A hybrid control strategy for vibration damping and precise tip-positioning of a single-link flexible manipulator

Emiliano Pereira*, Sumeet S Aphalet, Vicente Feliu* and S O Reza Moheimani†

*ETS Ingenieros industriales, University of Castilla-La Mancha, Ciudad Real, Spain
Email: emiliano.pereira@uclm.es and vicente.feliu@uclm.es
†Centre for Applied Dynamics Research, University of Aberdeen, Aberdeen, Scotland, UK
Email: s.aphale@abdn.ac.uk
‡School of Electrical Engineering and Computer Science, University of Newcastle, Newcastle, Australia
Email: reza.moheimani@newcastle.edu.au

Abstract—In this work, we propose a new control approach for a single-link flexible manipulator, based on the Integral Resonant Control (IRC) scheme. A hybrid control scheme consisting of two nested loops by treating the joint angle and the torque measured at the base of the arm (coupling torque) as the system outputs are formulated. It is shown that the IRC scheme, a high performance controller design methodology for flexible structures with collocated actuator-sensor pairs, can be implemented in a flexible manipulator to achieve precise end-point positioning with effective vibration suppression. Experimental results are presented in order to validate the proposed control scheme. Finally, a brief discussion is included to highlight the contributions of this work in broad area of controlling single-link flexible manipulators.

I. INTRODUCTION

The past two decades have seen significant interest being generated in the control of flexible robotic manipulators. Novel robotic applications demand lighter robots that can be driven using small amounts of energy, for example: robotic booms in the aerospace industry, where lightweight robot manipulators with high performance requirements (high speed operation, better accuracy) are demanded [1]. Unfortunately, the flexibility of these robotic arms leads to oscillatory behavior at the tip of the link, making precise pointing or tip positioning a daunting task that requires complex closed-loop control. In order to address control objectives, such as tip position accuracy and suppression of residual vibration, many control techniques have been applied to flexible robots (see, for instance, the surveys of Benosman and Vey [2] and Dwivedy Eberhard [3] or the book written by Fraser and Daniel [4]).

There are two main problems that complicate the control design for flexible manipulators viz: (i) the high order of the system and (ii) the nonminimum phase dynamics that exist between the tip position and the input (torque applied at the joint). These problems have motivated researchers to employ in a wide range of control design techniques such as linear quadratic gaussian (LQG) [5], linear quadratic regulator (LQR) [6], pole placement [7], and inverse dynamics based control [8]. The drawback of these model-based approaches is that the complexity of the control algorithm increases significantly with the system order and the stability of the closed-loop system is sensitive to (a) changes in the robot payload, (b) model parameter uncertainties and (c) high-order unmodeled dynamics as the control bandwidth is raised (spillover effects [9]). In order to address these problems, solutions based on adaptive control [10], H_{∞} control [11], μ-synthesis [12], sliding-mode control [13], neural networks [14] and fuzzy logic algorithms [15] have been investigated. However, the complex design methodologies necessitated by these techniques make their application to flexible robotics less attractive.

The use of alternative outputs has emerged as a potential solution to the problem of nonminimum phase dynamics. In [16], an alternative output, the so-called reflected tip position, was proposed. It was demonstrated therein that the transfer function from the motor torque to the reflected tip velocity is passive. Therefore, strictly passive controllers make the system stable in L_2 sense. However, the passive relationship depends on the value of the hub inertia, which must be sufficiently small in relation with beam inertia. Liu and Yuan [17] proposed an additional control loop to make the passive relationship independent of the system parameters. However, the main limitation of these passivity based control schemes is that they make the system very sensitive to joint frictions. Other solutions based on two control loops can be found in [18], [19] and [20]. The inner loop, which takes a collocated input-output, is used to damp the vibrations whereas the outer loop is used for position control. However, in [18] and [19] the stability of the position control depends on the link and motor parameters, which complicates the design. Although the vibration damping proposed in [20] was quite efficient when a motor without reduction gear was used, the residual vibration suppression is not effective when reduction gears are employed.

In [21], a new methodology for passivity based control with two nested loops was proposed. In this design, the inner loop is the position controller, which only depends on the motor
dynamics, and the outer loop always guarantees an effective vibration suppression (with or without the reduction gear) and the stability is independent of the link parameters. This technique has some disadvantages like high sensitivity at low frequencies that complicates its implementation on a practical experimental platform (offset in the sensors, gravity effect). It also suffers from instability issues due to antialiasing filters.

This work builds on the control methodology of [21] and proposes a new approach based on the Integral Resonant Control (IRC) scheme [22]. The IRC scheme results in an easy-to-tune, low-order damping controller, that imparts substantial damping to multiple resonant modes, without instability issues due to unmodeled system dynamics [22]. In this work we retain the advantages of [21] and alleviate the instability problems due to high sensitivity at low frequencies and antialiasing filters by using the IRC scheme as our choice of damping controller.

A. Organization

The paper is organized as follows. Section II provides a description of the experimental setup. The system model and the associated parameters are briefly explained in Section III. Section IV gives the details of the general control scheme. A practical implementation of the proposed control scheme on a single-link flexible robot and the obtained experimental results are presented in Section V. Section VI concludes the paper.

II. EXPERIMENTAL SETUP

Figure 1 shows a photograph of the experimental single-link flexible manipulator used as the experimental platform in this work. The setup consists of (a) a DC motor (Maxon Motor EC-60) with a Harmonic Drive reduction gear 1:50 (HFUC-32-50-20H), (b) a flexible single-link comprised of a slender aluminum beam with a rectangular cross section that is attached to the motor hub in such a way that it rotates only in the horizontal plane, so that the effect of gravity can be ignored and (c) a mass with negligible inertia at the end of the arm. In addition, two sensors are used: 1) an encoder mounted at the joint of the manipulator to measure the motor angle, and 2) a strain-gauge bridge placed at the base of the beam to measure the coupling torque. The physical parameters of the system are given in Table I. The strain signal is amplified by the dynamic strain amplifier (Kyowa DPM600) and filtered by a second-order Butterworth filter with cut-off frequency set to 300Hz. A National Instruments 6024E and a Measurement Computing CIO-DIO24 are used in a PC in conjunction with the Real Time Windows Target of MATLAB. The sampling time is set to 0.002s.

III. SYSTEM MODEL

Consider a flexible arm (see Fig. 2) composed of: a) a motor and a reduction gear of n at the base with total inertia J_0, dynamic friction coefficient ν and Coulomb friction torque Γ_f; b) a flexible beam with uniform linear mass density ρ, uniform bending stiffness EI and length L; and c) a payload of mass M_P and rotational inertia J_P. Furthermore, the applied torque is Γ_m, $w(x,t)$ is the elastic deflection measured from the undeformed beam, θ_m is the joint angle and θ_t is the tip angle. In order to deduce the equations of the dynamic model, the pseudo-clamped configuration (see [23]) is utilized. Thus, the non-inertial frame (x,y) rotates with the motor and the overall structure rotates in an inertial frame (X,Y).

The equation of the momentum balance at the output side
of the gear is given by:
\[\Gamma_m(t) = nKV(t) = J_0\ddot{\theta}_m(t) + \nu \dot{\theta}_m(t) + \Gamma_{coup}(t) + \Gamma_f(t), \tag{1} \]
where \(V \) is a voltage that controls the motor; \(K \) is a constant that relates the motor torque (\(\Gamma_m \)) and the control voltage (\(V \)); and \(\Gamma_{coup} \) is the coupling torque in the joint due to the link and the payload, and can be obtained using the formula:
\[\Gamma_{coup}(t) = EIw''(0, t), \tag{2} \]
where \(w''(0, t) \) is proportional to the strain measured at the base of the link.

The dynamic behavior of the link inclusive of the payload can be modeled as an Euler-Bernoulli beam with the corresponding boundary conditions to account for the payload. Thus, a boundary value problem for the undamped free vibration can be written as:
\[EIw'''(x, t) + \rho \left(x\ddot{w}(x,t) + \dot{w}(x,t) \right) = 0, \tag{3} \]
subject to the four boundary conditions:
\[w(0, t) = 0, w'(0, t) = 0, \]
\[EIw''(L, t) = J_P \left(\ddot{\theta}_m(t) + \dot{w}(L, t) \right), \]
\[EIw''(L, t) = M_P \left(L\ddot{\theta}_m(t) + \dot{w}(L, t) \right). \tag{4} \]

Proceeding in the same way as described in [23], the characteristic equation is obtained. The infinite number of solutions of this equation provides the natural frequencies of the vibration modes which correspond with the poles of transfer function whose input is the joint angle \(\theta_m \). To carry out a modal analysis, the input to the system has to be zero, which means \(\dot{\theta}_m(t) = 0 \). Later, the method of separation of variables \(w(x, t) = \phi(x)q(t) \) (one dependable on the temporal coordinate \(q(t) \) and one dependable on the spatial coordinate \(\phi(x) \)) is applied to the boundary value problem defined by eqs. (3) and (4). This leads to two differential equations; a time-dependent one given by:
\[\ddot{q}(t) + \omega^2q(t) = 0, \tag{5} \]
and a spatially-dependent one given by:
\[\phi'''(x) - \beta^4\phi(x) = 0, \tag{6} \]
with \(\beta^4 = \rho\omega^4/EI \) and \(\omega \) being the frequency. Finally, the form of the solution of the spatial-dependent part
\[\phi(x) = A \sin(\beta x) + B \cos(\beta x) + C \sinh(\beta x) + D \cosh(\beta x), \tag{7} \]
in which \(A, B, C, D \) are constants, is substituted into the boundary conditions (4) and the following equations of the system are obtained:
\[
\begin{bmatrix}
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & q_{41} & q_{42} & q_{43} & q_{44} & 0 & 0 \\
q_{31} & q_{32} & q_{33} & q_{34} & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
A \\
B \\
C \\
D
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}, \tag{8}
\]
where \(q_{31} = (\beta^3J_P/\rho)c_L + s_L, q_{32} = (\beta^3J_P/\rho)s_L + c_L, q_{33} = (\beta^3J_P/\rho)c_L + s_L, q_{34} = (\beta^3J_P/\rho)s_L + c_L \) and \(q_{41} = (\beta^3M_P/\rho)c_L + s_L, q_{42} = (\beta^3M_P/\rho)s_L + c_L \). Thus, a boundary value problem for the undamped free vibration can be written as:
\[w''(0, t) = 0, \]
\[w'(0, t) = 0, \]
\[EIw''(L, t) = J_P \left(\ddot{\theta}_m(t) + \dot{w}(L, t) \right), \]
\[EIw''(L, t) = M_P \left(L\ddot{\theta}_m(t) + \dot{w}(L, t) \right). \]

Proving in the same way as described in [23], the characteristic equation is obtained. The infinite number of solutions of this equation provides the natural frequencies of the vibration modes which correspond with the poles of transfer function whose input is the joint angle \(\theta_m \). To carry out a modal analysis, the input to the system has to be zero, which means \(\dot{\theta}_m(t) = 0 \). Later, the method of separation of variables \(w(x, t) = \phi(x)q(t) \) (one dependable on the temporal coordinate \(q(t) \) and one dependable on the spatial coordinate \(\phi(x) \)) is applied to the boundary value problem defined by eqs. (3) and (4). This leads to two differential equations; a time-dependent one given by:
\[\ddot{q}(t) + \omega^2q(t) = 0, \tag{5} \]
and a spatially-dependent one given by:
\[\phi'''(x) - \beta^4\phi(x) = 0, \tag{6} \]
with \(\beta^4 = \rho\omega^4/EI \) and \(\omega \) being the frequency. Finally, the form of the solution of the spatial-dependent part
\[\phi(x) = A \sin(\beta x) + B \cos(\beta x) + C \sinh(\beta x) + D \cosh(\beta x), \tag{7} \]
in which \(A, B, C, D \) are constants, is substituted into the boundary conditions (4) and the following equations of the system are obtained:
\[
\begin{bmatrix}
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & q_{41} & q_{42} & q_{43} & q_{44} & 0 & 0 \\
q_{31} & q_{32} & q_{33} & q_{34} & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
A \\
B \\
C \\
D
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}, \tag{8}
\]

The proposed control scheme comprises of two nested control loops. The first loop is a proportional derivative (PD) control of the joint angle \(\theta_m \) plus a decoupling term to make the dynamics between \(\theta_m \) and its reference \(\theta_m^* \) independent of the link dynamics. The control voltage can be written as follows (see Fig. 3)
\[V(t) = \Gamma_{coup}(t)/nK + K_p(\theta_m^*(t) - \theta_m(t)) + K_v\dot{\theta}_m(t), \tag{9} \]
where \(\Gamma_{coup}(t)/nK \) (decoupling term) makes the design of the PD constants \((K_p, K_v) \) independent of the link dynamics. The substitution of (9) into (1) without considering \(\Gamma_f \) yields
\[J_0\dot{\theta}_m(t) + (nKK_v + \nu)\dot{\theta}_m(t) + nKK_p\theta_m(t) = nKK_p\dot{\theta}_m^*(t), \tag{10} \]
which only depends on the motor dynamics. By tuning \(K_p \) and \(K_v \), we can design the dynamics of this closed loop system \(G_m(s) \) (see Fig. 3). In addition, \(G_m(s) \) is robust to Coulomb friction and to changes in the dynamic friction [24]. The system controlled by the first control loop is shown in Fig. 4.

The transfer functions \(G_1(s) \) and \(G_2(s) \) are lightly damped systems whose natural frequencies are the solutions of eq. (8). In addition, it was proved in [21] that \(1/s^2G_2(s) \) is strictly passive, i.e. its phase is between 90° and 90° (see Lemma 6.1 of [25]). Therefore, the phase of \((1/s^2)^2G_2(s) \) is between 180° and 0° (like a collocated system) and can be modeled
where ω_i is the natural frequency (solution of eq. (8)) and ζ_i is the damping coefficient for the i vibration mode, $\gamma_i > 0$ for all i, N is the number of considered modes and D is a feed-through term that models the effect of high-frequency modes on low frequency zeros due to the truncation [26]. Thus, the system $(1/s^2)G_2(s)$ can be controlled by an IRC with the scheme illustrated in Fig. 5(a), [22]. An alternative representation of this control scheme is given in Fig. 5(b). The pole-zero map of the system is shown in Fig. 6(a). The feed-through term $(D_f < 0)$, which is a negative real number, places a pair of low-frequency complex conjugate zeros between the origin and the first pair of complex conjugate poles of the system (G_2) (see Fig. 6(b)). Thus, the system can be controlled with an integrator in positive feedback ($K < 0$), since the phase of $(K/s^2)(G_2(s) + D_f)$ lies between 180° and 0° (see Fig. 6(c)). In this work, the control scheme of Fig. 5(b) is chosen since it is more convenient for practical implementation (see reference [27]).

During practical implementation we must take into account that: a) the double integrator $(1/s^2)$ is not possible in practice and b) the subsystem G_m has a relative order of two and has the potential to deem the controlled system unstable. The double integration is implemented by combining two lossy integrators with their combined transfer function given by $(1/(s^2 + 1)^2)$. The stability problem due to the relative order of G_m can be solved by adding a zero to the outer controller. Thus, taking into account all the practical considerations, the equation of the outer controller is given by:

$$C(s) = \frac{K(\lambda s + 1)}{(s + D_f K)(\beta s + 1)^2},$$

where λ places the zero that compensates the dynamics of G_m and guarantees the stability of the overall system for high vibration modes (i.e., the phase of $G_m(s)G_2(s)C(s)$ lies between 180° and 0°). One of the advantages of this design is that the magnitude of $G_m(s)G_2(s)C(s)$ decreases with increasing frequency. Hence, it is robust to antialiasing filters (like the Butterworth filter of the strain dynamic amplifier). The next section presents the experimental results obtained on the single-link flexible manipulator.

V. EXPERIMENTAL RESULTS

The tuning of the parameters of the PD controller (K_p, K_v) is carried out to achieve a critically damped second-order system. Thus, we have the following transfer function between
the motor angle and its reference

\[\theta_m(s)/\theta_m^*(s) = 1/(1 + \alpha s)^2, \]

where \(\alpha \) is the constant time of \(G_m(s) \). From eqs. (10) and (13) the values of \(K_p \) and \(K_v \) are obtained.

\[K_p = J_0/nK\alpha^2; \quad K_v = (2J_0 + \nu\alpha)/nK\alpha. \]

We set \(\alpha = 0.01 \), then from Table I and eq. (14), the values of \(K_p \) and \(K_v \) are 350.9 and 6.9. This value of \(\alpha \) makes the transfer function \(G_m(s) \) robust to Coulomb friction and does not saturate the DC motor. Identification for system identification technique, an accurate model of the experimental system was obtained [28]. This transfer function captures the system dynamics within the bandwidth of interest, with sufficient accuracy and can be written as:

\[\frac{1}{s^2}G_2(s) = \frac{13.74 + 14.33}{s^2 + 0.07s + 41.9} + \frac{12.12}{s^2 + 0.36s + 1668} + \frac{0.94s + 1.3 \cdot 10^4}{s^2 + 0.94s + 1.3 \cdot 10^4} + 0.001. \]

The frequency response functions (FRF) of the measured and modeled system of \(G_2(s) \) are plotted in Fig. 8.

For the unloaded experimental platform, \(M_p = 0 \) kg and \(J_p = 0 \) kgm². The dynamics of \(G_2 \) and \(G_m \) correspond with the eq. (15) and \(1/(0.01s + 1)^2 \) respectively. The controller parameters are tuned in a stepwise fashion described as follows:

- Place the poles of the double integrator and choose the bandwidth for the IRC. There is a tradeoff between the bandwidths of \(1/(s/\beta + 1)^2 \) and \((K/(s + D_f K)) \), since a high bandwidth of \(1/(s/\beta + 1)^2 \) allows us to increase the rise time in \(\theta_m \) but limits the imparted damping by the IRC \((K/(s + D_f K)) \). The practical rule to guarantee the stability of the closed loop system is that the total phase of \(1/(s/\beta + 1)^2 \) and \((K/(s + D_f K)) \) must be \(180^\circ \) in \(\omega_1/2 \), where \(\omega_1 \) is the natural frequency of the first vibration mode.

- Tune the value of \(\lambda \) to guarantee that the phase of \((\lambda s + 1)G_m(s) \) lies between \(90^\circ \) and \(0^\circ \).

The proposed outer controller after following the stepwise fashion is \(\beta = 0.5, D_f K = 2, \lambda = 1/50 \) and \(1/D_f = 0.9 \).

Fig. 9 shows the magnitude response of the open loop \(G_m(s)G_2(s) \) and the closed loop. The first three modes are attenuated by 23 dB, 2 dB and 0 dB respectively. The low performance of the outer controller in the second and third vibration mode is due to the small bandwidth of IRC (i.e., small value of \(D_f K \)). A better damping can be obtained if we increase the values of \(\beta \) and \(D_f K \). However, the time to reach the final position is also increased. The reference of the time response is a Bezier polynomial of fourth order with final value 0.5rad and the trajectory time of 1 s. The two represented variables are the estimated tip angle and the coupling torque measured at the base of the arm. The estimation of the tip angle is made with a full-order observer whose inputs are the motor angle and the coupling torque. Such a full-order observer is only used to estimate the system output for the comparison, and is not used for control purposes. Fig. 10 shows the reference and the estimated tip angle without and with control. In this figure, it can be observed that the system reaches the final position without vibration. Fig. 11 shows the coupling torque without and with control. In this figure, it can observed that there is more than one vibration mode in the time response and the damping that is imparted by the controller.

VI. CONCLUSION

A new approach for the control of flexible manipulators based on the IRC scheme has been proposed in this work. The control scheme consists of two control loops. The first loop controls the joint position independent of the link dynamics. Thus, high control gains or integral actions can be implemented without affecting the stability of the outer loop. The outer loop imparts damping to the overall system and guarantees stability.

This work presents the following characteristics (i) the design of the two control loop is independent of the relationship between link and joint parameters, which allows us to use high
frictions, (ii) both the designs of the control loops and the can be used and (iv) it is not sensitive to low frequencies and Thus, this approach is more suitable for real implementation

Fig. 10. Time response of the estimated tip angle obtained from experimental data. Reference (--) and estimated tip position in open loop (- -) and closed loop (--).

Fig. 11. Time response of the coupling torque in open loop (- -) and closed loop (--).

gains or integral actions that make the system robust to joint frictions, (ii) both the designs of the control loops and the stability analysis are simple and effective, (iii) reducing gears can be used and (iv) it is not sensitive to low frequencies and is more robust to unmodeled dynamics like anti-aliasing filters. Thus, this approach is more suitable for real implementation than other control methodologies based on minimum phase systems mentioned in the Introduction. The next step is to extend this work to multi-link flexible manipulators.

ACKNOWLEDGMENT

The authors would like to thank Dr I. M. Diaz for his help. This work has been supported by the Spanish Government Research Program with the projects DPI2006-13593 and DPI2003-03326 (MCyT).

REFERENCES