20) by T we note that

Tvt =





L1z(t, θ̊)

c⊺x(t)α⊺

2z(t, θ̊)

C⊺x(t)α⊺

2z(t, θ̊)



 . (62)

From Lemma 1 recall that c⊺x(t) = w(t, θ̊). Then from the definition of z(t, θ) in (20), the
definitions α1 and α2 in (26) and (21) we have

c⊺x(t)α⊺

2z(t, θ̊) = w(t, θ̊)α⊺

1z(t, θ̊).
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In addition, C⊺x(t) = x1(t). Hence

Tvt =





L1z(t, θ̊)

α
⊺

1z(t, θ̊)

x1(t)α
⊺

2z(t, θ̊)



 . (63)

Since x1(t) is independent of w(t, θ̊) = c⊺x(t), it is also independent of z(t, θ̊), see (20). Using this
and (63) we get

TJT⊺ = E {[Tvt] [Tvt]
⊺}

=





L1ΛL⊺

1 L1Λα1 L1Λα2γ
⊺

α
⊺

1ΛL⊺

1 α
⊺

1Λα1 α
⊺

1Λα2γ
⊺

γα
⊺

2ΛL⊺

1 γα
⊺

2Λα1 α
⊺

2Λα2(γγ
⊺ +Σ1)



 . (64)

Define the vector d and the (2n+ 1)× (2n) matrix D by partitioning the inverse

[

c⊺

C⊺

]−1

= [ d D ]. (65)

Then (61) and (64) imply

J =

[

I 0 0
0 d D

]

(TJT⊺)





I 0
0 d⊺

0 D⊺



 .

Using expression of TJT⊺ in (64) we get

J11 = L1ΛL⊺

1, (66a)

J21 = [ d Dγ ] L2ΛL⊺

1 (66b)

J22 = [ d Dγ ] L2ΛL⊺

2 [ d Dγ ]⊺ + βDΣ1D
⊺. (66c)

Now from (59) and (65) we obtain

Σ = [ d D ]

[

σ 0
0 Σ1

] [

d⊺

D⊺

]

= dσd⊺ +DΣ1D
⊺. (67)

By definition of d and D in (65) we know
[

c⊺

C⊺

]

[ d D ] =

[

1 0
0 I

]

,

and this implies C⊺d = 0, ⇒ d = kΣc. In addition, 1 = c⊺d = kc⊺Σc = kσ. Consequently,

d =
1

σ
Σc. (68)

On the other hand

I = [ d D ]

[

c⊺

C⊺

]

= dc⊺ +DC⊺ =
1

σ
Σcc⊺ +DC⊺, (69)
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Now multiply both sides of (69) by η to get

η − γ

σ
Σc = Dγ (70)

From (68) and (70) it follows that
[ d Dγ ] = FQ.

Now we use (67), (68), and (70) in (66) to eliminate d and D from the expressions of J12 and J22.
We have

J21 = FQL2ΛL⊺

1

J22 = FQL2ΛL⊺

2Q
⊺F⊺ + β(Σ−Σcc⊺Σ/σ)

= βΣ+ FQL2ΛL⊺

2Q
⊺F⊺ − FQHQ⊺F⊺

= FQ(L2ΛL⊺

2 −H)Q⊺F⊺ + βΣ.

C Proof of Theorem 2

C.1 Some Schur complement expressions

Lemma 5. The Schur complement J22 − J21J
−1
11 J

⊺

21 admits an expression

J22 − J21J
−1
11 J

⊺

21

= βΣ+ FQ[L2υ(υ
⊺Λ−1υ)−1υ⊺L⊺

2 −H]Q⊺F⊺.

Proof: In this proof we let Γ be the Cholesky factor of Λ, i.e., Λ = ΓΓ⊺. From the expressions of
J11, J21 and J22 in Theorem 1 it follows that

J22 − J21J
−1
11 J

⊺

21 = βΣ+ FQ[L2ΠL⊺

2 −H]Q⊺F⊺, (71)

where we define

Π = Λ−ΛL⊺

1(L1ΛL⊺

1)
−1L1Λ

= Γ[I− Γ⊺L⊺

1(L1ΓΓ
⊺L⊺

1)
−1L1Γ]Γ

⊺. (72)

However, the matrix Π̄ := I − Γ⊺L⊺

1(L1ΓΓ
⊺L⊺

1)
−1L1Γ is the orthogonal projection operator onto

the nullspace of L1Γ.
From (9), (13) and the definition of L1 in (28) verify that that L1υ = LPυ = 0. This means

L1ΓΓ
−1υ = 0,

i.e. the vector Γ−1υ spans the one dimensional nullspace of L1Γ. Hence Π̄ is also the orthogonal
projection operator onto the span of Γ−1υ. Hence

Π̄ = Γ−1υ(υ⊺Λ−1υ)−1υ⊺Γ−⊺.
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Substituting this expression in (72) gives

Π = υ(υ⊺Λ−1υ)−1υ⊺,

which upon substitution in (71) yields the desired result.

Define
ri := α

⊺

iυ(υ
⊺Λ−1υ)−1/2, i = 1, 2. (73)

Note that

L2υ(υ
⊺Λ−1υ)−1υ⊺L⊺

2 =

[

r1
r2

] [

r1
r2

]⊺

, (74)

see the definition of L2 in Theorem 1. When r2 = 0 the matrix L2υ(υ
⊺Λ−1υ)−1υ⊺L⊺

2 − H is of
rank 1. Then the calculations turn out to be quite different from the case where r2 6= 0.

Lemma 6. If r2 = 0 then

det(J22 − J21J
−1
11 J

⊺

21) =
r21
βσ

det(βΣ), (75)

Proof: When r2 = 0 then using (73), definition of Q in Theorem 1 and the expressions given by
Lemma 5 we get

J22 − J21J
−1
11 J

⊺

21

= βΣ+ FQ

[

r21 − βσ 0
0 0

]

Q⊺F⊺

= βΣ+ F

[

1
σ

−γ
σ

0 1

] [

r21 − βσ 0
0 0

]

Q⊺F⊺

= βΣ+ F

[

r21/σ − β 0
0 0

] [

1
σ

0
−γ

σ
1

]

F⊺

= βΣ+ F

[

r21/σ
2 − β/σ 0
0 0

]

F⊺

= βΣ+ (r21/σ
2 − β/σ)Σcc⊺Σ. (76)

In this proof we write
q = r21/σ

2 − β/σ

compactly. From (76) we have

det(J22 − J21J
−1
11 J

⊺

21) = det (βΣ+ qΣcc⊺Σ)

= det(βΣ) det

(

I+
q

β
cc⊺Σ

)

= det(βΣ) det

(

1 +
q

β
c⊺Σc

)

= det(βΣ) det

(

1 +
qσ

β

)
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Substituting the value of q we get (75).

Lemma 7. Suppose that r2 6= 0. Then

det(J22 − J21J
−1
11 J

⊺

21) =
r21
βσ

det(βΣ), (77)

(J22 − J21J
−1
11 J

⊺

21)
−1 =

[

1

r21
− 1

βσ

(

r2γ

r1
− 1

)2
]

cc⊺

+

(

r2
r1
cη⊺ − I

)

[βΣ]−1

(

r2
r1
cη⊺ − I

)

⊺

. (78)

Proof: Define

B :=

[

Q

(

L2υυ
⊺L⊺

2

(υ⊺Λ−1υ)−1
−H

)

Q⊺

]−1

(79)

Recall that ζ = r1/r2. Hence from (74) we get

(

L2υυ
⊺L⊺

2

(υ⊺Λ−1υ)−1
−H

)−1

= − 1

βσ

[

1 −r1/r2
−r1/r2 r21/r

2
2 − βσ/r22

]

= − 1

βσ

[

1 −ζ
−ζ ζ2 − βσ/r22

]

.

Hence by definition of Q, see Theorem 1, we get

βB = −1

σ

[

σ 0
γ 1

] [

1 −ζ
−ζ ζ2 − βσ/r22

]

Q−1

= − 1

βσ

[

σ −σζ
γ − ζ −ζ(γ − ζ)− βσ/r22

] [

σ γ
0 1

]

= −1

σ

[

σ2 σ(γ − ζ)
σ(γ − ζ) (γ − ζ)2 − βσ/r22

]

= −
[

σ γ − ζ

γ − ζ (γ−ζ)2

σ
− β/r22

]

. (80)

Taking determinant we have

det(βB) = −βσ

r22
. (81)

On the other hand, recall that F = [ Σc η ]. Hence using (24) we get

F⊺Σ−1F =

[

σ γ
γ η⊺Σ−1η

]

. (82)
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Combining (80) and (82) we get

βB+ F⊺Σ−1F =

[

0 ζ

ζ η⊺Σ−1η + β
r2
2

− (γ−ζ)2

σ

]

(83)

Taking determinant we have
det(βB+ F⊺Σ−1F) = −ζ2 (84)

Now using Lemma 5 and (79) we know

J22 − J21J
−1
11 J

⊺

21 = βΣ+ FB−1F⊺ (85)

Hence

det(J22 − J21J
−1
11 J

⊺

21)

= det(βΣ+ FB−1F⊺)

= det(βΣ) det(I+Σ−1F(βB)−1F⊺)

= det(βΣ) det(I+ F⊺Σ−1F{βB}−1)

=
det(βΣ)

det(βB)
det

(

βB+ F⊺Σ−1F
)

= det(βΣ)
r22ζ

2

βσ
= det(βΣ)

r21
βσ

.

C.2 Proof of the formula for det(J)

Using Schur’s determinant formula we know

det(J) = det(J11) det(J22 − J21J
−1
11 J

⊺

21). (86)

The result of Theorem 2 is immediate from (86) once we use the expression for det(J22−J21J
−1
11 J

⊺

21)
given by (77).

D Proofs Lemma 2 and Lemma 3

D.1 Proof of Lemma 2

First write

A(I−Ae−iω)−1 = eiω(Ae−iω)(I−Ae−iω)−1

= eiω(I− I+Ae−iω)(I−Ae−iω)−1

= eiω{(I−Ae−iω)−1 − I}
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Hence we have

A(I−Ae−iω)−1bb⊺(I−A⊺eiω)A⊺

= {(I−Ae−iω)−1 − I}bb⊺{(I−A⊺eiω)−1 − I}
= (I−Ae−iω)−1bb⊺(I−A⊺eiω)−1

+ {(I−Ae−iω)−1 − I/2}bb⊺

+ bb⊺{(I−A⊺eiω)−1 − I/2}
= (I−Ae−iω)−1bb⊺(I−A⊺eiω)−1

+
1

2
(I−Ae−iω)−1(I+Ae−iω)bb⊺

+
1

2
bb⊺(I−A⊺eiω)−1(I+A⊺eiω) (87)

Now use (87) in (45) to get

AΣA⊺ = Σ− Φ‡(A)bb⊺ − bb⊺Φ‡(A
⊺),

and the proof is complete.

D.2 Proof of Lemma 3

This result follows from the structure of A and b. Let us write

F =

[

Å1 b1(̊g − å̊g0)
⊺

0n×n Å1

]

, g =

[

0n×n

b1

]

Then from (17) we note that

C̄−1A =

[

F g
0 0

]

C̄−1, C̄b = b =

[

0
1

]

.

Hence

b⊺C̄−1(I−Ae−iω)−1

= [ 0 1 ]

[

(I− Fe−iω)−1 (I− Fe−iω)−1ge−iω

0 1

]

C̄−1

= b⊺C̄−1. (88)

On the other hand

C̄−1(I+Ae−iω)b =

{

I+

[

F g
0 0

]

e−iω

}

C̄−1b

=

[

I+ Fe−iω ge−iω

0 1

]

b =

[

ge−iω

1

]

.
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Hence

b⊺C̄−1(I−Ae−iω)−1(I+Ae−iω)b

= b⊺C̄−1(I+Ae−iω)b = [ 0 1 ]

[

ge−iω

1

]

= 1.

By multiplying both sides of the above equation by Φ(eiω)/(4π) and integrating with respect to ω
we get the desired result using (40).
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