A parsimonious agent-based emergency call centre model

Bruce Graham Lewis
B.E., M.E.M, BAppIT (Hons)

A thesis submitted in partial fulfilment of the requirements for the degree of

Master of Philosophy

The University of Newcastle, Australia

March 2011
Statement of Originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Signature_________________________________

Date_____________________________________
ACKNOWLEDGMENTS

I wish to express my thanks to those who have supported and assisted me in undertaking this research. Thanks to my supervisors Ric Herbert, William Chivers and Peter Summons for their assistance, encouragement and enthusiasm for this research project.

To my partner Denise goes my thanks for her patience throughout yet another seemingly never ending academic journey.

Thanks to my academic mentor Rodney Bell for his helpful advice and encouragement.

Thanks to Chris Beatson, the Director of the Police Assistance Line and the NSW Police Force for their continuing support.
DEDICATION

Dedicated to our children and grandchildren
TABLE OF CONTENTS

Abstract xi

Publications from this Research xiii

Glossary 1

Chapter 1: Introduction 3

1.1 Introduction .. 3
1.2 Problem definition .. 3
 1.2.1 The research questions ... 4
1.3 Contributions of this thesis .. 4
1.4 Summary of findings .. 5
1.5 The model .. 9
1.6 Case study - NSW Police Assistance Line 11
1.7 NSWPAL call management business model 13
1.8 Call centre performance ... 15
1.9 Thesis structure .. 16
1.10 Presentation of the research ... 20

Chapter 2: Literature review 21

2.1 Introduction .. 21
2.2 The call centre .. 22
 2.2.1 What is a call centre? .. 22
 2.2.2 Call centre advantages and disadvantages 24
 2.2.3 Call centre costs ... 25
2.2.4 The emergency call centre .. 27
2.3 Call centre performance measurement 31
 2.3.1 Abandonment .. 33
 2.3.2 Service level .. 36
 2.3.3 The Erlang C model .. 40
 2.3.4 Section comments and conclusion 42
2.4 Modelling and simulation as a research tool 43
 2.4.1 Mathematical modelling 44
 2.4.2 Background to computer modelling 44
 2.4.3 Computer simulation and emergence 46
 2.4.4 Object oriented programming 48
 2.4.5 Agents or individuals ... 49
 2.4.6 Agent-based modelling (ABM) 50
 2.4.7 Computer programming tools 51
2.5 Chapter conclusions ... 53

Chapter 3: Approach and data .. 55
 3.1 Introduction ... 55
 3.2 Philosophical approach to the research 56
 3.3 Data collection and preparation 57
 3.4 Analysing the data .. 59
 3.4.1 The non-urgent queue 60
 3.4.2 The urgent queue ... 60
 3.5 Exogenous events .. 63
 3.6 Concluding remarks ... 64
Chapter 4: The agent-based model

4.1 Introduction ... 67
4.2 Purpose and objective of the model 68
4.3 Model verification ... 69
4.4 The prototype model 69
4.5 The final model .. 71
 4.5.1 Final model overview 74
 4.5.2 The graphical user interface 78
 The Options panel 79
 The Management panel 80
 The Plot options panel 80
 The Shock panel 81
 The Call parameters panel 81
 The 900 time step simulation panel 82
 The Call and CTA parameters panel 82
 The CTA call allocation method panel 82
 The buttons panel 83
4.6 Comparing the prototype and final models 83
 4.6.1 Prototype and final model performance at 59 steps abandon time 85
4.7 Generating call streams from historical data 95
 Graphical interface 95
 Creating historical calls 96
4.8 Chapter discussion and concluding remarks 98

Chapter 5: Calibration of the model 101

5.1 Introduction ... 101
5.2 Estimating the call handle time from NSWPAL data 101
5.3 Determining the number of CTAs for the model 102
5.4 Comparing the thesis model against the Erlang C model 104
5.5 Calibrating the model 106
5.6 Estimating the call abandon time 112
5.7 Chapter concluding remarks 114
Abstract

A parsimonious agent-based emergency call centre model

by Bruce Graham Lewis

This thesis presents an agent-based model of an emergency services call centre. The original contribution of this thesis is to demonstrate that agent-based modelling can be used to simulate the operation of an emergency services call centre. The thesis demonstrates that a simple calibrated parsimonious agent-based computer model of an emergency call centre is capable of simulating a real emergency call centre by directly emulating the interaction between the call queue and the customer service representatives who service the calls.

The model is parsimonious in that it looks at the interaction between inbound calls and servers with a manager and without modelling the call centre technology or other agents. It was designed to run at a simulated one second resolution and results are available at any time during or at the end of a simulation run. This level of resolution was not found in models reported in the literature.

The New South Wales Police Assistance Line in Australia (NSWPAL) was the first of its type in the world for the reporting of urgent and non-urgent crimes and incidents, and is used as a case study in this thesis.

The thesis presents the first detailed research analysis of police emergency inbound call queues and the first detailed research analysis of the NSWPAL emergency and non-emergency queue data over a four year period is presented. The model’s servers’ parameters were calibrated against the NSWPAL data.

A number of experiments demonstrated the model’s utility including showing differences and anomalies in the methods used to calculate service level, the impact of talk time on performance, the differences in call allocation methods, the impact of unexpected exogenous events, the use of historical data to examine past performance and the differences between the thesis and Erlang C models.
The following were published in conference proceedings and journal publications:

VITA

Bruce Graham LEWIS

Bachelor of Engineering (Electrical), University of NSW, 1974.

Bachelor of Applied Information Technology (Hons), University of Newcastle, 2004.
GLOSSARY

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>131444</td>
<td>The NSWPAL telephone number customers call for non-urgent matters.</td>
</tr>
<tr>
<td>ABM</td>
<td>Agent-Based Model.</td>
</tr>
<tr>
<td>ACW</td>
<td>After Call Work. This is also known as wrap-up time (Koole, 2007). It is the additional time an agent spends on a call after the call with the customer has ended.</td>
</tr>
<tr>
<td>AHT</td>
<td>Average Handle Time. It consists of the call talk time and the ACW.</td>
</tr>
<tr>
<td>ASA</td>
<td>Average Speed of Answer.</td>
</tr>
<tr>
<td>AWT</td>
<td>Acceptable Wait Time (Koole, 2007, Essafi and Bolch, 2005). The time within which a business or organisation would like all of its telephone calls to be answered(^1).</td>
</tr>
<tr>
<td>CSR</td>
<td>Customer Service Representative.</td>
</tr>
<tr>
<td>CTA</td>
<td>Call Taking Agent. This term is used in the program code to distinguish the model agents from the human CSRs.</td>
</tr>
<tr>
<td>CTI</td>
<td>Computer-Telephony Integration.</td>
</tr>
<tr>
<td>ESO</td>
<td>Emergency Services Organisation.</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface.</td>
</tr>
<tr>
<td>IBM</td>
<td>Individual-Based Model.</td>
</tr>
</tbody>
</table>

\(^1\) Based on the researcher’s experience in the call centre industry
Glossary

NSWPF New South Wales Police Force.
NSWPAL New South Wales Police Assistance Line.
OOD Object-Oriented Design.
OOP Object-Oriented Programming.

Service level The percentage of calls a business or organisation
deems acceptable to be answered within the AWT.
Although there is no standard for this, 20% is seen
as representative for non-emergency call centres
and 10% for emergency call centres².

TSF Telephone Service Factor. See Service level above.

Triple Zero (000) The Australia-wide emergency telephone number
for Police, Ambulance or Fire Brigades.

² Based on the researcher’s experience in the call centre industry