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Coding Strategies for Multiple-Access Channels With
Feedback and Correlated Sources

Lawrence Ong, Student Member, IEEE, and Mehul Motani, Member, IEEE

Abstract—The multiple-access channel with feedback and cor-
related sources (MACFCS) models a sensor network in which sen-
sors collect and transmit correlated data to a common sink. We
present four achievable rate regions and a capacity outer bound
for the MACFCS. For the first achievable region, we construct a
decode–forward based coding strategy. The sources first exchange
their data, and then cooperate to send full information to the des-
tination. We term this strategy full decoding at sources with de-
code-forward (FDS-DF). For two of the other achievable regions,
we first perform Slepian–Wolf coding to remove the correlation
among the source data. This is followed by either i) a compress–for-
ward based coding strategy for the multiple-access channel with
feedback, or ii) an existing coding strategy for the multiple-access
channel. We also find another achievable region using a multihop
coding strategy, which only uses point-to-point coding (no cooper-
ation). From numerical computations, we see that different strate-
gies perform better under certain source correlation structures and
network topologies. More specifically, FDS-DF approaches the ca-
pacity when i) the inter-source distance decreases, or ii) the corre-
lation among the sources gets higher. Furthermore, the cooperative
coding strategies considered support larger achievable rate regions
than the noncooperative multihop strategy.

Index Terms—Achievable rates, capacity, correlated sources,
generalized feedback, multiple-access channel, multiterminal
networks.

I. INTRODUCTION

WE investigate the multiple-access channel with feedback
and correlated sources (MACFCS) [1], [2]. This channel

is a combination of the multiple-access channel with correlated
sources (MACCS) and the multiple-access channel with feed-
back (MACF). The MACFCS serves as a model for the wireless
sensor network in which multiple sources send possibly corre-
lated data to a single destination. At the same time, each source
receives feedback from the channel and we allow each node to
receive different feedback.

A. Related Work

The MACCS (with a common part) was studied by Slepian
and Wolf [3], who derived an achievable region. In their paper,
separate source coding and channel coding are used, where
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the source coding is first performed to remove the correlation
among the sources. The channel coding for the multiple-access
channel (MAC) with independent sources is then employed.
The MACCS (with possibly no common part) was considered
by Cover et al. [4]. They showed, by using a simple example,
that separating source and channel coding is not optimal. They
derived an achievable region for the MACCS using a combined
source–channel coding strategy to preserve the correlation
among the channel inputs. Outer bounds on the capacity of the
MACCS were derived with infinite letter characterization by
Cover et al. [4] and later improved by Kang and Ulukus [5] to
finite-letter expressions. While [3] assumes a certain structure
for the correlation among the sources, we study arbitrarily
correlated sources in this paper.

The MACF (with independent sources) was investigated by
Cover and Leung [6], who derived an achievable region as-
suming all nodes receive common feedback. Ozarow [7] found
the capacity of the Gaussian MACF with common feedback
and derived a capacity outer bound for the discrete memory-
less MACF with common feedback. King [8] investigated the
MACF with all sources receiving common feedback, which is
possibly different from what the destination receives, and de-
rived an achievable region for the channel. Willems [9] and Car-
leial [10] further generalized the MACF with common channel
feedback to the case where each node receives possibly dif-
ferent channel feedback, and derived achievable regions of the
channel. Sendonaris et al. [11], [12] considered the Gaussian
MACF with different feedback to different nodes. They derived
an information-theoretic achievable region based on coopera-
tion among the source nodes, and showed how the coopera-
tion scheme can be implemented in a practical code-division
multiple-access system.

Combining the MACF and the MACCS, we arrive at the
MACFCS. One practical system modeled by the MACFCS is a
sensor network in which every sensor is capable of transmitting
as well as receiving, and each sensor collects data and aims
to send them to a single destination. We note that the data
collected by the sensor nodes might be correlated, e.g., if they
are located close to one another.

Applying coding strategies designed for the MACF or the
MACCS might be suboptimal for the MACFCS. Coding strate-
gies for the MACF ignore the correlation among the sources,
while coding strategies for the MACCS ignore the feedback
from the channel to the sources. Taking both these extra pieces
of information into account can help to enlarge the achievable
region.

Murugan et al. [13] investigated the Gaussian MACFCS with
a total average power constraint on the sources. Their coding ap-
proach is based on time-division multiple access (TDMA) with
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the nodes operating in half-duplex. Our work differs from [13]
in that we consider a general MACFCS (including both discrete
memoryless channels and Gaussian channels) with full-duplex
nodes, in which the source nodes can transmit and receive si-
multaneously. For the Gaussian case, we impose average power
constraints on individual sources, rather than a total average
power constraint. King [8] considered the MACFCS with each
source observing an independent private message, all sources
observing a common message, and all nodes (all sources and
the destination) receiving the same feedback. In this paper, we
consider arbitrary source correlation and possibly different feed-
back to all nodes.

Now, we briefly describe the different coding strategies in-
vestigated in this paper.

B. Coding Strategies for the MACFCS

There are numerous coding strategies which we can apply to
the MACFCS. The aim of this paper is not to list all of them,
but to compare different strategies and to study their strengths
and weaknesses. In this paper, we study the following coding
strategies for the MACFCS.

i) Full Decoding at Sources with Decode–Forward Channel
Coding (FDS-DF): In FDS-DF, the general idea is for
the sources to communicate so that every source has the
complete data of the other sources. They then cooperate to
send the combined data to the destination. Since the data
of different nodes are correlated, a node does not need to
send all its data to other nodes for them to fully decode
the data.

ii) Source Coding for Correlated Sources and Compress–
Forward Channel Coding for the MACF (SC-CF): Source
coding for correlated sources [3] is first performed at
every source node to remove the correlation among the
sources. At this point, we have turned the problem into
that of channel coding for the MACF with independent
sources. We then construct a coding strategy for the
MACF based on the compress–forward technique to
transport the independent data to the destination.

iii) Source Coding for Correlated Sources and MAC Channel
Coding (SC-MAC): Source coding with correlated
sources is performed at individual nodes. Then we use a
channel coding for the MAC [14], [15] to send the inde-
pendent data to the destination. In this case, we disregard
the feedback from the channel to the source nodes.

iv) Multihop Coding with Data Aggregation (MH-DA): The
nodes are sequenced (with the last node being the destina-
tion) to form a route. Each node (except the first node) de-
codes the data from the previous node in the route, com-
bines it with its own data, and forwards all data (data that
it decodes from the previous node, plus its own data, less
the correlated part of the data which the next node al-
ready has) to the next node in the route. This continues
until the second last node sends all aggregated data to the
destination.

Remark 1: The first two strategies, i.e., FDS-DF and SC-CF,
use coding ideas for the relay channel, in which the relay helps

the source to send data to the destination. These two strategies
exploit the fact that there is an embedded relay channel in the
MACFCS.

Remark 2: In SC-MAC, the sources ignore feedback from the
channel. Feedback certainly has the potential to increase rates,
but taking it into account carries with it a certain amount of
complexity, both from a hardware and processing viewpoint.
This is the motivation for SC-MAC and we find that this simple
strategy can actually be better under certain topologies.

Remark 3: The first three strategies mentioned above
involve multiuser coding (e.g., multipoint-to-multipoint),
which requires a certain amount of coordination for syn-
chronization and cooperation. In MH-DA, all transmissions
are single-point-to-single-point, i.e., a node only decodes
from a node behind it, treating all other transmissions as
noise. We note that there are many practical coding schemes
available for single-point-to-single-point communication.
Through MH-DA, we can study the loss in performance of
single-point-to-single-point coding in a multiterminal network.

Remark 4: Barros and Servetto [16] consider the problem of
communicating correlated sources over a network of indepen-
dent point-to-point links. The strategy in [16] includes MH-DA
as a special case and can be used for the MACFCS with appro-
priate modifications.

C. The Value of Cooperation in the MACFCS

In the wireless channel, which is broadcast in nature, every
node hears the transmissions of other nodes. It can treat the
transmissions as pure noise, or make use of the received trans-
missions for cooperation. In the coding strategies described
above, the nodes cooperate in the encoding and decoding
of the data. Across the strategies, we find different levels of
cooperation.

In all the strategies, we see nodes cooperate in the source
coding, i.e., a node takes into account of other nodes (their data
or correlation structure) during its data encoding. In FDS-DF,
all the nodes send cooperative data (of all sources) to the des-
tination. In SC-CF and SC-MAC, source coding for correlated
sources is performed prior to channel coding. We can view this
as a form of cooperation in the encoding. In MH-DA, a node re-
ceives data from the previous node, combines them with its own
data, and sends the aggregated data to the next node. Again, we
see cooperation in the encoding of data.

Now, we see how the nodes cooperate in the channel coding,
e.g., multiple nodes decode the transmission of a node, and a
node decodes the transmissions of multiple nodes. In FDS-DF,
when the sources are exchanging data, the destination, over-
hearing these transmissions, makes use of the transmissions to
aid its decoding of the data. In SC-CF, each source hears the
transmissions of other sources, quantizes them, bins them, and
sends them to the destination. In SC-MAC, though, the sources
ignore the transmissions of other nodes, the destination listens
to all the source nodes. The coding strategies above involve
channel coding for multiple users. In contrast, MH-DA only
considers node pairs, i.e., point-to-point coding. Encoding and
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decoding are done only for two nodes. Each node only trans-
mits to one node (down the route) and each node only decodes
from one node, ignoring all other transmissions. Hence, we see
minimum cooperation in MH-DA.

D. Contributions

In this paper, we address the following questions.
i) What rates are achievable on the MACFCS and what

coding strategies achieve these rates?
ii) What are the characteristics of different coding strategies

for the MACFCS?
iii) How does the study of the MACFCS help us to understand

better coding and cooperation in sensor networks?
Our main contributions are as follows.
i) We derive an outer bound on the capacity of the

MACFCS, which turns out to be the cut-set bound
[17], [18].

ii) We construct a new coding strategy for the MACFCS,
where the source nodes first exchange information and
then cooperate to send full information to the destination.
We derive an achievable region using this strategy.

iii) We construct a compress–forward based coding strategy
for the MACF, with each node receiving possibly dif-
ferent channel feedback. King [8] derived an achievable
region for the MACF with all sources receiving common
feedback using combined decode–forward and com-
press–forward strategies.

iv) We combine source coding for correlated sources [3] and
our newly constructed compress–forward strategy for the
MACF, and arrive at a new achievable region for the
MACFCS.

v) We combine existing schemes, i.e., source coding for
correlated sources [3] with the MAC channel coding
[14], [15] to arrive at another achievable region for the
MACFCS.

vi) We find another achievable region of the MACFCS using
a multihop coding strategy.

vii) We compute achievable regions of the different strate-
gies on the additive white Gaussian noise (AWGN)-
MACFCS.

viii) We show that certain strategies perform better under cer-
tain source correlation structures and channel topologies.
More specifically, we observe the following for the sym-
metrical MACFCS (where the sources are equidistant
from the destination, and they have the same amount of
private information to send).

a) When the inter-source links get better than the
source–destination links, FDS-DF approaches the
capacity outer bound.

b) When the correlation among the sources gets higher,
FDS-DF approaches the capacity outer bound.

When one source is far away from the destination and
another source is closer to the destination, SC-CF gives a
better performance compared to FDS-DF and SC-MAC.

ix) By comparing different coding strategies for the
MACFCS, we show the value of cooperation in the
multiple-source single-sink sensor network.

Fig. 1. The three-node MACFCS.

E. Organization

The remainder of the paper is organized as follows. In Sec-
tion II, we describe the MACFCS channel model that we will
be using throughout the paper. Also, we define the AWGN-
MACFCS. In Section III, we derive a capacity outer bound for
the MACFCS. These will serve as benchmarks for the coding
strategies constructed in Section IV. We compare the perfor-
mance of different coding strategies on the AWGN-MACFCS
in Section V. This is followed by a discussion of the results in
Section VI and conclusions in Section VII.

II. CHANNEL MODEL

Fig. 1 depicts the three-node MACFCS. The three-node
discrete memoryless MACFCS is denoted by

. ,
and are the source messages collected by nodes 1 and
2, respectively, and they are drawn from some discrete bivariate
distribution . Here, , and are
seven finite sets. defines the channel tran-
sition probability on for each .

and are the inputs to the channel from nodes 1 and 2,
respectively. , , and are the channel outputs to nodes 1,
2, and 3 (the destination), respectively.

The channel is memoryless because the current outputs
depend on the past inputs only through

the current transmitted symbols .

Definition 1: A block code for the MACFCS consists of an
integer , two sets of encoding functions at nodes
1 and 2, where

(1a)

(1b)

and a decoding function at node 3, , such
that

(2)

where and are estimates of and , respectively.

Without loss of generality, we assume that each encoder
knows all source messages before the encoding of each
block. We can also think of the source messages as one
combined message from the source at the beginning of each
block of the encoding. Hence, for any choice of codes, the joint
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probability mass function on is
given by

(3a)

Definition 2: The error probability is defined as

(4a)

(4b)

Definition 3: We say that can be reliably transmitted
to the destination per channel use if for any , there exists
a sequence of block codes such that .

We define an achievable region of the MACFCS as a set of
triplets for which we can re-
liably send to the destination per channel use, for some

. The capacity region is the closure of the
set of all achievable regions.

A. The Gaussian MACFCS

In the -node AWGN-MACFCS, the channel output to node
is given by

(5)

where is the received signal at node , is the signal trans-
mitted by node , with power constraint , and
is independent, zero-mean, Gaussian random variable at the re-
ceiver of node with variance . We assume perfect echo can-
cellation, meaning that a node can cancel its own transmission
perfectly. We assume the standard path loss model for signal
propagation, in which is the path-loss exponent ( with
equality for free space transmission) and is a positive constant.

is the Euclidean distance between nodes and .
In Section V, where we compare different strategies for

the AWGN-MACFCS, we use an alternative but useful defi-
nition of achievable region. The reason is that regions in the
three-dimensional space are difficult to plot and compare.
Hence, we use the following version of achievable region
for the AWGN-MACFCS. With a fixed correlation structure

, and , and node positions, an
achievable region is the set of average transmit power pairs

for which we can reliably send to the des-
tination per channel use. Similarly, the capacity is defined as
the closure of the set of all achievable regions. Note that we
can convert an achievable region for the discrete memoryless
MACFCS to that for the AWGN-MACFCS.

III. CAPACITY OUTER BOUND

In this section, we derive an outer bound on the capacity of
the MACFCS.

Theorem 1 (Cut-Set Outer Bound): Let
be a discrete mem-

oryless three-node MACFCS. The source symbols can
be reliably transmitted to the destination per channel use only if

(6)

where

(7)

for some

(8)

In other words, an outer bound on the capacity of the MACFCS
is given by , where is the set of all distributions
satisfying (8), and is the union of sets operator.

Remark 5: We call the above outer bound the cut-set outer
bound (CS-OB) as it turns out to be a special case of the cut-set
argument by Gastpar [17], [18]. Now, we start with the cut-set
argument and see how it simplifies to the CS-OB. We partition
the network into two sets, with a cut separating the sets. We
assume that all nodes in each set can fully cooperate. We
obtain bounds by associating each cut with a corresponding
point-to-point system. Consider the cut separating the sets

and . The transmission rate from node 1 to nodes 2
and 3 is bounded by the corresponding point-to-point system

(using the notation in [17]). In this
point-to-point channel, node 3 receives side information
from node 2. For node 3 to reliably decode , node 1 needs to
transmit at least bits across the cut, to node 3. Hence,
we get (cf. [17,
eq. (3.9)]). Applying this argument to the cut separating
and , we obtain the second inequality in (7). Consider the
cut separating and . We need to transmit
across the cut, and the transmission rate is bounded by the
corresponding point-to-point system . Hence,
we get (cf. [17, eq.
(3.2)]). Note that for the point-to-point system, feedback does
not increase the capacity, and can be ignored.

Remark 6: In the AWGN-MACFCS, can be found by
considering only jointly Gaussian input distributions. We can
show that choosing Gaussian input distributions maximizes
every mutual information expression in (7) [19, Proposition 2].
Hence, in the AWGN-MACFCS
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Proof of Theorem 1: Given any code for
the MACFCS, the probability function on the joint ensemble

is given by

(9a)

By Fano’s inequality [20]

(10)

Now, we consider .

(11a)

(11b)

(11c)

(11d)

Now

(12a)

(12b)

(12c)

(12d)

(12e)

where
• (12b) and (12e) are by the chain rule;
• (12c) is because conditioning reduces entropy;
• (12d) is because of the memoryless channel, and

are independent given .
Also

(13a)

(13b)

(13c)

(13d)

(13e)

(13f)

(13g)

where
• (13b) is by the chain rule and the memoryless nature of the

channel;
• (13c) is because is a function of ;
• (13e) is because conditioning reduces entropy;
• (13f) is because and are

independent given .
In addition,

(14a)

(14b)

(14c)

Consider :

(15a)

(15b)

(15c)

(15d)

(15e)

Now we introduce a new variable independent of
[21] that takes values in the set

with probability

(16)

and such that

(17)

forms a Markov chain. We set

(18)
Now, (12e) becomes

(19a)
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(19b)

(19c)

Similarly

(20)

Taking the limit as and , and combining (11d),
(12e), (13g), (19c), and (20), we have

(21)

By symmetry, we can show that

(22)

Combining (14c), (15e), and (19c), we have

(23)

Equation (23) guarantees

(24a)

(24b)

Hence, we have Theorem 1.

IV. ACHIEVABILITY

Now, we present four achievable regions for the three-node
MACFCS using four different coding strategies.

A. Full Decoding at Sources With Decode–Forward Channel
Coding (FDS-DF)

In this strategy, every node decodes the data from all other
nodes, and all nodes cooperate to send combined data to the
destination. We note that for the nodes to cooperate, they must
first agree on the data to be sent. In order to do this, each of them
must first decode the data from all other nodes.

In brief, this strategy does the following. Since and are
correlated, using [22, Theorem 2], node 1 only needs to send

compressed bits to node 2 for it to decode . Node
2 does the same. Now, both nodes have and . They then
cooperate to transmit the full information, i.e., , to the
destination. At the same time, nodes 1 and 2 send the next (new)
message to each other.

Murugan et al. [13] proposed a similar coding scheme where
the transmissions are split into two phases. In the first phase,
the source nodes communicate with each other using TDMA.
At the end of the first phase, each source has the data of all
nodes. In the second phase, all sources cooperate to transmit
to the destination. In this paper, we offer a more general coding
scheme. Each source node transmits cooperative information of
the previous block (data that it decodes from other nodes to-
gether with its own data) and new information (which is to be
decoded by other sources and the destination) simultaneously.
Since all nodes agree on the same fully decoded information of

the previous block, coherent combining can be achieved in the
AWGN channel. We show that the coding strategy proposed by
[13] is a special case of ours.

Using FDS-DF, we can show that the region given in the fol-
lowing theorem is achievable.

Theorem 2 (FDS-DF): Let
be a discrete memoryless

three-node MACFCS. can be reliably transmitted to
the destination per channel use if the following conditions hold:

(25a)

(25b)

(25c)

(25d)

(25e)

(25f)

(25g)

where

(26a)

, , and are auxiliary
random variables with cardinalities

. is a time-sharing
variable which determines the portion of time we use a
particular distribution ,

, and so on. Here, .

Remark 7: We note that by setting

(27a)

(27b)

(27c)

for some deterministic function , we end up with the half-
duplex coding scheme proposed in [13]. At time , node
1 transmits, and at time , node 2 transmits. After both
nodes fully decode the messages from each other, they coher-
ently transmit at time . However, in [13], the destina-
tion only decodes at time . In other words, the terms

for are excluded. In Theorem 2,
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Fig. 2. Coding for the MAC with feedback and correlated sources using the
decode–forward strategy.

the destination decodes at all and hence the achiev-
able region can be larger.

Outline of the Proof For Theorem 2: Now, we present an
outline of the proof for Theorem 2. The complete proof can be
found in Appendix A. We ignore in the following discussion
to simplify the expressions.

The codebook generation is as follows.
i) Fix the probability mass functions

, and .
ii) Generate independent and identically dis-

tributed (i.i.d.) sequences according to .
Index them , .

iii) Generate i.i.d. sequences ac-
cording to . Index them ,

.
iv) Generate i.i.d. sequences ac-

cording to . Index them ,
.

v) Define . For each
, generate sequences ac-

cording to . Index
them , .

vi) Again for each , indepen-
dently generate sequences according
to . Index them

, .
The encoding steps (refer to Fig. 2) are as follows.
i) Slepian and Wolf [3, Theorem 2] showed that when node

1 only knows and node 2 knows , node 1 can en-
code using bits (indexed by ) and
it can be decoded by node 2. Similarly, node 2 can use

bits (indexed by ) to encode . Node 1
transmits , and node 2 transmits , where

is the cooperative information from the previous block.
We use prime to indicate the index from the previous
block.

ii) At the beginning of the new block, assume that node 1
correctly estimates sent by node 2. Using , it can
decode . Node 2 does likewise to decode .

iii) Both sources now compress down
to bits and index it by

. Now, create
bins and index each bin

by a unique . Assign to the bins so that each
bin contains entries. Index the entries

. Hence, each can be
represented by a unique triplet .

iv) In the new block, node 1 sends and node 2
sends .

The decoding steps are as follows.
i) Upon observing the sequence , node 1 declares has

been sent by node 2 if there exists a unique such that
.

We use hat to indicate the estimate. Here, is the set of
jointly typical sequences [20, p. 195]. We note that node
1 knows , which is the full information
from the previous block, and its own information . It can
determine the correct with diminishing error probability
if

(28)

ii) Similarly, observing the sequence , node 2 declares
has been sent by node 1 if there exists a unique such that

.
Node 2 can determine the correct with diminishing error
probability if

(29)

iii) Node 3 decodes over two blocks. In
the first block, assuming that it has already
correctly decoded from the pre-
vious block, it finds a set of where

.

In the second block, it then finds another set of

and a unique where . It

declares has been sent if there is a unique and
a unique pair of in . This can be done with
diminishing error probability if

(30a)

(30b)

(30c)

(30d)

(30e)

(30f)

(30g)
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We consider all possible error combinations. Assuming
that were sent, (30a) guarantees that the

for any . Equation (30b) guar-
antees that , (30c) guaran-
tees that , (30d) guaran-
tees that , (30e) guarantees
that , (30f) guarantees that

, and (30g) guarantees that
.

iv) With , node 3 can determine and decode
.

The total probability of error can be bounded, for large , if
(28), (29), and (30a)–(30g) hold.

For the cardinality of the auxiliary random variables, using
the method in [23], we can show that

. Since the achievable region
of FDS-DF can be plotted in the three-dimensional space,

is sufficient.
Hence, we have Theorem 2.

The probability error analysis can be found in Appendix A.
The achievable region of FDS-DF on the AWGN-MACFCS can
be found in Appendix B.

Remark 8: In FDS-DF, the sources only need to exchange
bits in order for them to know the full

information . When both sources know the full informa-
tion, they then cooperate (achieving coherent combining in the
AWGN channel) to send the full information to the destination.

Under certain channel conditions, that all nodes fully decode
the data of all other nodes might not be desirable. One example
is when node 1 is far from the destination and node 2 is close
to the destination. In this case, it is not necessary for node 1 to
decode all of node 2’s data. We note that if the sources only ex-
change partial information, they are not able to cooperate to send
the full information to the destination. They can only cooperate
to send the data that they exchange (in contrast with FDS-DF
in which the sources can cooperate to send more information
than what they exchange). Without full decoding at the sources,
we study a few other types of coding strategies where full de-
coding of all messages only occurs at the destination.
We use the following method. First, source coding is performed
at each individual source node to remove the correlation among
the sources (see Section IV-B). At this point, we have turned the
problem into that of channel coding for the MACF with indepen-
dent sources. Then we apply a channel coding strategy for the
MACF to transmit independent information to the destination.

B. Source Coding for Correlated Sources

Source coding for correlated sources is first performed
at every source node. This removes correlation between the
sources. This does not require physical communication among
the sources. Each source node forms independent inputs to its
channel encoder.

Recall that nodes 1 and 2 receive and from their re-
spective sources. The data are correlated and drawn according
to . First, we consider a noiseless channel. With node
1 knowing only and node 2 knowing only , the destination

Fig. 3. Coding for the MAC with feedback (with independent sources) using
the compress–forward strategy.

can reconstruct reliably if node 1 encodes with rate
and node 2 encodes with rate [3], where

(31a)

(31b)

(31c)

Fig. 3 shows independent data after source coding.
After receiving source messages, , encoder 1 encodes
the data to . Encoder 2 receives and
encodes the data to . and are within
the constraints (31a)–(31c).

Now, we consider an unreliable channel and explore how
channel coding can help the destination to recover and . With
these, it can recover and .

C. Source Coding for Correlated Sources and
Compress–Forward Channel Coding for the MACF (SC-CF)

In this subsection, we derive an achievable region for the
MACF based on the compress–forward strategy. Combining
this with the source coding rate constraints in Section IV-B, we
derive another achievable region for the MACFCS. We term
this coding strategy source coding for correlated sources and
compress–forward channel coding for the MACF (SC-CF).
To the best of our knowledge, the compress–forward strategy
has not been studied on the MACF where each node receives
possibly different channel feedback. The compress–forward
strategy was first introduced by Cover and El Gamal [21] for
the single-relay channel. It was subsequently extended to the
multiple-relay channel by Kramer et al. [19] in which the
strategy is termed the compress-and-forward strategy. King [8]
derived an achievable region for the MACF, with all sources
receiving common feedback, using combined decode–forward
and compress–forward strategies. In this paper, we construct
a compress–forward strategy for the MACF with possibly
different feedback to every node. Here, we do not combine the
compress–forward strategy with the decode–forward strategy
as we want to compare the performance of different strategies.
With the different strategies described in this paper, we can
easily pick and combine different strategies to get another
achievable region.
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Remark 9: It has been shown [19] that in relay channels
with different topologies, the decode–forward strategy (which
is also known as the decode-and-forward strategy) or the
compress–forward strategy can achieve higher rates. For the
Gaussian relay channel, a rough guide is that when the relay
is closer to the source, the decode–forward strategy achieves
higher rates; while when the relay is closer to the destination,
the compress–forward strategy achieves higher rates. This
suggests that SC-CF might give larger achievable regions on
the MACFCS compared to FDS-DF under different topologies.

Using the compress–forward strategy, each node transmits in-
dependent information as well as a quantized and binned version
of its received signal. Referring to Fig. 3, and are indepen-
dent information after performing source coding on a block of
correlated source messages . Consider node 1 as an ex-
ample first. From the received signal , it produces a quantized
version . It then bins to . In the next block, it sends new
information as well as . We can view this as node 1 helping
node 2 to send a noisy, quantized, and binned version of node
2’s signal, , without needing to fully decode . Node 2 does
likewise.

Using SC-CF, we show that the following region is
achievable.

Theorem 3 (SC-CF): Let
be a discrete memoryless

three-node MACFCS. The source messages can be
reliably transmitted to the destination per channel use if

(32a)

(32b)

(32c)

where the mutual information is taken over all joint probability
mass functions

(33a)

subject to the following constraints:

(34a)

(34b)

(34c)

Here, , and are auxiliary
random variables. , ,
and are finite. is the time sharing variable, and

.
Outline of the Proof for Theorem 3: Now, we give a brief out-

line of the proof for Theorem 3. The error probability analysis
can be found in Appendix C. We ignore in the following dis-
cussion to simplify the expressions.

Fig. 3 shows independent data after source coding.
Channel encoder 1 receives and channel
encoder 2 receives for every source
messages. Now, we study a channel coding scheme to ensure
that the independent data after source coding can be reliably
transmitted to the destination. The codebook generation is as
follows.

i) Fix ,
and .

ii) Generate i.i.d. sequences according to
. Index them , .

Generate i.i.d. sequences according to
. Index them , .

iii) For each , generate sequences ac-
cording to . Index them ,

. For each , generate
sequences according to . Index
them , .

iv) For each , generate sequences according
to . We define

(35a)

where is defined in
(33). Index them , .

v) Similarly, for each , generate sequences
according to . We define

(36a)

Index them , .
vi) Randomly partition the set into

cells , ; and partition the set
into cells , .

The encoding steps are as follows. Basically, node 1 quantizes
its received signal from the previous block and bins it. It sends
the binned information together with new information from the
source in the new block. Node 2 does likewise.

i) In the beginning of block , remembering its previous
transmission in block , , and , and
observing its received signal in block , , it finds
a unique for which ,

. Berger [24, Lemma 2.1.3] showed
that node 1 can find such a with probability tending
to , with a large enough , if

(37)

Here, is the quantized version of .
ii) Now, node 1 bins to . It finds for which .

It then sends in block , where is the
new message from the source. Here, is to be decoded
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and used by the destination to estimate . We see here
that node 1 helps node 2 to send a noisy, quantized, and
binned version of node 2’s signal to the destination.

iii) In block , node 2 quantizes to . It can find a
unique with probability tending to if

(38)

It bins to , where . It then sends
in block , where is the new information.

The decoding steps are as follows. The destination first de-
codes the quantized and binned information from nodes 1 and
2. It then estimates the quantized information. Using its received
signal and the estimated quantized information, it decodes the
messages from nodes 1 and 2.

i) At the end of block , the destination receives
. It declares were sent by nodes 1

and 2 if it can find a unique pair of for which
. This can be done with

an arbitrarily small error probability if the following
inequalities hold:

(39a)

(39b)

(39c)

ii) At the end of block , assume that the des-
tination has correctly decoded and

. It uses its received signal in block to
find a set of such that

. It de-
clares that were sent if it can find a unique

and .
This can be done reliably if

(40a)

(40b)

(40c)

iii) At the end of block , assume that the destina-
tion has correctly decoded and .
It uses , , and . It de-
clares were sent if

. This can be done with diminishing error probability
if

(41a)

(41b)

(41c)

We see that node 3 decodes at the end of block
.

Combining these rate constraints for the MACF using the com-
press–forward strategy and the constraints for the source coding,
(31a)–(31c), we get Theorem 3.

The probability error analysis can be found in Appendix C.
The achievable region of the AWGN-MACFCS using SC-CF
can be found in Appendix D.

D. Source Coding for Correlated Sources and the MAC
Channel Coding (SC-MAC)

Now, we consider a coding strategy for the MACF that ig-
nores the feedback from the channel to the source nodes. Each
source now simply sends independent messages as it would in
the MAC. We call this strategy SC-MAC, and we will see later
that it actually does well in certain network topologies. A coding
strategy that achieves the capacity of the MAC was found by
Liao [14] and Ahlswede [15]. Combining source coding for cor-
related sources and this channel coding for the MAC, we have
the following theorem.

Theorem 4 (SC-MAC): Let
be a discrete memoryless

three-node MACFCS. The source messages can be
reliably transmitted to the destination per channel use if the
following inequalities hold:

(42a)

(42b)

(42c)

where .

E. Combination of Other Strategies

There is a multitude of ways which we can combine a coding
strategy for the MACCS with that for the MACF to arrive at
a coding strategy for the MACFCS. The aim of this paper is
not to list all of them. In this section, we briefly mention a few
combinations.

i) Combining source coding for correlated sources and the
partial decode–forward channel coding for the MACF
by Carleial [10, Theorem 1]: After source coding, each
source node has independent data. Each source now
exchanges part of their data with other source nodes.
They then cooperate to send the exchanged data to the
destination. We call that partial decode–forward strategy
as every source only decodes part of the data of other
sources. An achievable region for the MACFCS can
be derived by combining the source-coding constraints
for correlated sources (constraint (31a)–(31c) in Sec-
tion IV-B) and the channel coding constraints of the
partial decode–forward strategy for the MACF [10, Con-
straints (3a), (3b), (7a)–(7q)].

ii) Combining source coding for correlated sources and the
partial decode–forward channel coding for the MACF by
Willems [9, Theorem 7.1]: Similar to [10], the sources
exchange part of their data through the channel feedback
link. They then cooperate to send the exchanged data to
the destination. An achievable region for the MACFCS
can be derived by combining the source-coding con-
straints for correlated sources (constraint (31a)–(31c)
in Section IV-B) and the channel-coding constraints of
the partial decode–forward strategy for the MACF [9,
Theorem 7.1].
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iii) Combining coding strategy by Cover et al. for MACCS
without common part [4, Constraints (3)] and the
compress–forward strategy for the MACF (that we de-
rived in Section IV-C): Each node sends information
encoded directly from the source (so that correlation is
preserved among the transmitted signals) as well as the
received (via the feedback links), quantized, and binned
signals from other nodes.

iv) Combining coding strategy by Cover et al. for MACCS
without common part [4, Constraints (3)] and the partial
decode–forward strategy by Carleial [10, Theorem 1] or
Willems [9, Theorem 7.1]: Each node sends information
encoded directly from the source (so that correlation is
preserved among the transmitted signals). At the same
time, the source nodes partially decode the data from
other nodes, and cooperate to send the exchanged data
to the destination.

Remark 10: The strategy mentioned in i) above (in Sec-
tion IV-E) is different from FDS-DF (in Theorem 2). In the
former, the channel encoders at nodes 1 and 2 receive in-
dependent data stream, after performing source coding for
correlated sources. Then, Carleial’s technique for MACF is
applied directly. Hence, if we want the nodes to cooperatively
send the full information , they must exchange at least

bits. In FDS-DF, however, the channel encoders
receives correlated data from the sources (so, we do not apply
Carleial’s technique directly here), and so they only need to
exchange bits to be able to coopera-
tively send the full information.

Remark 11: We note that FDS-DF, SC-CF, SC-MAC, and
strategies i) and ii) in Section IV-E are based on separate source
and channel coding. Strategies iii) and iv) in Section IV-E are
based on combined source and channel coding. Evaluating the
performance of the combined source and channel coding strate-
gies in the Gaussian channel is difficult as it involves discrete
and continuous variables.

Remark 12: The achievable regions for FDS-DF, SC-CF,
and SC-MAC are derived assuming that the number of source
symbols received per unit time equals the number of channel
transmissions per unit time. However, using these separate
source- and channel-coding strategies, we can easily match
the source symbol rate to the channel usage rate, without
rederiving the coding strategies. Considering a general case
when we wish to send pairs of source symbols using
channel transmissions, the achievable regions can be found
by simply replacing the mutual information expressions by

. In this way, the achievability question for
a particular MACFCS is no longer just “whether we can
reliably transmit a pair of per channel use ,” but more
generally, “at what rate we can reliably transmit pairs
of per channel uses.” However, using combined
source and channel coding strategies, we need to modify the
coding strategies such that the probability distributions involve

source symbols and channel input symbols, e.g., [4, eq.
(87)]. Doing so, the achievable region will no longer be a
single-letter characterization.

In Sections IV-A–IV-E, we investigated coding strategies for
the MACFCS where the nodes exploit the broadcast/multiple-
access nature of the channel. They cooperate in the sense that ei-
ther the transmission from a node is decoded/processed by more
than one node (broadcast nature) or a node decodes/processes
the transmissions from more than one node (multiple-access na-
ture). In the following subsection, we study a strategy in which
the network is abstracted to a set of point-to-points links. A col-
lection of links forms a route, and data are then passed down
the route from the source to the destination using point-to-point
coding.

F. Multihop Coding With Data Aggregation (MH-DA)

In the multihop coding with data aggregation strategy (MH-
DA), data are passed from one node to another, until they reach
the destination. First, we number the nodes in a sequence, which
we call a route. The last node in the route is the destination. We
consider a combine–forward multihop coding, where each node
decodes the data from the previous node in the route, combines
that with its own data, and forwards the aggregated data (those
that it decodes from the previous node, plus its own data, less
the correlated part with the data at the next node) to the next
node in the route. In the three-node MACFCS, assuming that
node 1 receives from its source and node 2 receives from
its source, they do the following.

i) Node 1 compresses down to bits, indexes
it by , and sends it to node 2.

ii) We know that upon receiving , node 2 can decode .
iii) Node 2 compresses to ,

using bits, and sends it to the destination.
In this multihop coding scheme, a node only decodes from the
node behind in the route. The achievable region of the MACFCS
using MH-DA is given in the following theorem.

Theorem 5 (MH-DA): Let
be a discrete memoryless

three-node MACFCS. can be reliably transmitted to
the destination per channel use if the following holds:

(43a)

(43b)

where

(44)

is the time-sharing variable and .

The proof for Theorem 5 is straightforward and will be
omitted.

Now we consider a time-division MH-DA for the three-node
AWGN-MACFCS. By time division, we mean that only one
source transmits at a time, i.e., for fraction of the time
( ), node 1 transmits and node 2 does not transmit;
for fraction of the time, node 2 transmits and node 1 does not
transmit. This might be done to reduce interference among the
nodes.
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The achievable region of the AWGN-MACFCS using the
time division MH-DA is

(45a)

(45b)

We have presented four achievable regions for the MACFCS
using different coding strategies, and suggested a few coding
strategies for the MACFCS by combining coding strategies for
the MACCS and the MACF. In the next section, we compare
the four achievable regions to the CS-OB.

V. COMPARISON OF CODING STRATEGIES

In this section, we plot and compare achievable regions for
the different strategies in the three-node AWGN-MACFCS.
We consider symmetrical topologies, i.e., both sources are of
equidistant from the destination, and also linear asymmetrical
topologies, where the three nodes form a straight line, with
node 2 placed between node 1 and the destination. Although
Gaussian input distributions may not be optimal, we choose

, , and the auxiliary random variables to be Gaussian for
the sake of comparison.

A. Design Methodology

We perform numerical calculations to compare the achiev-
able regions of different coding strategies and the CS-OB to gain
insights intohownodepositionanddatacorrelationaffect theper-
formance.First,westudytheeffectofnodeposition.For thisanal-
ysis, we assume symmetrical source data, meaning

. This is a reasonable assumption for sensor networks
when homogeneous sensors are deployed, and each sensor is
sensing the environment at the same rate. For the computations,
we fix , and .
Although there are many combinations of node positions that
one can study, we group them into three main categories.

i) Symmetrical topology with the sources closer to the des-
tination than they are to one another.

ii) Symmetrical topology with the sources closer to one an-
other than they are to the destination.

iii) Asymmetrical topology. Without loss of generality, we
assume that node 1 is further away from the destination
thannode2is fromthedestination.Forsimplicity,westudy
linear topologieswhere the threenodes formastraight line.

Taking a closer look at MH-DA, we note that this strategy
is more suitable for asymmetrical topologies. This is because
in symmetrical topologies, there is no reason why we would ar-
range the nodes in a route and “load” the node at the end of route.
This strategy makes sense in the asymmetrical topology where
some nodes are nearer to the destination. Hence, we analyze the
performance of MH-DA only in the asymmetrical topology.

After investigating the effect of node position, we study
the effect of varying the correlation between the sources on
the performance of the various coding strategies. As rational-
ized above, we still keep the source data symmetrical, i.e.,

. We vary while keeping one
of the following constant.

Fig. 4. Minimum power required to transmit (S ; S ) to the destination per
channel use, with weak inter-source link.

Fig. 5. Minimum power required to transmit (S ; S ) to the destination per
channel use, with weak source–destination links.

i) The information of each source and is
constant.

ii) The total information is constant.

B. The Effect of Node Position

Figs. 4 and 5 show the minimum average transmit powers
(energy per channel use) required for nodes 1 and 2 to reliably
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transmit a pair of to the destination per channel use.
The achievable region is the region above the line. Note that
we plot average transmit powers on both axes. So, if the nodes
transmit with an average power pair in the achievable region, the
nodes can reliably send to the destination per channel
use. We denote the average power of nodes 1 and 2 by and

, respectively.
We consider symmetrical source data with the following

values: , and .
First, we compare the two symmetrical topologies: 1) when the
sources are further away from each other than they are from the
destination, and 2) when the sources are further away from the
destination than they are from each other. The first setup studies
the case where the source–destination links are better than the
inter-source link while the second setup studies the case where
the inter-source link is better than the source–destination links.

When the inter-source link is weak, Fig. 4 shows that SC-CF
and SC-MAC perform better than FDS-DF, i.e., the achievable
regions for the SC-CF and SC-MAC contain that of FDS-DF.
FDS-DF performs worst among the three strategies as the
strategy requires each source node to get all the data from other
nodes. This imposes an extra constraint on the average transmit
power of the source nodes. When the source–destination link is
stronger, a better strategy is to send the signals directly to the
destination than to seek help from other sources.

On the other hand, when the inter-source link is strong, Fig. 5
shows that FDS-DF performs better than SC-CF and SC-MAC.
The transmission bottleneck is now at the source–destination
link. A good inter-source link lets each source node fully de-
code the messages from other nodes using little transmit power.
In FDS-DF, the sources then use most of the transmit power
to send the full information coherently to the destination. Co-
herent combining makes a significant gain in transmission rate
on the source–destination link. Also, we see that the achievable
region of FDS-DF comes very close to the CS-OB when the
inter-source link is much better than the source–destination link.

Remark 13: In these two scenarios, we consider symmet-
rical topologies and symmetrical source data

. We term the channel with sym-
metrical topology and symmetrical source data symmetrical
MACFCS. In the symmetrical MACFCS, using FDS-DF, the
total average transmit power is minimized when the nodes
transmit at the same average power. In other words, it is more
efficient for the nodes to share the load in transmitting data than
for one to transmit at higher power. We can see this from the
nonlinearity in the coherent combining term in (69), or from
Figs. 4 and 5, that the power curves are convex. However, for
SC-CF and SC-MAC, there is a range for which individual
source node can vary their transmit power while maintaining
the minimum total average transmit power. We can see this
from the mutual information expression in (87), (88), and (92a)
that the relationship between and is linear, keeping

constant, or from Figs. 4 and 5, that there are portions
of the SC-CF and SC-MAC curves where the slope is .

Remark 14: The staircase behavior of the FDS-DF curve in
Fig. 4 is caused by the optimization involving different inequal-
ities in Theorem 2 and the finite step size of in (63a) and

Fig. 6. Minimum power required to transmit (S ; S ) to the destination per
channel use, in a linear topology.

(63b). are the power splits of node used to carry different
messages. The definition can be found in Appendix B. With time
sharing, reliable transmission can be achieved using an average
transmit power above the dotted line. Hence, time sharing en-
larges the achievable region of FDS-DF. This explains why the
time-sharing random variable is included in Theorem 2.

Remark 15: In the symmetrical MACFCS, SC-MAC per-
forms better than SC-CF. This means after we remove the corre-
lation among the sources, using the feedback of the channel via
the compress–forward strategy is worse than not using the feed-
back at all. This can be explained as follows. When the nodes
are of same distance from the destination and have same amount
of information to send, it is better for each of them to send their
own message to the destination directly. It does not help when
they try to help other nodes by sending a noisy, compressed, and
binned version of what they received. The power can be better
used to send their own uncorrupted data.

That SC-MAC always outperforms SC-CF is no longer true
in the asymmetrical topology. Fig. 6 shows the minimum power
curves without time sharing. For illustration, we choose

, , and . We note that choosing node 2 close
to node 1 resembles a symmetrical topology. From the graph, we
see that using SC-MAC, the minimum power required at node 1
is 6.25 W. Using FDS-DF, the minimum power required at node
1 is 4.1 W. We can further reduce the power at node 1 to 3.35 W
by increasing the power at node 2 by using SC-CF.

Using SC-MAC, we ignore the feedback in the channel.
Hence, node 1 needs to transmit at least bits to the
destination, which is situated 2.5 m away. Note that without
using the feedback, there is no way node 2 can help in sending
this portion of the message. However, we can reduce node 1’s
transmit power by using FDS-DF. Now, node 1 needs to send
at least bits to node 2, which is 2 m away. Node
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Fig. 7. Minimum power required to transmit (S ; s ) to the destination per
channel use, with different message correlation but constantH(S ) andH(S ).

Fig. 8. Minimum power required to transmit (S ; S ) to the destination per
channel use, with different message correlation but constant H(S ; S ).

2, which is nearer to the destination can help node 1 to relay
the message to the destination. If we wish to further reduce
the transmission power of node 1, we use SC-CF. Using this
strategy, node 2 does not need to fully decode . Node 2 acts
as an additional (but noisy) antenna for the destination. Hence,
this further enhances the “reception” of node 1’s message. So
node 1 needs to send at least bits to the destination,
equipped with an additional (noisy) antenna at node 2.

Remark 16: From Fig. 6, we see the staircase behavior of the
SC-CF curve. It shows that time sharing increases the achiev-
ability region of SC-CF. This accounts for the use of the time-
sharing auxiliary random variable in Theorem 3.

C. The Effect of Source Correlation

Now, we study how correlation among the source data affects
the different coding strategies for the MACFCS. We consider
symmetrical topologies. Figs. 7 and 8 depict achievable regions
of the different coding strategies. We plot the equal power point
for different correlation values.

From both graphs, we see that all three strategies perform
either better or do not change when the data are more correlated.
This make sense since if each node knows a larger portion of
other nodes’ data, it is easier for the nodes to cooperate.

When the nodes transmit at equal power, the achievable re-
gions of SC-CF and SC-MAC do not vary with the correlation
as long as the total information remains constant and
the correlation is symmetrical (Fig. 8). This is because using
these two strategies, source coding is first performed. After that,
the nodes send independent data to the destination. We know
that the minimum total rate ( in (31c)) for which the
nodes must transmit remains constant if is constant.

In the same graph, although the total information
stays constant, increasing the correlation of the data enlarges the
achievableregionofFDS-DF.Thereasonis thatwhenthecorrela-
tion is higher, more power can be used for coherent transmission.
The nodes need less power for inter-source communication.

When the sources are fully correlated, i.e., and
approach zero, the achievable region of FDS-DF ap-

proaches the CS-OB. This does not come as a surprise as when
, every source node knows other

nodes’ data. They can cooperate to form a multiple-transmit an-
tenna without wasting any power to exchange data. Hence, it
achieves the CS-OB.

The achievable regions of all the three strategies are far from
the CS-OB when the inter-source distance is large compared to
the source–destination distance and the correlation between the
sources are low. To achieve the CS-OB, all sources need to co-
operate to send full information. When the correlation is low and
the inter-source link is weak, the sources “waste” a larger por-
tion of the transmit power to communicate among themselves in
FDS-DF. For SC-CF and SC-MAC, as no coherent combining
is possible, the achievable regions are far from the CS-OB. This
highlights the value of cooperation in the MACFCS.

Remark 17: We notice that in Figs. 7 and 8, the FDS-DF
curves are zig-zag. This is because we plot the equal power
point ( ) for the non-time-sharing FDS-DF. As can be
seen from Fig. 4, time sharing might improve the FDS-DF re-
gion at the equal power point. The non-time-sharing FDS-DF
curve in Fig. 4 coincides with the time-sharing curve at equal
power point only at certain correlation levels. Hence, the devi-
ation from the time-sharing line for different correlation levels
accounts for the zig-zag behavior of the FDS-DF curve in Figs. 7
and 8 when we change the correlation level.

D. Comparing MH-DA With Other Strategies

Figs. 9 and 10 compare MH-DA with other strategies in a
three-node AWGN-MACFCS. As explained in Section V-A, we
will only consider the linear topology when comparing MH-DA
with other strategies. We consider the cases when node 2 is
closer to node 1 and when node 2 is closer to the destination.
We show that in both cases, we can always find a strategy with
multiuser coding (FDS-DF, SC-CF, or SC-MAC) that outper-
forms MH-DA.

Using MH-DA, we penalize the nodes toward the end of
the route as they need to send more information. In this ex-
ample, node 2 needs to send full information, which is at least
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TABLE I
NODE POSITIONING, CORRELATION, AND CODING STRATEGIES FOR SYMMETRICAL AWGN-MACFCS

Fig. 9. Minimum power required to transmit (S ; S ) to the destination per
channel use, with node 2 closer to node 1.

Fig. 10. Minimum power required to transmit (S ; S ) to the destination per
channel use, with node 2 closer to the destination.

bits, “alone” to the destination as the destination
only decodes from node 2. Hence, the minimum required is
high. In other strategies, node 1 helps node 2 to transmit to the
destination and hence a lower is possible. An exception is
FDS-DF when node 2 is closer to the destination. Here, node 2
needs to transmit at high power to ensure that node 1 (which is
situated further away) can fully decode its transmission.

Nodes in the beginning of the route benefit from MH-DA,
but only when the “next hop” is near. From Fig. 9, we see that

can be low when node 2 is closer to node 1. When node 2
is further away (Fig. 10), node 1 suffers. FDS-DF and SC-CF
help node 1 to lower its transmit power as both node 2 and the
destination are listening.

VI. REFLECTIONS

The analyses of the different coding strategies for the AWGN-
MACFCS help us to understand better how sensor nodes can co-
operate in a network given node positions and correlation struc-
tures. We summarize the results from the numerical computa-
tions for the symmetrical AWGN-MACFCS in Table I.

Remark 18: When every source node can fully decode from
other sources using little power (i.e., when the inter-source link
is good or when the data are highly correlated), FDS-DF is
a good choice of coding strategy. The sources can coherently
transmit to the destination with little inter-node communication.

Remark 19: For the symmetrical topology when the inter-
sources links are poor (e.g., when sources surround the destina-
tion), SC-MAC proves to be useful. A complicated scheme like
SC-CF does not improve the achievable region.

Remark 20: For the asymmetrical topology, we note that
SC-CF gives a better performance compared to FDS-DF and
SC-MAC. SC-CF allows the furthest node to transmit at lower
power as other source nodes now act as additional antennas for
the destination.

Remark 21: For the linear asymmetrical topology with sym-
metrical source data, Figs. 9 and 10 show that we can always
find a multiuser coding strategy that outperforms MH-DA.
The problem with MH-DA is that it uses point-to-point coding
and unfairly loads nodes nearer the end of the route. Multiuser
coding strategies mitigate this by allowing richer forms of
cooperation between nodes. This highlights the value of coop-
erative coding in the multiple-source network.

Remark 22: We investigated the three-node MACFCS in this
paper. This simple example enabled us to demonstrate the char-
acteristics of different coding strategies. Consider a sensor net-
work. The correlation between the measured data often depends
on the inter-sensor positions. A shorter inter-sensor distance
usually results in a higher correlation between the data of the
two sensors. Hence, the upper right cell and the lower left cell
in Table I are of greater interest. If the sensors are closer to one
another than they are from the sink, which normally results in
a high correlation among the data, they should fully decode the
data from all sensors and transmit coherently to the sink. This
can be done by using FDS-DF based coding schemes. If the sen-
sors are scattered around the sink, which normally results in a
lower correlation among the data, a simple coding strategy like
SC-MAC might be sufficient.

Remark 23: In a network with more nodes, mixed coding
strategies can be used. Here, we give an example of how the
results in this paper could help us to design a coding scheme for
sensor network with more nodes. If there is a group of sensors
situated further away from the destination and another group
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closer to the destination, we suggest that sensors that are further
from the destination form a group and fully decode the data from
each other. They, as a group, then cooperate with sensors nearer
to the destination via SC-CF.

VII. CONCLUSION

In this paper, we presented four achievable regions for the
MACFCS. In addition, we derived an outer bound on the
capacity of the MACFCS, which turned out to be the cut-set
bound. Using Gaussian channels as examples, we compared
the achievable regions of different strategies to the cut-set
outer bound. We showed that FDS-DF, SC-CF, and SC-MAC
can each give superior performance in certain channel set-
tings. From the comparison, we found that when the sources
are closer to each other than they are to the destination, the
achievable region of FDS-DF approaches the cut-set outer
bound as the inter-source distance decreases. The same strategy
also approaches the cut-set outer bound when the correlation
between the sources gets higher. In symmetrical topologies,
when the inter-source links are weak but the source–destination
links are good, SC-MAC proves to be useful. In asymmetrical
topologies, SC-CF can give better performance compared to
the other strategies. Our study of the three-node MACFCS
sheds light on how one could effectively operate a wireless
sensor network where each sensor is tasked to collect and send
correlated data measurements to a common sink.

APPENDIX A
PROOF OF THEOREM 2

In this appendix, we prove Theorem 2. We calculate the error
probabilities and show that they diminish when certain condi-
tions are satisfied.

Proof of Theorem 2: In each block, node 1 encodes to .
Similarly, node 2 encodes to . Assuming noiseless channel,
node 1 receives correctly and node 2 receives correctly. We
define the following source coding error events:

node 2 wrongly decodes (46a)

node 1 wrongly decodes (46b)

(46c)

Using the results by Slepian and Wolf [3, Theorem 2],
and can be bounded by if is encoded with no less
than bits and is encoded in no less than

bits. Hence

(47)

Now, both sources have . They compress
to . We know that the

destination can correctly decode from if is at least
bits. Now, we create

bins and index each bin by a unique . Assign to the bins
so that each bin contains entries. Index the entries

. Hence, each can be represented by
a unique triplet .

Assume that in the beginning of block , nodes 1 and 2
have correctly received and determined .
They send and , respectively, where

. At the end of block , nodes 1 and 2
received and , respectively. We define the following
error events at nodes 1 and 2:

(48a)

(48b)

(48c)

(48d)

for all and
. By the asymptotic equiparti-

tion property (AEP), for sufficiently large

(49a)

(49b)

The probability that error event occurs for all is
given by

(50a)

(50b)

(50c)

(50d)

(50e)

This can be made arbitrarily small if

(51)

holds and is sufficiently large. Similarly, we can show that
can be made small if

(52)

Now we look at the error probability at the destination. As-
sume that nodes 1 and 2 send and , re-
spectively, in block ; and and , respec-
tively, in block . Assume that the destination has correctly
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decoded . We define the following
error events at the destination:

(53a)

(53b)

(53c)

(53d)

(53e)

(53f)

(53g)

(53h)

(53i)

(53j)

(53k)

(53l)

(53m)

(53n)

(53o)

(53p)

(53q)

(53r)

(53s)

(53t)

(53u)

(53v)

for all , , and .
By AEP and for sufficiently large , and

. Hence,

(54a)

(54b)

(54c)

(54d)

Hence, can be made small if

(55)

holds and is sufficiently large.

(56a)

(56b)

(56c)

Hence can be made small if

(57)

holds and is sufficiently large.
Similarly, be made arbitrarily small if

(58)

(59a)

(59b)

(59c)

Hence, can be made small if

(60)
holds and is sufficiently large.

Similarly, , , and can be made arbi-
trarily small if

(61a)
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(61b)

(61c)

hold, respectively.
If all these constraints are satisfied and if is large enough,

the total probability of error can be bounded by

(62)

for any .
Combining these rate constraints and adding the time-sharing

random variable , we get Theorem 2.

APPENDIX B
ACHIEVABILITY OF FDS-DF ON AWGN-MACFCS

On the AWGN channel, using FDS-DF, nodes 1 and 2 send
the following, respectively:

(63a)

(63b)

where and are independent Gaussian random variables
with unit power , and .

for . Recall that the channel outputs
are

(64a)

(64b)

(64c)

(64d)

(64e)

(64f)

Now, we calculate the mutual information terms in The-
orem 2.

(65a)

(65b)

For

(66a)

(66b)

Also, for

(67)
and

(68)

Finally

(69a)

APPENDIX C
PROOF OF THEOREM 3

In this section, we prove Theorem 3.

Proof of Theorem 3: Node 1 receives in block
. It knows and . It finds such that
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. Using [24,
Lemma 2.1.3], node 1 can find such a with probability that
tends to as if

(70)

By similar argument, node 2 can find with probability
that tends to as such that ,

if

(71)

Supposed that nodes 1 and 2 send and
, respectively, in block . Define the fol-

lowing event where the destination wrongly decodes the
quantized and binned signal or :

(72a)

(72b)

(72c)

(72d)

for all and .
By AEP, for large . We can show that

, and can be bounded by for large if
the following holds:

(73a)

(73b)

(73c)

At the end of block , assume that the destination has al-
ready correctly decoded the quantized and binned signals , ,

, and . Suppose that and are the quantized values
of nodes 1 and 2, respectively. We define the following events
where the destination decodes the estimates wrongly, for all

and :

(74a)

(74b)

(74c)

(74d)

(74e)

(74f)

(74g)

By AEP, for large . The probability of the event
is as follows:

(75a)

(75b)

(75c)

(75d)

This can be made small, for a large , if

(76)

Similarly, and for large if

(77a)

(77b)

Now, supposed that nodes 1 and 2 send and
, respectively, in block . Assume that the destina-

tion has correctly estimated , , , and . It decodes
using , as well as its received symbol . The

error events, where the destination wrongly decodes the source
signal(s), are as follows:

(78a)

(78b)

(78c)

(78d)

By AEP, for large . Now

(79a)

(79b)

(79c)

(79d)

(79e)

can be made small if

(80)
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Similarly, and can be bounded if

(81a)

(81b)

hold, respectively.
Combining these rate constraints for the MACF using the

compress–forward strategy and the constraints for the source
coding, (31a)–(31c), and adding the time-sharing random vari-
able , we get Theorem 3.

APPENDIX D
ACHIEVABILITY OF SC-CF ON AWGN-MACFCS

On the AWGN-MACFCS, using SC-CF, nodes 1 and 2 send
and , respectively. Here

(quantized and binned information of the previous block from
), (new information from source 1), (old quantized

and binned information of the previous block from ), and
(new information from source 2) are independent Gaussian

random variables with power constraints ,
, and , respectively.

We note that and .
The nodes receive

(82a)

(82b)

(82c)

where , , and
are independent noise. The quantized signals are

(83a)

(83b)

where and are independent
quantization noise.

Now

(84a)

(84b)

(84c)

The first term is

(85a)

(85b)

The second term is

(86)

Thus

(87)

Similarly, we can show that

(88)

Now, we evaluate and
as shown in (89)–(90c) at the top of

the following page.
The first term is given in (90) and the second term is

(91)

Hence

(92a)
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(89)

(90a)

(90b)

(90c)

We can show that

(93a)

(93b)

(93c)

where ,
, and .

Also

(94a)

(94b)

(94c)

(94d)

We write

Evaluating and simplifying, we get

(95)

So, constraint (34a) becomes

(96)

where . Similarly,
constraint (34b) becomes

(97)

where . Finally,
constraint (34c) becomes

(98)

We note that the achievability derived in Theorem 3 makes
use of the Markov lemma [24, Lemma 4.1], which requires
strong typicality. Though strong typicality does not extend to
continuous random variables, we can generalize the Markov
lemma for Gaussian inputs and thus show that the rate governed
by (87), (88), and (92a) is achievable [19].
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