New Ligand Topologies for Complexation/Artificial Nuclease Mimics

Thesis submitted for the degree of

Doctor of Philosophy

Brendan Griggs B.Sc.(Prof)(Hons)

December 2009

Discipline of Chemistry
School of Environmental and Life Sciences
The University of Newcastle
Australia
Statement of Originality

This work contains no material which has been accepted for the award of any research degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Declaration

I hereby certify that the work embodied in this thesis is the result of original research and has not been submitted for a higher degree to any other University or Institution.

--
Brendan Griggs

--
Date
Acknowledgments

To my supervisors Prof. Geoffrey A. Lawrance & Prof. Marcel Maeder you both have been a god send, thank you for the guidance and assistance over the years. I am very grateful for the opportunity to study this PHD; your support financially and academically was very much appreciated.

A special thanks to my lovely wife Michelle Griggs for being supportive during periods of doubt. Without your help and encouragement finishing this thesis would not be possible.

Special thanks to Dr Sarah Norman and Dr Helen Farrah for the Potentiometric results and Dr Geoff de Iluis & Karen Scheineder for all the assistance in the preparation and isolation of plasmid DNA. Your expertise and interpretation of results was very helpful.

To the members of the Metal Chemistry Group, thank you for your positive criticism and support during my time at the university.

Lastly to my family and friends for their support and assistance over the years, I could not have done this thesis without your help.
TABLE OF CONTENTS

Acknowledgements .. iii
Table of contents .. iv –viii
Tables .. vii-viii
List of Figures .. ix-xviii
Schemes ... xviii
Abstract ... xix-xxi

CHAPTER ONE: INTRODUCTION

1.1 Background to Coordination Chemistry ... 1
1.2 Ligand Topologies ... 3
 1.2.1 Three Donor Ligands ... 4
 1.2.2 Four Donor Ligands ... 17
 1.2.2.1 Four donor Substituted Triazamacrocycles ... 31
 1.2.2.2 Tetraaza Macrocycles ... 34
 1.2.3 Five Donor Ligands ... 38
 1.2.4 Six Donor Ligands ... 55
1.3 This Study ... 62
1.4 References .. 63

CHAPTER TWO: ALIPHATIC AMINOALCOHOLS FROM AMINE-EPOXIDE REACTIONS

2.1 Introduction .. 70
2.2 Experimental .. 74
 2.2.1 Aminoalcohol syntheses .. 74
 2.2.2 Syntheses of complexes .. 92
 2.2.3 Physical and Spectroscopic Methods ... 103
 2.2.3.1 Potentiometric Titrations ... 103
 2.2.3.2 Other Physical Methods ... 104
 2.2.3.3 X-Ray Crystallography ... 105
2.3 Results and Discussion .. 109
 2.3.1 Organic synthesis ... 109
 2.3.2 Metal Complexation ... 127
 2.3.2.1 General Aspects .. 127
2.3.2.2 Potentiometric Titrations ... 129
2.3.2.3 Complexation Behaviour of Selected Examples 138
2.4 Conclusions ... 144
2.5 References .. 145

CHAPTER THREE IMINE LIGANDS INCORPORATING 1,4-
DISUBSTITUTED BENZENES

3.1 Introduction .. 148
3.2 Experimental .. 156
 3.2.1 Syntheses .. 156
 3.2.2 Physical Methods .. 176
 3.2.2.1 General Methods ... 176
 3.2.2.2 Microwave Irradiation ... 176
3.3 Results and Discussion ... 176
 3.3.1 Ligand Syntheses .. 176
 3.3.2 Complexation studies ... 187
3.4 References .. 193

CHAPTER FOUR SYMMETRICAL POLYAMINES MOLECULES
INCORPORATING AN AROMATIC CORE

4.1 Introduction .. 194
4.2 Experimental .. 199
 4.2.1 Syntheses .. 199
 4.2.2 Physical Methods .. 211
 4.2.2.1 General Methods ... 211
4.3 Results and Discussion ... 211
 4.3.1 Ligand Syntheses .. 212
 4.3.2 Complexation Studies .. 219
4.4 References .. 222

CHAPTER FIVE EXTENDED-PENDANT LIGANDS BASED ON THE
PYRIDINE-2,6-DIAMIDE FRAMEWORK

5.1 Introduction .. 224
5.2 Experimental .. 231
 5.2.1 Ligand Syntheses .. 231
CHAPTER SIX POLYAMINOALCOHOL AND POLYAMINE COMPLEXES AS ARTIFICIAL NUCLEASES

6.1 Introduction ... 265
 6.1.1 Enzymatic hydrolysis of nucleic acids .. 266
 6.1.2 The role of metal ions in enzymes ... 268
 6.1.3 Active artificial nuclease ... 271
 6.1.3.1 Mononuclear phosphoesterases ... 272
 6.1.3.2 Multinuclear Phosphoesterases ... 274
6.2 Experimental .. 277
 6.2.1 Metal Complexes ... 277
 6.2.2 DNA Production and Isolation .. 277
 6.2.3 Cleavage Assays and Gel Electrophoresis .. 279
6.3 Results and Discussion .. 280
 6.3.1 DNA cleavage efficiency of compounds based on the piperazine moiety 282
 6.3.2 Tetraza cyclic molecules as superior hydrolytic cleaving agents 288
 6.3.3 Hydrolytic Behaviour of Complexes of Other Polydentate Ligands 292
6.4 Conclusions ... 302
6.5 References .. 306
TABLES

Table 2.1: A summary of X-ray diffraction data for [Co(L2.20-H)2](ClO4)·2½H2O ...107

Table 2.2: Bond distances (Å) and angles (°) in the cation \([\text{Co}(\text{L-H})_2]^+\); atom numbering appears in Figure 2.5. (Only one of two cations in the unit cell is reported; one is disordered. Symmetry transformations used to generate equivalent atoms #1 are \(-x, -y+1, -z+2\)) ...108

Table 2.3: NMR spectral data for the ligands L2.1 and L2.2 ...112

Table 2.4: Fragmentation pattern assignments in the GC-MS of L2.1 and L2.2113

Table 2.5: NMR spectral data for L2.5 ..115

Table 2.6: \(^1\text{H}\) and \(^{13}\text{C}\) NMR assignments for L2.6 ..117

Table 2.7: Determined pKa and log\(\beta\) values from potentiometric titrations of additional selected aminoalcohols with the metal ions copper(II), nickel(II) and zinc(II) measured in this work. (Data reported are typically determined to \(\leq\pm 0.05\)). ..134

Table 2.8: Determined pKa and log\(\beta\) values from potentiometric titrations of several amine precursors and aminoalcohol products with the metal ion copper(II), a determined and reported by Norman using aminoalcohols prepared and supplied in this work. (Data reported are typically determined to \(\leq\pm 0.05\))136

Table 3.1: \(^1\text{H}\) and \(^{13}\text{C}\) NMR spectral assignments for the imine compounds L3.8, L3.10, L3.12 and L3.14 ...177-178

Table 4.1: Classification of reaction products obtained or anticipated in this chapter in terms of heterocyclisation (A) or simple substitution (B) reactions213

Table 4.2: Fragmentation products observed in the GC-MS spectrum of the new heterocycle L4.4 ..213

Table 6.1: Selected physical, thermodynamic and kinetic properties of some physiologically-relevant divalent metal ions Fragmentation pattern assignments in the GC-MS of L2.1 and L2.2 ..270

Table 6.2: Preliminary subjective analysis of activity profiles against dsDNA for mainly copper(II) complexes of piperazine-derived ligands assessed after 24 hr incubation. (The columns headed ‘circular’ and ‘linear’ refer to the presence of these nicked forms following incubation, as detected from gel electrophoresis
examination, as exemplified in Figure 6.11 earlier). Fragmentation pattern assignments in the GC-MS of L2.1 and L2.2 ... 283

Table 6.3: Preliminary subjective analysis of activity profiles against dsDNA for mainly copper(II) complexes of cyclic tetraaza ligands assessed after 24 hr incubation. (The columns headed ‘circular’ and ‘linear’ refer to the presence of these nicked forms following incubation, as detected from gel electrophoresis examination, as exemplified in Figure 6.12 earlier) .. 289

Table 6.4: Preliminary subjective analysis of activity profiles against dsDNA for the copper(II) complex of 6.11 and the copper(II), zinc(II), nickel(II) and cobalt (II) complexes of 6.12. (The columns headed ‘circular’ and ‘linear’ refer to the presence of these nicked forms following incubation, as detected from gel electrophoresis examination.) .. 293

Table 6.5: Preliminary subjective analysis of activity profiles against dsDNA for mainly copper(II) complexes of saturated aminol ligands assessed after 24 hr incubation. (The columns headed ‘circular’ and ‘linear’ refer to the presence of these nicked forms following incubation, as detected from gel electrophoresis examination) ... 295

Table 6.6: Preliminary subjective analysis of activity profiles against dsDNA for mainly copper(II) complexes of p-benzyl imine ligands assessed after 24 hr incubation. (The columns headed ‘circular’ and ‘linear’ refer to the presence of these nicked forms following incubation, as detected from gel electrophoresis examination.) ... 296

Table 6.7: Preliminary subjective analysis of activity profiles against dsDNA for mainly Cu(II) complexes of miscellaneous ligands assessed after 24 hr incubation. (The columns headed ‘circular’ and ‘linear’ refer to the presence of these nicked forms following incubation, as detected from gel electrophoresis examination.) .. 298-299
LIST OF FIGURES

Figure 1.1: Possible shapes for tridentate ligands, and some examples......................4
Figure 1.2: X-ray crystal structure of tetranuclear palladium complex of 1.2.........6
Figure 1.3: Some zinc(II) complexes of 1.3, exhibiting unique structural topologies ...7
Figure 1.4: Isolated oxidation products as well as other possible isomers. Those complexes enclosed in squares are products obtained ..8
Figure 1.5: Molecule structures for the isolated complexes of MCl₂ with 1.49
Figure 1.6: Synthesis of ligands with aromatic side chains based of the parent 1.4 ...10
Figure 1.7: Molecular structure of [Cu(L₁.₅)₂]Cl₂ (a) the [Cu(L₁.₅)₃]²⁺ cation, (b) section of the infinite structure ...11
Figure 1.8: The molecular structure of the trans-bis(7)cobalt(III) cation. Hydrogen atoms have been eliminated for clarity ...12
Figure 1.9: The mode of coordination of copper(II) with 1.6. This trimer with tridentate chelates with bridging alcoholates was isolated in the solid state12
Figure 1.10: ORTEP drawing of the [Cu(1.₈)₂]²⁺ complex, with fac tridentate binding ...14
Figure 1.11: Possible geometric isomers of the bis complex of 1.10 with octahedral metal ions, and the trans isomer crystallised for the cobalt(III) complex ...15
Figure 1.12: Crystal structures for the cobalt(II) complexes [Co(1.₁₁)₂(1.₁₁-2H)].₃H₂O (1.₁₁c) and [Co(1.₁₁-2H)(μ-1.₁₁-2H)Co(H₂O)₃]·₂H₂O (1.₁₁d)17
Figure 1.13: Some possible shapes for tetradentate ligands, and some examples 18-19
Figure 1.14: Some possible copper(II) complexes of 1.13 present in solution, and the proposed dominant [Ni₂(1.₁₃-H)₃]⁺ dimer ...21
Figure 1.15: A view of the structure of the complex [Ni(1.₁₅)(ttcH)]⁺22
Figure 1.16: The structures of [Cu(1.₁₆)(ClO₄)]⁺ (a) and [Cu(1.₁₆)(Cl)]⁺ (b)23
Figure 1.17: The reaction forming the trimetallic unit, and crystal structure of the trinuclear cyano-bridged complex, featuring structural ice-like water clusters (oxygen atoms in red) ..24
Figure 1.18: Isolated crystal structures of the molybdenum complexes (1.₁₈a) and dimeric (1.₁₈b) ..25
Figure 1.19: Crystal structure of [{Cu(H1.19)Cl}2Cl](ClO4)3, where protonation of the primary amine of each ligand has removed it from its usual coordinating role ... 26

Figure 1.20: (a) Synthetic scheme for 1.20. (b) Crystal structure of [Zn(1.20)Cl]....27

Figure 1.21: Crystal structures and partial coordination environments for the dicopper complexes of bis(tetradentate) ligands 1.21 (left) and 1.22 (right)28

Figure 1.22: Synthetic scheme for the multistage synthesis of ligand 1.2329

Figure 1.23: The copper(II) complex of 1.23 ... 29

Figure 1.24: Synthetic procedures for ligand 1.24 and some coordination outcomes ... 30

Figure 1.25: Crystal structures of the copper complexes of 1.24 as (a) nitrate and (b) acetate salts .. 31

Figure 1.26: Elaboration of the triazamacrocycle [9]aneN3, with one example of a mono-N-pendant compound ... 32

Figure 1.27: Multistage synthesis for the isolation of the monosubstituted macrocycle 1.25. i: Ts-aziridine, MeCN, reflux 28h; ii: H2SO4 conc., 72h; iii: Amberlite IRA-416.. 32

Figure 1.28: Crystal structure of the cationic complex [Cu(1.25)Br]+ 33

Figure 1.29: Analogues of 1.28 with alternate or mixed donor groups contained in the ring. ... 34

Figure 1.30: The synthetic route for the formation of the first structurally reinforced tetraazamacrocycles, ligands 1.29 and 1.30. .. 35

Figure 1.31: Synthetic procedure for the formation of 1.32 37

Figure 1.32: X-ray crystal structure of the palladium(II) complex of the cyclamglyoxal condensate, 1.32, as well as a schematic view of the copper(I) bis complex ... 37

Figure 1.33: Some shapes of potentially pentadentate ligands 38

Figure 1.34: Possible enantiomeric diastereomeric configurations of 1.35 39

Figure 1.35: Synthesis of bis[di(2-pyridyl)methyl]amine (1.36) and 1,3,3-tris (2-pyridyl)-3H-imidazo[1,5-a]pyridin-4ium (1.37). Reagents and conditions: (i) molecular sieves 3Å, 1 hr; (ii) AcOH, reflux, 5-6 hr; (iii) zinc; (iv) MnO2. 40

Figure 1.36: Metal-assisted opening of the imidazolium ring of 1.37 to generate the complex [FeII(1.38)Cl2], and crystal structure for the complex [FeII(1.38)Cl2] ... 41
Figure 1.37: Scheme for the formation of ligand 1.39 .. 42

Figure 1.38: Synthetic procedure for the formation of ligand 1.40 42

Figure 1.39: Crystal structure for the disulfide nickel complex [Ni₂(1.41)(OAc)₂](BPh₄)₂ .. 43

Figure 1.40: Outline of the route to the mixed five-nitrogen donor ligand 42 43

Figure 1.41: Synthetic scheme for the formation of ligand 46 45

Figure 1.42: Perspective view of the structure for the nickel complex [Ni(1.43-H)]ClO₄. .. 45

Figure 1.43: A view from the crystal structure of the complex [Cu₂(1.47-2H)₂] 46

Figure 1.44: Drawings of the [Ni(1.47-2H)] monomer (left), and the trinuclear helical complex [Ni₃(1.47-2H)₂(OAc)₂(OHCH₃)₂] (right), from X-ray crystal structure analyses .. 47

Figure 1.45: Synthetic scheme for the formation of 1.48 .. 48

Figure 1.46: Scheme for the formation of 1.51 ... 49

Figure 1.47: A view from the crystal structure of [Ni(1.51)](BF₄)₂·CH₃CN............. 49

Figure 1.48: Synthetic scheme for the formation of the ligand 1.52 50

Figure 1.49: Crystal structures for the copper complex (a) Cu(1.52)ClO₄ and the nickel complex (b). Ni(1.52)ClO₄ for the acetylated form of ligand 1.52 51

Figure 1.50 Reported multistage scheme for the synthesis of 1.53. The formation of a dinuclear copper(II) complex is also depicted ... 51

Figure 1.51: Synthetic scheme for formation of ligand 1.54 52

Figure 1.52: Synthetic scheme for formation of ligand 1.55, and one of three classes of copper(II) complexes formed by this ligand ... 53

Figure 1.53: The synthesis of ligands 1.57 and 1.58 via imine reduction. Also shown as an inset is the structure of a [Mn₂(1.57)₂]·2CH₃CN complex formed by 1.57.. 54

Figure 1.54: Selected examples of some six-donor ligand shapes; the full range is extensive ... 56

Figure 1.55: Ligand 1.59, and its binding mode in the tetranuclear complex [Cu₄(1.59)₂(py)₄] ... 57

Figure 1.56: Synthetic scheme for the formation of ligand 1.60 57

Figure 1.57: Synthetic scheme for the preparation of 1.61 58
Figure 1.58: The crystal structure of [CuIICrIII(1.62-2H)(CH$_3$O)(Me$_3$[9]N$_3$)(H$_2$O)]$^+$, where all six heteroatoms of the ligand (1.62-2H) are employed as donors..59

Figure 1.59: Ligand 1.63 and its asymmetric dinuclear complex [Cu$_2$(1.63-2H)(CH$_3$COO)]..59

Figure 1.60: Ligands 1.64 and 1.65, and the crystal structure of the dinuclear and tetranuclear complex ions [Cu$_2$(64)(CH$_3$COO)$_2$]$^{2+}$ and [Cu$_4$(65)$_2$(μ-Im)$_2$Cl$_2$]$^{4+}$60

Figure 2.1: Synthetic scheme depicting the ring opening reaction of an oxirane using microwave irradiation; the isomer on the left is the dominant product............71

Figure 2.2: Examples of the formation of aminol ionic liquids using various ionic epoxide precursors. ..71

Figure 2.3: Possible 2:1 and 2:2 M:L coordination modes for a cationic di(aminol) with transition metal ions...71

Figure 2.4: Instrument setup and connections for potentiometric titrations104

Figure 2.5: A view of trans,trans,trans-fac-[Co(L2.20-H)$_2$]$^+$, with atom numbering ..107

Figure 2.6: Schematic representation of various types of aminoalcohols possible for different piperidine-based amines A view from the crystal structure of the complex [Cu$_2$(47-2H)$_2$]...110

Figure 2.7: The 1H-decoupled 13C NMR spectra for L2.5 ..116

Figure 2.8: GC-MS fragmentation pattern for L2.6 (see experimental section for key assignments ..117

Figure 2.9: The 13C and 1H NMR spectra of L2.9 ..119

Figure 2.10: The 1H and 13C NMR spectra of L2.11 ...123

Figure 2.11: The DEPT135 NMR spectra for L2.12 ..124

Figure 2.12: The (a) 1H NMR, (b) 13C NMR, and (c) DEPT 135 spectra for L2.14 ..125-126

Figure 2.13: Some geometric isomers that may exist where one, two or three N$_2$O$_2$-donor ligands with a piperazine core bind to an octahedral metal ion. Alcohol groups (clear circles) are considered as either bound or pendant, whereas the amine groups (grey circles) are assumed always bound in these examples........129
Figure 2.14: Potentiometric titration of ligand L2.18 alone and with copper(II) present: (top) change in pH with added base for free ligand alone, 2:1 Cu:L and 1:1 Cu:L; (bottom) speciation behaviour for the fitted model for a 1:0.7 M:L ratio.

Figure 2.15: Potentiometric titration of L2.18 alone and with nickel(II) present: (top) change in pH with added base for free ligand alone, and for ~3:1, 2:1 Ni:L and 1:1 Ni:L; (bottom) speciation behaviour for the fitted model for a 1:0.9 M:L ratio.

Figure 2.16: Crystal structure of the copper complex ion [Cu(L2.9)]^{2+}, including the strong hydrogen-bonding interaction of a coordinated alcohol to one of the perchlorate anions.

Figure 3.1: Schematic depiction of (a) two- and (b) four-armed ligands with a central rigid core, and (c) a linked macrocyclic variation of (a) with two rigid core units. The pendant arms or bridges may carry a number of potential donor groups.

Figure 3.2: A two-compartment macrocycle and its dicopper(I) complex.

Figure 3.3: The oxidative coupling polymerization of 2,3-dihydroxynaphthalene (left) and proposed dinuclear intermediate species involved that binds substrates inside the cavity (right).

Figure 3.4: Synthetic routes to the bis(diimine,amine) ligand L3.7 with an aromatic linker.

Figure 3.5: Synthetic bis(zinc(II)-dipicolylamine) species that act as artificial receptors for multiple phosphorylated peptides, and the crystal structure of one example. The crystal structure reveals a dihedral angle of 37° and a distance of 11.5Å between the two zinc(II) ions.

Figure 3.6: 1H-decoupled, 13C and DEPT 135 NMR spectra for L3.10...

Figure 3.7: Parent ion and fragments identified in the GC-MS of L3.10...

Figure 3.8: The 1H-decoupled 13C NMR spectra of L3.18, L3.12, and L3...

Figure 3.9: The 1H-decoupled 13C NMR spectra of L3.14...

Figure 3.10: Schematic representation of denticity enhancement through reaction at imine and secondary amine centres. This approach can lead to both molecules with branched or elongated pendants.

Figure 3.11: The 1H-decoupled 13C NMR spectra of L3.20, L3.21, and L3.22...
Figure 3.12: Possible coordination modes for the dipendant ligand systems with a rigid spacer, depicted for a chelating pendant and a four-coordinate metal ion: (a) 1:1 M:L with one pendant free; (b) 2:1 M:L (with additional donors X completing the coordination sphere); (c) 2:1 M:L with bridging groups of sufficient length supporting the folded geometry; (d) 2:2 M:L species; (e) 3:2 M:L species with mixed donor sets for the metal ions. In addition, polymeric species based on (e) but with additional dipendant systems replacing the X-groups and with further extensions in each direction may arise. 188

Figure 3.13: ESI-MS for the copper(II) complex of ligand L3.13..............................191

Figure 4.1: A line drawing of L4.1, together with a view of the zinc(II) complex from the X-ray crystal structure... 195

Figure 4.2: Synthetic route to a symmetrically-armed molecule with four triaza-macroyclic pendant groups (top), and views from the X-ray structures of the two forms of copper(II) complex formed .. 196

Figure 4.3: (a). Symmetrical representation of L4.7 & L4.12 (b) 1H NMR for L4.7 .. 214-215

Figure 4.4: 1H, 13C & Dept135 NMR for L4.5..217-218

Figure 4.5: A view of the $[\text{Pd}_2(L4.13)]^{4+}$ ion from an X-ray structure (top), and a form of the $[\text{Cu}_2(L4.13)(\text{OH}_2)_4]^{4+}$ complex (bottom) from DFT calculations; they display anti and syn geometry respectively .. 220

Figure 4.6: Potential mode of coordination of the two-compartment heterocyclic molecules. Type (c) can be extended to yield higher oligomers................................. 221

Figure 5.1: (a) A view of the left-handed $[\text{Cu}_2(L5.2-2\text{H})_2]$ helicate molecule from the X-ray crystal structure, and (b) a representation of the right-handed helicate .. 226

Figure 5.2: A perspective view of the $[\text{Ni}(L5.5)](ext{ClO}_4)$ complex, showing the pendant arm... 228

Figure 5.3: Structural elucidation for ligands L5.9 using 1H & 13C NMR........... 250

Figure 5.4: Structural elucidation for ligands L5.6 using 1H & 13C NMR........... 251

Figure 5.5: 13C NMR spectrum for ligands L5.15 & L5.16................................. 254

Figure 5.6: X-ray crystal structure of a pyridine-2,6-diamide involving (2-amino-ethyl)pyrimidine-based arms (L5.22). This is typical of the type of structure also formed in ligands developed here.. 255
Figure 5.7: Some possible modes of coordination in solution for dipendant pyridine diamides, involving (a) N,N',N (b) N,N',N,X and (c) N,N',N,X,X coordination to an octahedral core, and (d) the latter coordination mode for a trigonal bipyramidal core, where the ligand satisfies donor site demand.258

Figure 5.8: A view of the square-planar nickel(II) complex of a pyridine-diamido ligand (L5.2), featuring one bound and one free pendant group1, where the small ‘bite’ of the N,N’,N unit leads to bending back of the N8-Ni-N19 bonds. A similar geometry is expected to operate here for most ligands260

Figure 6.1: The structure of a section of a DNA strand (left), and the repeating nucleotide unit of an RNA strand (right) ...265

Figure 6.2: A schematic view of a restriction enzyme acting at a particular recognition site to cleave at a specific site on a DNA polymer267

Figure 6.3: Mechanistic roles of metal ions for hydrolysing phosphate esters (where OR represent the ester groups) ..268

Figure 6.4: Cleavage of pBR 322 plasmid DNA (12 µM bp) by [Cu(tacci)]^{2+} (60 µM) at pH 8.1 and 35 ºC. (A) Agarose gel of the reaction products at time intervals (with lane C being for plasmid DNA incubated for 300 min in the absence of metal complex); I, II and III correspond to supercoiled, nicked (or relaxed circular), and linear DNA respectively, corresponding to two sequential cuts. (B) Quantification of pBR 322 plasmid forms over time: supercoiled (●), nicked (□) and linear (○) ...273

Figure 6.5: The proposed mechanism for the cleavage of BNP promoted by a zinc(II) complex with hydrogen-bonding donating groups.274

Figure 6.6: A square-based pyramidal [Cu_2(N_4S_4)(OH_2)_2]^{4+} structure generated by DFT calculations, with the ligand structure also shown275

Figure 6.7: The possible mechanism for cooperative hydrolytic cleavage of a diester linkage in DNA ..276

Figure 6.8: Some homo- and hetero-nuclear complexes exhibiting superior DNA cleavage ..277

Figure 6.9: The process leading to the DNA cleavage products. Formation of circular plasmid DNA (Form II) by nicking the supercoiled form (Form I) occurs first. A following nick close to the first leads to the circular form opening to the linear plasmid form (Form III) ..279
Figure 6.10: Gel electrophoresis for DNA cleavage by 1:1 copper(II) complexes of aminoalcohols [0.6 μg/L plasmid, 0.95 mM complex, 37°C pH 7.6, HEPES buffer, 24 hr incubation]: triplicate measurements of the complexes of 7.1 (lanes 1–3), 7.2 (lanes 4–6), 7.19 (lanes 7–9) and (for comparison) of the highly active cleavage agent aqua(cyclohexane-1,3,5-triamine)copper(II) (lanes 10–12). Also shown are untreated supercoiled plasmid (lane 13) in which a small amount of circular plasmid is present, and linearised plasmid (lane 14). Column M represents a molecular weight marker.

Figure 6.11: Gel electrophoresis for DNA cleavage by 1:1 copper(II) complexes of aminoalcohols [0.6 μg/L plasmid, 0.95 mM complex, 37°C pH 7.6, HEPES buffer, 2 hr incubation]: duplicate measurements of the complexes of 7.2 at various concentration 1.88 mM (lanes 1–2), 0.94 mM (lanes 3–4), 0.47 mM (lanes 5–6), 0.235 mM (lanes 7–8), 0.1175 mM (lanes 9–10), and (for comparison) of the highly active cleavage agent aqua(cyclohexane-1,3,5-triamine)copper(II) (lanes 11). Also shown are untreated water control (lane 12) in which a small amount of circular plasmid is present, untreated circular plasmid (lane 13) and linearised plasmid (lane 14). Column M represents a molecular weight marker.

Figure 6.12: Possible mechanism for the phosphodiester cleavage of dsDNA using the copper complex of aminoalcohol 6.2

Figure 6.13: Gel electrophoresis for DNA cleavage by metal(II) complexes of the tetraaza ligand 6.8 [0.6 μg/IL plasmid, 37°C, pH 7.6, HEPES buffer, 2 hr incubation]. (Lanes 2–3) 1.88 mM 2:1 Cu:L; (lane 4) 0.95 mM 2:1 Cu:L; (lane 5) 1.88 mM 1:1 Cu:L; (lane 6) 1.88 mM 2:1 Ni:L; (lane 7) 0.95 mM 2:1 Ni:L; (lane 8) 1.88 mM 1:1 Ni:L; (lane 9) 1.88 mM 2:1 Co:L; (lane 10) 0.95 mM 2:1 Co:L; (lane 11) 1.88 mM 1:1 Co:L. Also shown are a positive control marker Cu(tacen) (lane 12), catalyst-free H₂O-only control marker (lane 13), untreated supercoiled plasmid in which a small amount of circular plasmid is present (lane 14), and linearised plasmid (lane 15). Column 1 contains a molecular weight marker.......

Figure 6.14: DNA cleavage for several metal(II) complexes of ligand 6.8; results after 2 hr incubation under conditions described in Figure 6.13

Figure 6.15: (a). Gel electrophoresis for DNA cleavage by Cu(II) complexes of tetraaza ligands 6.9 and 6.10 [0.6 μg/L plasmid, 37°C, pH 7.6, HEPES buffer, 2
hr incubation]: (lanes 2, 3) 1.88 mM 1:1 Cu:(6.9); (lanes 3, 4) 1.88 mM 2:1 Cu:(6.9); (lanes 5, 6) 1.88 mM 2:1 Cu:(6.10). Also shown are catalyst-free H₂O-only control marker (lane 7), a positive control marker Cu(tacn)²⁺ (lane 8), untreated supercoiled plasmid in which a small amount of circular plasmid is present (lane 9), and linearised plasmid (lane 10). Column 1 contains a molecular weight marker.

Figure 6.16: Proposed active dinuclear copper(II) complex of a semi-rigid tetraamine ligand. It is possible that 6.9 may be able to achieve the same type of binding.

Figure 6.17: Molecular structure for the proposed active species resulting from metal-promoted decomposition of 6.11 and responsible for the cleavage of plasmid dsDNA.

Figure 6.18: (a). Gel electrophoresis for DNA cleavage by mixed transition metal complexes of the pyridine containing ligands 6.12 and 6.13 [0.6 µg/L plasmid, 37°C, pH 7.6, HEPES buffer, 2 hr incubation]: (lanes 2, 3) 1.88 mM 1:1 Zn:(6.12); (lanes 4, 5) 1.88 mM 1:1 Cu:(6.12); (lanes 6, 7) 1.88 mM 1:1 Ni:(6.12) (lanes 8, 9) 1.88 mM 1:1 Co:(6.12) (lane10,11) 1.88 mM 2:1 Cu:(6.13). Also shown are the positive control marker Cu(tacn)²⁺ (lane 12) catalyst-free H₂O-only control marker (lane 13), untreated supercoiled plasmid in which a small amount of circular plasmid is present (lane 14), and linearised plasmid (lane 15). Column 1 contains a molecular weight marker; lane numbering is from left to right.

Figure 6.19: (a). Gel electrophoresis for DNA cleavage by dinuclear copper(II) complexes of ligands 6.21, 6.22, 6.23 and 6.24 [0.6 µg/L plasmid, 37°C, pH 7.6, HEPES buffer, 2 hr incubation; Cu conc. 1.88x10⁻³ M]: (lanes 2, 3) 1.88 mM 2:1 Cu:(6.21); (lanes 4, 5) 1.88 mM 2:1 Cu:(6.22); (lanes 6, 7) 1.88 mM 2:1 Cu:(6.23) (lanes 8, 9) 1.88 mM 2:1 Cu:(6.24). Also shown are the positive control marker Cu(tacn)²⁺ (lane 10) catalyst-free H₂O-only control marker (lane 11), untreated supercoiled plasmid in which a small amount of circular plasmid is present (lane 12), and linearised plasmid (lane 13). Column 1 contains a molecular weight marker.

Figure 6.20: (a). Gel electrophoresis for the DNA cleavage by Co(III) complexes of ligand 6.30 [0.6 µg/L plasmid, 37°C, pH 7.6, HEPES buffer]: (lanes 2) 5min
Also shown are the catalyst-free H2O-only control marker (lane 15), positive control marker Cu(tacn)2+(lane 16), untreated supercoiled plasmid in which a small amount of circular plasmid is present (lane 17), and linearised plasmid (lane 18). Column 1 contains a molecular weight marker.

Figure 6.21: Gel electrophoresis for DNA cleavage by 3:2 copper(II) complexes of polyamine ligand 6.42 [0.6 µg/L plasmid, 37°C pH 7.6, HEPES buffer, 2 hr incubation]: duplicate measurements of the complexes of 7.42 at various concentrations: 0.934mM (lanes 1–2), 0.623 mM (lanes 3–4), 0.311 mM (lanes 5–6), 0.156 mM (lanes 7–8), 0.0779 mM (lanes 9–10), and (for comparison) of the highly active cleavage agent aqua(cyclohexane-1,3,5-triamine)copper(II) (lanes 11). Also shown are untreated water control (lane 12) in which a small amount of circular plasmid is present, untreated circular plasmid (lane 13) and linearised plasmid (lane 14). Column M represents a molecular weight marker.

Figure 6.22: Proposed coordination geometry for the copper(II) complex of ligand 6.42.

SCHEMES

Scheme 4.1: ...

Scheme 4.2: ...
ABSTRACT

This thesis is centred on the organic synthesis of potential metal-binding molecules incorporating different core topologies. The intent, apart from a strong focus on ligand synthesis and characterisation, is to explore in limited ways aspects of their complexation chemistry, and to examine their labile complexes as potential DNA cleavage agents (or synthetic nucleases). This thesis is divided into a number of synthetic chapters (2-5) that deal with different classes of ligands in turn, with a final chapter (6) that explores the potential of a wide range of complexes as artificial nucleases.

Chapter 1 provides an overview of possible ligand topologies for three, four, five and six donor molecules. This provides background information into the defining shapes and coordination modes of these ligand with a series of transition metals.

Chapter 2 concentrates on the development of a suite of new aminoalcohols, with an emphasis on saturated molecules incorporating a piperazine ring, and the introduction of trans-cyclohexanol groups as pendants to originally primary and secondary amines. These molecules were formed from the ring opening reaction of the epoxide cyclohexene oxide with a range of amines using one of two approaches: traditional reflux condensations in the presence of an appropriate solvent; and microwave irradiation in the absence of any solvent. Each of the resulting molecules show differences in topology, reflecting variations in symmetry and rigidity influenced by the choice of amine. These molecules are potentially multidentate ligands for metal ions, and complexation has been probed using potentiometric titrations and by ESI-MS of isolated complexes.

Chapter 3 focuses on the synthesis of a new series of ‘compartment’ ligands incorporating an aromatic p-xylyl benzene core with either amine or imine pendant arm extensions. Attention is focused on the development of synthetic pathways, along with the roles of the shape of the coordinating ligands and of the different metal ions in directing binding totally or preferentially towards di- or poly-nuclear entities. Although complexation of these systems were explored in cursory manner, it was elucidated in general, however, is that each of the two compartments of these ligands, separated as
they are by a rigid core group, tends to bind to metal ions separately. They satisfy their coordination sphere with additional simple ligands (particularly observed for Pt(II) complexation), or else appear to bind an additional ligand in a ‘sandwich’ type arrangement so as to bind a larger number of preferred donors.

The idea of ‘compartment’ ligands incorporating an aromatic benzene core is taken further in Chapter 4 with the synthesis of two classes of ligands from the reaction of 1,2,4,5-tetrakis(bromomethyl)benzene with a array of primary and secondary amine donor groups. The first comprises molecules incorporating chains including nitrogen donors groups extending from the 1,2,4,5-positions on the benzene ring; the second group of ligands comprises those that have undergone additional chemistry involving adjacent pairs of arms leading to the formation of nitrogen-containing heterocyclic or macrocyclic products. These ligands have been designed so as to coordinate at least two metal ions, with control over the inter-metallic distances and relative geometries resulting from the rigid aromatic core. In addition to some coordination chemistry of only selected examples, this family of ligands has also shown promising nuclease activity when screen against dsDNA, as reported in Chapter Six.

In chapter 5, the primary focus is on the development of a novel suite of symmetrically-armed molecules based on a 2,6-diamidopyridine and thioamido core’s that support helicate metal complex formation. This family of new symmetrically-armed compounds can be prepared using either the diester 2,6-bis(methoxycarbonyl)pyridine (L5.9) or the di(acid chloride) 2,6-bis(carboxylic chloride)pyridine (L5.10) with appropriate nucleophilic donor group. The choice of starting material (L5.9 or L5.10) was dependent on the nature of the reacting species and its donor group(s). Although there no evidence supporting the self-assembly into oligomeric helicates in the present examples, these previously unreported and or unexplored polydentate ligands have been shown to form mono and polynuclear metal complexes as confirmed by several spectroscopic techniques.

In the last chapter (Chapter 6) several families of closely related compounds were screened for their ability to promote the hydrolytic cleavage of DNA and secondly probe how apparently minor changes in ligands can influence activity. Several
complexes that may serve as potential ‘lead’ compounds for more detailed examination of their activity and applicability as artificial nucleases have been identified including ligands 6.2, 6.3, 6.8-6.11, 6.21-6.25, 6.28, 6.30 & 6.42.