MICROARRAY STUDIES OF GENOME-WIDE CHANGES IN BRAIN AND HEART GENE EXPRESSION IN MOUSE MODELS OF IRON OVERLOAD

DANIEL JOHNSTONE
B Biomed Sci (Hons)

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

NOVEMBER 2010

FACULTY OF HEALTH
UNIVERSITY OF NEWCASTLE
STATEMENT OF ORIGINALITY

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Daniel Johnstone

DECLARATIONS

I hereby certify that some work embodied in this thesis has been done in collaboration with other researchers. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.
ACKNOWLEDGEMENTS

Many people have contributed substantially to the success of this PhD and should be acknowledged. Firstly I wish to express many thanks to my principal supervisor, Dr Liz Milward, whose guidance and support has been invaluable not just for my PhD studies but also for my career development. Liz has always gone out of her way to provide me with opportunities to establish myself as a research scientist, for which I am extremely grateful. I would also like to give thanks to my two co-supervisors, Prof. Pablo Moscato and Prof. Rodney Scott, for the advice and support they have provided at various times throughout my studies.

These studies would not have been possible without my wonderful collaborators at the University of Western Australia, Dr Ross Graham, Prof. Debbie Trinder and Prof. John Olynyk, who have been very generous in giving me access to their mouse colonies and allowing me to work in their laboratory on several occasions. In addition, I would also like to acknowledge my collaborators at the University of Newcastle, in particular A./Prof. Dirk van Helden, Dr Karen Kerr, A./Prof. Derek Laver and Peter Dosen, who provided valuable assistance with physiological studies, and Dr Carlos Riveros, who was always willing to give up his time to help me understand the mathematics underlying certain microarray analysis methods.

My commitment to this PhD would not have been sustainable without the support of my wonderful family, who always knew how to put things into perspective when I became caught up in the microcosm that is scientific research, and generally knew when not to ask about how the thesis was going. My deepest gratitude to my partner Kathleen for her unwavering support, understanding and incredible patience throughout many difficult and often isolating times over the last couple of years. And finally thanks to a group of very close friends, who have remained my friends despite having their invitations constantly turned down. I no longer have any excuses…
TABLE OF CONTENTS

1 GENERAL INTRODUCTION

1.1 IRON PHYSIOLOGY

- Iron absorption .. 4
- Iron transport and cellular uptake 7
- Iron storage and utilisation ... 9
- Cellular iron release .. 11
- Iron recycling and excretion .. 13

1.2 REGULATION OF IRON HOMEOSTASIS

- Post-transcriptional regulation 14
- Hepcidin regulation of iron homeostasis 15
- Upstream regulators of hepcidin expression 17
 - Immune response and inflammation 17
 - Iron-sensing pathway I: Haemojuvelin/BMP signalling 18
 - Iron-sensing pathway II: HFE/TfR2 20

1.3 HEREDITARY HAEMOCHROMATOSIS

- HFE haemochromatosis (Type 1 haemochromatosis) 25
- Non-HFE haemochromatosis .. 28

1.4 IMPORTANCE OF IRON IN THE BRAIN

1.5 MECHANISMS OF BRAIN IRON HOMEOSTASIS

- The blood-brain barrier .. 32
- Iron uptake across the BBB .. 33
 - Iron uptake by other routes 37
- Iron transport within the brain 38
- Iron uptake, use and export by neurons 39
- Iron uptake, use and export by glia 40
 - Astrocytes ... 40
 - Oligodendrocytes .. 41
 - Microglia ... 43
- Iron exit from the brain ... 44
- Brain expression of genes and proteins that regulate peripheral iron homeostasis ... 44
1.6 MODELS OF SYSTEMIC IRON OVERLOAD AND DEFICIENCY 46
 1.6.1 Brain iron levels .. 46
 1.6.2 Brain expression of iron-related genes and proteins 48
 1.6.3 Exploratory studies of brain gene expression 51
 1.6.4 Functional changes .. 53
1.7 BRAIN IRON DYSHOMEOSTASIS DUE TO RARE GENETIC MUTATIONS .. 54
1.8 BRAIN IRON ACCUMULATION IN HAEMOCHROMATOSIS AND NEURODEGENERATIVE DISEASES .. 60
1.9 HFE POLYMORPHISMS AS A RISK FACTOR FOR NEUROLOGIC PROBLEMS AND NEURODEGENERATIVE DISEASE 62
1.10 AIMS AND HYPOTHESIS .. 65

2 EVALUATION OF NORMALISATION AND ANALYSIS METHODS FOR MICROARRAY EXPERIMENTS .. 67
2.1 INTRODUCTION .. 69
 2.1.1 Generating bead summary data ... 72
 2.1.2 Normalisation .. 73
 2.1.3 Analysis of differential expression ... 74
2.2 MATERIALS AND METHODS ... 75
 2.2.1 Animals .. 75
 2.2.2 Tissue collection .. 75
 2.2.3 Total RNA isolation ... 76
 2.2.4 DNase treatment .. 77
 2.2.5 RNA purification and concentration .. 77
 2.2.6 Assessment of RNA concentration and integrity 78
 2.2.6.1 Spectrophotometry ... 78
 2.2.6.2 Agarose gel electrophoresis .. 78
 2.2.7 Gene expression microarray ... 79
 2.2.7.1 RNA quantitation .. 79
 2.2.7.2 RNA labelling and amplification .. 79
 2.2.7.2.1 Reverse transcription to synthesise first strand cDNA 80
 2.2.7.2.2 Second strand cDNA synthesis .. 80
 2.2.7.2.3 cDNA purification ... 80
2.2.7.2.4 In vitro transcription to synthesise cRNA .. 81
2.2.7.2.5 cRNA purification .. 81
2.2.7.3 Hybridisation and washing... 81
2.2.8 Microarray data analysis ... 83
2.2.8.1 Non-specific signals and false positives ... 85
2.2.8.2 Assessment of probe set concordance ... 86
2.2.9 Pathway enrichment analysis ... 87
2.3 RESULTS ... 87
2.3.1 Comparison of normalisation methods .. 87
2.3.1.1 Probe set generation .. 87
2.3.1.2 Dataset characteristics ... 87
2.3.1.3 Concordance measures .. 88
2.3.1.4 Effects of the different normalisation strategies on probe set concordance .. 89
2.3.1.5 Saturation effects do not contribute to differences between Cubic Spline and Average .. 90
2.3.2 Comparison of analytical approaches .. 91
2.3.2.1 Definition of concordance for comparisons of analytical approaches 91
2.3.2.2 Effects of different analytical approaches on probe set concordance for the brain dataset .. 91
2.3.2.3 Effects of different analytical approaches on probe set concordance for the heart dataset .. 92
2.3.2.4 Outcomes using the Max Cover (α, β)-k Feature Set approach 93
2.3.3 Comparison of pathway analysis outcomes .. 94
2.3.3.1 Definition of concordance for comparisons of enriched pathways 94
2.3.3.2 Effects of different normalisation strategies and analytical approaches on pathway analysis .. 94
2.3.3.3 Probe set concordance and discordance do not always correlate with ability to identify important pathways ... 95
2.4 DISCUSSION ... 96

3 BRAIN GENE EXPRESSION CHANGES IN DIETARY IRON OVERLOAD

3.1 INTRODUCTION ... 104
3.2 MATERIALS AND METHODS ... 106
3.2.1 Animals .. 106
3.2.2 Tissue collection ... 106
3.2.3 Non-haem iron assay ... 106
3.2.4 Total RNA isolation, purification and concentration 107
3.2.5 Assessment of RNA concentration and integrity 107
3.2.6 Gene expression microarray .. 107
3.2.7 Microarray data analysis ... 107
3.2.8 Single enrichment analysis of molecular pathways 108
 3.2.8.1 PANTHER classification system ... 108
 3.2.8.2 DAVID .. 108
3.2.9 Gene set enrichment analysis of molecular pathways 109
3.2.10 Real-time reverse transcription polymerase chain reaction 110
 3.2.10.1 Primer design .. 110
 3.2.10.2 Reverse transcription .. 110
 3.2.10.3 Real-time PCR .. 111
3.3 RESULTS .. 112
3.3.1 Characterisation of mouse models .. 112
3.3.2 Assessment of differential gene expression 114
3.3.3 Pathway enrichment analysis .. 114
3.3.4 Investigation of individual gene expression changes 115
3.3.5 Expression of iron-related genes ... 116
3.3.6 Expression of genes relating to neural structure and function 118
3.3.7 Expression of genes relating to nitric oxide signalling 120
3.3.8 Expression of genes relating to inflammation and apoptosis 121
3.3.9 Expression of genes linked to neurologic disease 122
3.3.10 Expression of genes encoding proteins linked to neurologic or other
 diseases involving lysosomal storage problems or encoding other
 lysosomal proteins .. 124
3.3.11 Comparison to outcomes using the Max Cover (\(\alpha,\beta\))-k Feature Set
 approach .. 129
3.3.12 Comparison with heart gene expression changes 130
3.4 DISCUSSION ... 132
4 BRAIN GENE EXPRESSION CHANGES IN THE HFE KNOCKOUT MOUSE MODEL OF HAEMOCHROMATOSIS 143
4.1 INTRODUCTION .. 145
4.2 MATERIALS AND METHODS ... 148
 4.2.1 Animals ... 148
 4.2.2 Tissue collection .. 148
 4.2.3 Measurement of non-haem iron levels .. 148
 4.2.4 Total RNA isolation, purification and concentration ... 148
 4.2.5 Assessment of RNA quantity and integrity ... 149
 4.2.6 Gene expression microarray .. 149
 4.2.7 Microarray data analysis ... 149
 4.2.8 Real-time RT-PCR ... 149
4.3 RESULTS .. 150
 4.3.1 Characterisation of mouse models .. 150
 4.3.2 Assessment of differential gene expression .. 152
 4.3.3 Comparison with dietary iron-supplemented model ... 154
 4.3.4 Altered expression of iron-related genes ... 157
 4.3.5 Expression of genes relating to haem synthesis ... 159
 4.3.6 Expression of genes relating to haem breakdown .. 161
 4.3.7 Identification of expression changes in genes important for normal brain function 162
4.4 DISCUSSION ... 167

5 PATHWAY ENRICHMENT ANALYSES OF BRAIN GENE EXPRESSION CHANGES IN HFE KNOCKOUT MICE 184
5.1 INTRODUCTION .. 186
5.2 MATERIALS AND METHODS ... 187
 5.2.1 Mouse models .. 187
 5.2.2 RNA isolation and microarray analysis ... 187
 5.2.3 Microarray data analysis ... 187
 5.2.4 Pathway enrichment analysis ... 188
 5.2.5 Real-time RT-PCR ... 188
5.3 RESULTS .. 189
5.3.1 Single enrichment analysis reveals effects on molecular pathways relating to neurodegenerative disease .. 189
5.3.2 Gene set enrichment analysis of pathways reveals enrichment of the ‘Alzheimer’s Disease’ pathway and related pathways 193
5.3.3 Altered expression of genes in the ‘Alzheimer's Disease’ pathway 195
5.3.4 Expression of genes associated with other neurodegenerative diseases 201
5.3.5 Other pathways identified as enriched relate to Alzheimer’s disease 201

6 HEART GENE EXPRESSION CHANGES IN MOUSE MODELS OF IRON OVERLOAD .. 215

6.1 INTRODUCTION .. 217
6.2 MATERIALS AND METHODS ... 221
6.2.1 Mouse models .. 221
6.2.2 Heart tissue collection .. 221
6.2.3 Measurement of heart non-haem iron levels 221
6.2.4 Isolation, purification and concentration of total RNA from heart 222
6.2.5 Assessment of RNA concentration and integrity 222
6.2.6 Gene expression microarray ... 222
6.2.7 Microarray data analysis .. 222
6.2.8 Real-time RT-PCR ... 222
6.2.9 Sinoatrial node pacemaking .. 224

6.3 RESULTS ... 224
6.3.1 Characterisation of mouse models .. 224
6.3.2 Assessment of differential expression in heart.................................. 225
6.3.3 Comparison with brain gene expression changes 226
6.3.4 Expression of iron-related genes in the heart 227
6.3.5 Further investigation of heart expression changes for important iron-related genes ... 229
6.3.6 Comparison of heart gene expression microarray data from \textit{Hfe} knockout mice and dietary iron-supplemented mice 230
6.3.7 Gene expression changes relating to pacemaking 232
6.3.8 Physiological studies of pacemaking activity 235

6.4 DISCUSSION ... 236
7 GENERAL DISCUSSION .. 244

REFERENCES ... 255

APPENDICES .. 309
LIST OF FIGURES

Figure 1.1 Systemic iron homeostasis ... 5
Figure 1.2 Iron absorption by enterocytes .. 7
Figure 1.3 Cellular uptake of transferrin-bound iron ... 9
Figure 1.4 Structure of ferritin ... 10
Figure 1.5 Regulation of cellular iron release by hepcidin 16
Figure 1.6 Regulation of hepcidin expression through the haemojuvelin/BMP signalling
pathway ... 20
Figure 1.7 Regulation of hepcidin expression by HFE and TfR2 24
Figure 1.8 Different models of transferrin-bound iron uptake across the BBB 36
Figure 1.9 Iron uptake, utilisation and export in neurons 40
Figure 1.10 Iron uptake, utilisation and export in astrocytes and oligodendrocytes .. 43
Figure 2.1 Workflow for processing mouse brain RNA samples in Illumina gene
expression microarray experiments ... 71
Figure 2.2 Selection of thresholds for the Max Cover (α,β)-k Feature Set approach 85
Figure 2.3 Flowchart illustrating the different normalisation strategies and analytical
approaches used .. 86
Figure 2.4 Comparison of concordance between different analytical approaches for each
normalisation strategy .. 93
Figure 3.1 Validation of microarray results by real-time RT-PCR 118
Figure 3.2 Number of probes detecting differential expression in brain and heart from
dietary iron-supplemented mice ... 132
Figure 4.1 Number of probes detecting differential expression using different
normalisation and analytical approaches .. 153
Figure 4.2 Dendrogram of global array results for the individual replicates from the
wildtype control and Hfe knockout groups .. 154
Figure 4.3 Comparison of differential expression in Hfe knockout mice and dietary iron-
supplemented mice .. 155
Figure 4.4 The haem biosynthesis pathway .. 160
Figure 4.5 Real-time RT-PCR validation of expression changes for select genes 165
Figure 5.1 Altered expression of genes encoding components of the KEGG ‘Alzheimer's Disease’ pathway ... 198
Figure 5.2 Real-time RT-PCR validation of expression changes for genes associated with Alzheimer’s disease ... 199
Figure 5.3 Interrelationships between different pathways identified as enriched by GSEA ... 203
Figure 5.4 Real-time RT-PCR validation of expression changes for Hes genes 206
Figure 6.1 Number of probes detecting differential expression in heart and brain from Hfe knockout mice ... 227
Figure 6.2 Further investigation of the expression of hepcidin and related genes in additional replicates ... 230
Figure 6.3 Number of probes detecting differential expression in hearts from mouse models of iron overload ... 231
Figure 6.4 Expression changes for genes encoding major urinary proteins 1 and 3 232
Figure 6.5 Expression changes for the gene encoding ryanodine receptor 3 234
Figure 6.6 Lower sinoatrial node contraction rate in Hfe knockout mice 235
Figure 6.7 Changes in contraction rate in response to drug treatment 236
LIST OF TABLES

Table 2.1 Concordance in probe sets generated by different normalisation strategies........ 89
Table 2.2 Comparison of outcomes from pathway enrichment analysis............................ 95
Table 3.1 Primer sequences for real-time RT-PCR.. 111
Table 3.2 Characterisation of mouse models... 113
Table 3.3 Expression changes for genes with functions related to iron......................... 117
Table 3.4 Expression changes for genes involved in neurotransmission and vesicle trafficking.. 119
Table 3.5 Expression changes for genes involved in nitric oxide metabolism................. 121
Table 3.6 Expression changes for genes involved in diseases with neurologic symptoms 124
Table 3.7 Expression changes for genes encoding proteins found in lysosomes.............. 127
Table 3.8 Summary of gene expression changes for systems of interest...................... 129
Table 4.1 Primer sequences for real-time RT-PCR.. 150
Table 4.2 Characterisation of mouse models... 151
Table 4.3 Percentage of genes identified as differentially-expressed by different investigative approaches.. 152
Table 4.4 Expression of genes causatively linked to neuronal ceroid lipofuscinosis...... 157
Table 4.5 Expression changes for iron-related genes... 158
Table 4.6 Expression of genes relating to haem synthesis.. 161
Table 4.7 Expression of genes relating to haem breakdown... 162
Table 4.8 Expression changes for genes encoding important brain proteins............... 166
Table 5.1 Primer sequences for real-time RT-PCR.. 189
Table 5.2 Numbers of pathways identified by single enrichment analysis...................... 190
Table 5.3 Enrichment of neurodegenerative disease pathways in different gene lists..... 192
Table 5.4 Significantly enriched pathways as determined by GSEA.............................. 194
Table 5.5 Expression changes for genes in the 'Alzheimer's Disease' pathway............. 197
Table 5.6 Genes with altered expression associated with AD susceptibility.................. 200
Table 5.7 Other genes of interest showing significant expression changes.................. 205
Table 6.1 Primer sequences for real-time RT-PCR. ... 223
Table 6.2 Characterisation of mouse models. ... 225
Table 6.3 Expression changes for iron-related genes.. 228
Table 6.4 Expression changes possibly influencing cardiac pacemaking....................... 233
PUBLICATIONS ARISING FROM THIS THESIS

PEER REVIEWED PUBLICATIONS

CONFERENCE ABSTRACTS

AWARDS ARISING FROM THIS THESIS

RESEARCH AWARDS

1. 2009 Australian Society for Medical Research (ASMR) National Research Award – Domestic

TRAVEL AWARDS

1. Alzheimer’s Association Travel Fellowship to attend International Conference on Alzheimer’s Disease, July 10-15, 2010, Honolulu, USA

2. Student Bursary to attend the Australian Society for Medical Research 48th National Scientific Conference, November 15-17, 2009, Hobart, Australia

3. Student Bursary to attend the International BioIron Society Meeting, June 7-11, 2009, Porto, Portugal

4. Student Bursary to attend the 19th International Conference on Genome Informatics December 1-3, 2008, Gold Coast, Australia

5. Alzheimer’s Association Travel Fellowship to attend International Conference on Alzheimer’s Disease, July 26-31, 2008, Chicago, USA
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS</td>
<td>Amyotrophic lateral sclerosis</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>APP</td>
<td>Amyloid precursor protein</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>Avg</td>
<td>Average normalisation</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood-brain barrier</td>
</tr>
<tr>
<td>BMP</td>
<td>Bone morphogenetic protein</td>
</tr>
<tr>
<td>BS</td>
<td>BeadStudio</td>
</tr>
<tr>
<td>CADASIL</td>
<td>Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy</td>
</tr>
<tr>
<td>CaMKII</td>
<td>Calcium/calmodulin-dependent protein kinase II</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>COMT</td>
<td>Catechol-O-methyltransferase</td>
</tr>
<tr>
<td>cRNA</td>
<td>Complementary RNA</td>
</tr>
<tr>
<td>CS</td>
<td>Cubic Spline normalisation</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>C_t</td>
<td>Threshold cycle</td>
</tr>
<tr>
<td>DAVID</td>
<td>Database for Annotation, Visualisation and Integrated Discovery</td>
</tr>
<tr>
<td>Dcytb</td>
<td>Duodenal cytochrome b</td>
</tr>
<tr>
<td>DMT1</td>
<td>Divalent metal transporter 1</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>EGR</td>
<td>Early growth response</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated kinase</td>
</tr>
<tr>
<td>FDR</td>
<td>False discovery rate</td>
</tr>
<tr>
<td>Fe$^{2+}$</td>
<td>Ferrous iron</td>
</tr>
<tr>
<td>Fe$^{3+}$</td>
<td>Ferric iron</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma aminobutyric acid</td>
</tr>
<tr>
<td>GPI</td>
<td>Glycosylphosphatidylinositol</td>
</tr>
<tr>
<td>GS</td>
<td>GeneSpring</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>GSEA</td>
<td>Gene set enrichment analysis</td>
</tr>
<tr>
<td>h</td>
<td>Hours</td>
</tr>
<tr>
<td>HCP1</td>
<td>Haem carrier protein 1</td>
</tr>
<tr>
<td>Heph</td>
<td>Hephaestin</td>
</tr>
<tr>
<td>Hfe KO</td>
<td>Hfe knockout mice</td>
</tr>
<tr>
<td>H-ferritin</td>
<td>Ferritin heavy chain</td>
</tr>
<tr>
<td>HH</td>
<td>Hereditary haemochromatosis</td>
</tr>
<tr>
<td>HO</td>
<td>Haem oxygenase</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Insulin-like growth factor 1</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IRE</td>
<td>Iron-responsive element</td>
</tr>
<tr>
<td>IRP</td>
<td>Iron regulatory protein</td>
</tr>
<tr>
<td>KEGG</td>
<td>Kyoto Encyclopaedia of Genes and Genomes</td>
</tr>
<tr>
<td>L-ferritin</td>
<td>Ferritin light chain</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MAQC</td>
<td>Microarray Quality Control</td>
</tr>
<tr>
<td>Max Cover (α,β)-FS</td>
<td>Max Cover (α,β)-k Feature Set approach</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>NBIA</td>
<td>Neurodegeneration with brain iron accumulation</td>
</tr>
<tr>
<td>NES</td>
<td>Normalised enrichment score</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NS</td>
<td>Not significant</td>
</tr>
<tr>
<td>NTBI</td>
<td>Non-transferrin-bound iron</td>
</tr>
<tr>
<td>PANK2</td>
<td>Pathothenate kinase 2</td>
</tr>
<tr>
<td>PANTHER</td>
<td>Protein Analysis Through Evolutionary Relationships</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PSEN1</td>
<td>Presenilin 1</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNS</td>
<td>Reactive nitrogen species</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcription polymerase chain reaction</td>
</tr>
<tr>
<td>RyR</td>
<td>Ryanodine receptor</td>
</tr>
<tr>
<td>s</td>
<td>Seconds</td>
</tr>
<tr>
<td>SEA</td>
<td>Single enrichment analysis</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>sGC</td>
<td>Soluble guanylate cyclase</td>
</tr>
<tr>
<td>SMAD</td>
<td>Mothers against decapentaplegic homologue</td>
</tr>
<tr>
<td>STAT</td>
<td>Signal transducer and activator of transcription</td>
</tr>
<tr>
<td>TBI</td>
<td>Transferrin-bound iron</td>
</tr>
<tr>
<td>TE</td>
<td>Tris/EDTA</td>
</tr>
<tr>
<td>TfR1</td>
<td>Transferrin receptor 1</td>
</tr>
<tr>
<td>TfR2</td>
<td>Transferrin receptor 2</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated region</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>WT</td>
<td>Wildtype control mice</td>
</tr>
</tbody>
</table>
ABSTRACT

Iron is essential for life, having critical roles in oxygen transport, cellular energy production and as an enzyme cofactor, however too much iron can be detrimental to health. Approximately 10% of people in developed countries have body iron levels above normal reference ranges. This generally arises as a result of excessive dietary iron intake or genetic mutations that perturb systemic iron homeostasis, most commonly loss-of-function polymorphisms in the *HFE* gene. Abnormally high body iron levels can lead to the disorder haemochromatosis, which involves damage to the liver and possibly also other organs such as the heart and pancreas, however effects on the brain are not well understood. Although iron accumulation in particular brain regions due to certain rare genetic mutations is implicated in severe neurodegeneration and neurologic dysfunction, the blood-brain barrier is thought to protect the brain against the effects of high systemic iron levels in haemochromatosis.

To investigate the effects of iron overload disorders on the brain, microarray technology was used to assess genome-wide brain gene expression in mouse models of dietary or genetic iron overload. Three groups of mice were studied: wildtype control mice, wildtype mice fed a short-term iron-supplemented diet and mice with disruption of the *Hfe* gene (*Hfe* knockout). As there are many methods available for analysing microarray data, a range of different approaches were first evaluated for use with these datasets. To improve the robustness of the findings, several of the most suitable approaches were utilised for subsequent analyses. Various bioinformatics tools were then used to determine potential functional effects of the observed changes in gene expression. Select expression changes of interest were validated by real-time reverse transcription polymerase chain reaction (RT-PCR).

Neither model of iron overload showed increased brain non-haem iron levels nor expression changes for a large number of iron-related genes, however both models did show potentially important alterations in brain gene expression. Mice fed a short-term high-iron diet showed only restricted changes relative to control mice, however there was altered expression of genes relating to biological functions involving iron, such as
nitric oxide signalling and accumulation of the lysosomal waste product lipofuscin. Lipofuscin production is accelerated by high iron levels and excessive lipofuscin is associated with neurodegeneration in the disease class neuronal ceroid lipofuscinoses. Iron-supplemented mice also showed expression changes for a number of genes causatively linked to other rare neurologic disorders.

Similarly, the \textit{Hfe} knockout mouse model of genetic haemochromatosis showed brain gene expression changes relating to lysosomal lipofuscin accumulation and certain neurologic disorders. However, in contrast to the dietary iron-supplemented mice, \textit{Hfe} knockout mice showed extensive changes in brain gene expression relative to wildtype controls. These included expression changes for genes involved in key brain functions, such as neurotransmission, synaptic plasticity and transcriptional regulation, as well as processes that are influenced by iron, such as haem synthesis and degradation. In addition, analysis of molecular pathways revealed a disproportionately high number of expression changes for genes relating to Alzheimer’s disease, suggesting disruption of the \textit{Hfe} gene might influence disease processes. There was also evidence for effects on related pathways such as Notch signalling, which could potentially impair memory and other cognitive functions independent of Alzheimer’s-related effects.

Assessment of heart gene expression changes in these mouse models revealed few similarities with the brain, suggesting that many of the expression changes observed in the brain may be tissue-specific. However there were some notable changes in the heart that could have functional consequences, including expression changes for genes involved in cardiac pacemaking, intracellular calcium release and neurotransmitter degradation. Physiological investigations of sinoatrial node preparations from \textit{Hfe} knockout mice were indicative of a lower heart rate at baseline compared to wildtype control mice but no difference in contractile responses to either stimulatory (noradrenaline) or inhibitory (carbachol) agents.

Together these findings provide evidence for important brain and heart gene expression changes in disorders of iron overload. The nature and extent of these changes appears dependent on the cause (dietary or genetic) and duration (acute or chronic) of iron loading. These changes could have consequences for both normal functioning and disease pathogenesis and might help explain some of the problems experienced by
patients with iron overload disorders. The findings suggest a range of new research
directions and are likely to alter the way that haemochromatosis and other iron overload
disorders are perceived by clinicians, possibly leading to improved monitoring and
treatment of the large number of patients with these conditions.