Laryngeal Dysfunction in Chronic Cough

Nicole Marilyn Ryan

Ass Dip Chem Tech, BSc

A Thesis Submitted for the Degree of Doctor of Philosophy

School of Medicine

The University of Newcastle

December 2010
Statement of Originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Date

Nicole Ryan
Acknowledgement of Authorship

I hereby certify that this thesis is in the form of a series of published papers of which I am a joint author. I have included as part of the thesis a signed statement from each co-author, attesting to contribution of each author to each of the publications contained in this thesis.
Table of Contents

Statement of Originality ... ii
Acknowledgement of Authorship .. iii
Table of Contents ... iv
Table of Figures .. ix
Table of Tables .. xii
List of Abbreviations .. xiv
Abstract.. 1

Chapter 1 Chronic Cough: Background and Introduction ... 3

1.1 Definition ... 3

1.2 Aetiology and Associated Conditions ... 5

1.2.1 Post nasal drip syndrome/Rhinosinusitis/Upper airway cough syndrome 6

1.2.2 Eosinophilic Bronchitis .. 8

1.2.3 Asthma .. 9

1.2.4 Gastroesophageal Reflux Disease ... 9

1.2.5 Angiotensin-converting enzyme Inhibitors ... 13

1.2.6 Obstructive Sleep Apnoea ... 13

1.2.7 Psychogenic Cough .. 17

1.2.8 Smoking ... 19

1.2.9 Upper Respiratory Tract Infection ... 20

1.2.9.1 Post Infectious Cough ... 23

1.2.10 Occupational and Environmental Cough .. 25

1.2.11 Chronic Idiopathic Cough .. 26

1.2.12 Sensory Laryngeal Neuropathy ... 28

1.2.13 Cough hypersensitivity syndrome ... 31

1.3 Epidemiology ... 32

1.3.1 Prevalence .. 33

1.3.2 Cost of Chronic Cough .. 36

1.3.3 Chronic Cough and Quality of Life ... 37

1.4 Clinical Description .. 40

1.5 Complications of cough ... 44

1.5.1 Laryngeal complications .. 47

1.6 Cough Mechanisms .. 49

1.6.1.1 Cough Reflex Sensitivity (CRS) ... 50

1.6.1.2 Cough Nerve Fibres ... 51

Rapidly Adapting Receptors (RARs) ... 51
C-fibres ... 51
Tachykinins and cough ... 52
RAR/C-fibre receptor interactions in cough .. 52

1.6.1.3 Cough Receptors ... 53

Vanilloid Receptor (TRPV1) ... 53
TRPA Receptor .. 54
Effect of Airway Inflammation ... 57
Capsaicin sensitivity ... 59

1.6.1.4 Cough Threshold ... 66
References

Chapter 8

8.1 Primary findings of this thesis ... 223
 8.1.1 Laryngeal dysfunction commonly occurs in chronic cough 223
 8.1.2 Subjects with CC and PVFM have increased EAHR compared to subjects
 with CC alone .. 223
 8.1.3 PVFM and EAHR manifest as laryngeal dysfunction in CC 224
 8.1.4 Quality of life impairment and cough reflex hypersensitivity are associated
 with laryngeal dysfunction and CC ... 225
 8.1.5 Laryngeal hypersensitivity may be a common mechanism in chronic cough
 226
 8.1.6 Successful treatment for CC with speech language therapy leads to
 improvements in laryngeal dysfunction .. 227
 8.1.7 Speech language therapy for refractory and idiopathic CC leads to
 improvement in cough .. 228
 8.1.8 Gabapentin effectively decreases cough frequency and increases quality of
 life 228
 8.1.9 Gabapentin exerts its effect by inhibiting release of excitatory
 neurotransmitters at supraspinal sites ... 229
 8.1.10 EAHR is a feature of postinfectious cough .. 230
 8.1.11 Post infectious cough due to H1N1 2009 influenza has similar
 characteristics to other postinfectious cough ... 231
8.2 Limitations of this thesis ... 232
 8.2.1 Population .. 232
 8.2.1.1 Cough clinic participants .. 232
 8.2.1.2 Refractory cough participants .. 232
 8.2.1.3 Primary care population .. 232
 8.2.2 Psychological health and placebo effect on chronic cough 233
 8.2.3 Study Design ... 234
 8.2.3.1 Control group comparison ... 234
 8.2.3.2 Outcome measures ... 235
 8.2.3.3 Cough interventions .. 236
8.3 Future Research ... 237
8.4 Conclusions ... 238
References .. 242
Table of Figures

Figure 1:1 Diagram showing the vital role of the lower oesophageal sphincter (LOS) in the movement of refluxate. ... 11

Figure 1:2 Median cough frequency for subjects with cough associated with upper respiratory tract infection .. 23

Figure 1:3 Percentage prevalence of persistent cough in the community by continent 35

Figure 1:4 Representative scheme of afferent and efferent pathways that regulate cough, and of the pathophysiology of the enhanced cough reflex (41) 49

Figure 1:5 Proposed changes in cough reflex sensitivity following viral upper respiratory tract infection .. 57

Figure 1:6 Proposed schematic of the direct and indirect activation of nociceptors on neuronal and non-neuronal cells in the airway by chemical, thermal and mechanical stimuli (250) .. 59

Figure 1:7 The log concentration (µmol/L) of capsaicin (C5, ■) that caused at least five coughs in subjects with no cough, dry cough and productive cough 60

Figure 1:8 Cough model illustrating reflex and voluntary control mechanisms 70

Figure 1:9 Urge-to-cough model ... 72

Figure 1:10 Guidelines for evaluating chronic cough in immunocompetent adults (2) .. 74

Figure 1:11 Algorithm for sequential three-step empirical therapy and effectiveness by step in 102 subjects with chronic cough (309) 81

Figure 1:12 Neurophysiology of cough reflex ... 96

Figure 1:13 Visual of A) normal vocal cords (folds) during inspiration and, B) vocal cords during a symptomatic episode showing paradoxical adduction and posterior chinking (347) ... 99

Figure 1:14 Fiberoptic laryngoscopy or rhinolaryngoscopy (used to visualise the voicebox and surrounding anatomic structures) 100

Figure 1:15 Laryngoscopic image during inspiration of a symptomatic patient with PVFM (380) ... 100

Figure 1:16 Inspiratory flow limitation characteristic of PVFM 102

Figure 1:17 Combination EAHR (attenuated inspiratory limb) and BHR (reduction in the expiratory limb) ... 106

Figure 1:18 Flow Volume Loop ... 108
Figure 2.1 Cough Reflex Sensitivity at Baseline............................... 125
Figure 2.2 Extrathoracic Airway Hyperresponsiveness as Maximum Fall in FIF\textsubscript{50}........ 126
Figure 3.1 Cough reflex sensitivity (CRS) to capsaicin before (pre) and after (post) treatment in the chronic cough with paradoxical vocal fold movement (CC+PVFM) group... 142
Figure 3.2 Cough reflex sensitivity (CRS) to capsaicin before (pre) and after (post) treatment in the chronic cough alone (CC) group... 142
Figure 3.3 Extrathoracic Airway Hyperresponsiveness (EAHR) represented as FIF\textsubscript{50} Dose Response Slope to hypertonic saline provocation before (pre) and after (post) treatment in the chronic cough with paradoxical vocal fold movement (CC+PVFM) group... 143
Figure 3.4 Extrathoracic Airway Hyperresponsiveness (EAHR) represented as FIF\textsubscript{50} Dose Response Slope to hypertonic saline provocation before (pre) and after (post) treatment in the chronic cough alone (CC) group... 144
Figure 3.5 Log change in Extrathoracic Airway Hyperresponsiveness (EAHR) represented as FIF\textsubscript{50} Dose Response Slope (DRS) to hypertonic saline provocation correlated with log change in Cough Reflex Sensitivity (CRS) to capsaicin................. 147
Figure 4.1 Effect of speech-language pathology treatment on refractory chronic cough outcomes ... 157
Figure 4.2 Effect of speech-language pathology treatment on refractory chronic cough outcomes of Log Cough Reflex Sensitivity... 159
Figure 4.3 Cough Frequency at baseline, and post treatment 160
Figure 4.4 Effect of speech-language pathology treatment on refractory chronic cough outcomes ... 161
Figure 4.5 Urge to Cough score at baseline (Base), and post treatment (Post Rx) 162
Figure 4.6 Pilot Study Results... 172
Figure 5.1 Flow diagram detailing telephone screening and five treatment visits to clinic for gabapentin v placebo trial ... 177
Figure 5.2 Gabapentin (Placebo) Dose Schedule... 180
Figure 5.3 Consort diagram showing flow of participants throughout RCT of gabapentin vs. placebo in the treatment of idiopathic chronic cough................................. 187
Figure 5.4 Cough VAS recorded at each visit .. 189
Figure 5.5 Leicester Cough Questionnaire recorded at each visit...................................... 189
Figure 5.6 Cough Frequency recorded at each visit.. 191
Figure 6:1 Hypertonic saline provocation dose response curve for FIF$_{50\%}$ prior to treatment (demonstrating extrathoracic airway hyperresponsiveness) and after treatment ... 201

Figure 7:1 H1N1 prevalence per Age Group (%) ... 216

Figure 7:2 Objective Cough Frequency ... 217

Figure 7:3 Cough Reflex Sensitivity-Dose Response Slope... 218

Figure 7:4 Urge-to-Cough during cough reflex sensitivity testing 218
Table of Tables

Table 1:1 Classification of cough.. 4
Table 1:2: Most common causes of chronic cough in subjects investigated in specialist clinics \(^{(14)}\) .. 6
Table 1:3 Prevalence of cough in the community by country*... 33
Table 1:4 Strategy duration vs direct cost \(^{(183)}\) .. 37
Table 1:5 Paediatric cough characteristics \(^{(196)}\) .. 41
Table 1:6 Potential complications from excessive cough... 45
Table 1:7 Six stages of the cough modification to action system... 72
Table 1:8 Causes of chronic cough in order of decreasing frequency \(^{(306)}\) .. 80
Table 1:9 Recommendations for children and adults with cough*... 83
Table 1:10 Speech language pathology four-component treatment program for chronic cough.. 88
Table 1:11 Characteristics of paradoxical vocal fold movement ... 97
Table 1:12 Features distinguishing paradoxical vocal fold movement disorder from asthma \(^{(347)}\) .. 98
Table 2:1: Subject characteristics ... 124
Table 2:2 Physiological Measurements .. 125
Table 2:3 Induced Sputum Cell Counts .. 127
Table 3:1 Subject Characteristics ... 141
Table 3:2 Subject Diagnosis and Treatment .. 141
Table 3:3 Change in symptom questionnaires before and after treatment ... 142
Table 3:4 Non-significant change in FENO and spirometry after cough treatment............................ 144
Table 4:1 Subject Characteristics ... 156
Table 4:2 Questionnaire Scores ... 157
Table 4:3 Capsaicin cough reflex sensitivity test, urge-to-cough and Leicester cough monitor testing. .. 161
Table 4:4. Cough reflex sensitivity, C5 for each visit according to Gender ... 172
Table 5:1 Participant characterisation by treatment group ... 183
Table 5:2 Reported participant side effects... 187
Table 5:3 Subjective outcome measures for treatment (Gabapentin) vs. Placebo†........ 187
Table 5:4 Objective outcome measures for treatment (Gabapentin) vs. Placebo†...... 190
Table 5:5 Subjective outcome measure: Laryngeal Dysfunction for treatment (GABA) vs. Placebo†.. 191
Table 7:1 H1N1 Tested Participant Characteristics.. 215
Table 7:2 Characteristics of chronic persistent post-infectious cough compared with cough negative participants after acute respiratory illness and healthy controls........ 217
Table 7:3 Voice characteristics in postinfectious cough.. 219
Table 7:4 Chronic persistent post-infectious cough: associated risk factors.............. 219
List of Abbreviations
(listed in order of appearance in document)

VCD=vocal cord dysfunction*

PVFM=paradoxical vocal fold movement*

CC=chronic cough

EAHR=extrathoracic airway hyperresponsiveness

ADP=anatomic diagnostic protocol

PNDS=post nasal drip syndrome

GORD=gastroesophageal reflux disease

NAEB=nonasthmatic eosinophilic bronchitis

ACE=angiotensin conversion enzyme

UACS=upper airways cough syndrome

ENT=ear nose throat

LOS=lower oesophageal sphincter

OSA=obstructive sleep apnoea

CPAP=continuous positive airway pressure

HAD=hospital anxiety and depression

STAI=state trait anxiety inventory
CCEI=crown crisp experimental index
RARs=rapidly adapting receptors
URTI=upper respiratory tract infection
RSV=respiratory syncytial virus
SARS=severe acute respiratory syndrome
CIC=chronic idiopathic cough
PCR=polymerase chain reaction
WTC=world trade centre
PCBs=polychlorinated biphenyls
SLN=superior laryngeal nerve
RLN=recurrent laryngeal nerve
PVVN=post viral vagal neuropathy
URI=upper respiratory infection
HSN1=heredity sensory neuropathy-1
SPTLC1=serine palmitoyltransferase-1
TRP= transient receptor potential
TRPV1= transient receptor potential, vanilloid-1
TRPA1= transient receptor potential, ankyriol-1
CGRP = calcitonin gene related peptide

ACCP = American college of chest physicians

LPR = laryngopharyngeal reflux

QOL = quality of life

CQLQ = cough-specific quality of life questionnaire

SHR = sensory hyperreactivity

MCS = multiple chemical sensitivity

PKC = protein kinase C

C2 = capsaicin dose inducing 2 coughs

C5 = capsaicin dose inducing 5 coughs

UTC = urge-to-cough

CICADA = cough in children and adults: diagnosis and assessment

PFT = pulmonary function testing

SPLI = speech language pathology intervention

BtxA = botulinum toxin type A

FVL = flow volume loop

FOL = fibre optic laryngoscopy

BHR = bronchial hyperresponsiveness
MIF=maximum inspiratory flow

* NB: VCD and PVFM are different terms for the same condition and both are used extensively throughout the literature therefore, they have been used interchangeably throughout this thesis document.
Abstract

Cough is one of the main reasons for seeking medical care in Australia with 11% to 16% of the general population reporting a persistent cough, and 7% describing a cough that is sufficient to interfere with activities of daily living on at least a weekly basis. Patients with chronic cough (CC) frequently report a range of physical symptoms such as musculoskeletal chest pains, sleep disturbance, a hoarse voice, syncope, stress incontinence, rib fractures and vomiting. The psychological impact of cough includes a high prevalence of depressive and anxiety symptoms, as well as worry about serious underlying diseases such as cancer and tuberculosis. Persistent cough can also have an adverse impact on social well being leading to difficulty in relationships, avoidance of public places, and disruption of employment.

Refractory cough refers to persistent cough that does not respond to usual medical treatment. Idiopathic chronic cough refers to cough that cannot be diagnosed even after a thorough systematic investigation has been conducted. Laryngeal dysfunction includes conditions such as vocal cord dysfunction (VCD) also known as paradoxical vocal fold movement (PVFM), and sensory laryngeal neuropathy. The relationship between laryngeal dysfunction and refractory and idiopathic cough is poorly characterised. This thesis addresses the significance of laryngeal dysfunction in CC by characterising the disorder, investigating potential mechanisms and assessing viable treatments. It also looks at the prevalence and mechanism of CC in adults and its association with upper airway hyperresponsiveness after respiratory infection.
The primary findings of this thesis are:

1. Laryngeal dysfunction presenting as PVFM and EAHR commonly occurs in CC. Fifty-six percent of participants have laryngeal dysfunction presenting as paradoxical vocal fold movement.

2. Individuals with CC and PVFM have increased extrathoracic airway hyperresponsiveness (EAHR) compared to individuals with CC alone and healthy controls.

3. Laryngeal dysfunction with CC is associated with quality of life impairment and sensory hyperreactivity of the cough reflex.

4. Laryngeal hypersensitivity may be a common mechanism in CC.

5. Successful treatment for CC with speech language pathology intervention leads to improvements in laryngeal dysfunction manifest as PVFM and EAHR.

6. Speech language pathology intervention for refractory and idiopathic CC leads to improvement in cough through reduced laryngeal irritation resulting in decreased cough sensitivity, decreased urge to cough and an increased cough threshold.

7. When compared to placebo, gabapentin effectively decreases cough frequency and increases quality of life in people with refractory or idiopathic CC. The likely mechanism for this is that gabapentin inhibits release of excitatory neurotransmitters at supraspinal sites.

8. EAHR is a feature of postinfectious cough.

9. Postinfectious cough due to H1N1 2009 influenza has similar characteristics to other postinfectious cough and is associated with cough reflex hypersensitivity.