Prospecting for Advanced Battery Materials

Timothy William Jones, B.Sc(Hons)

Thesis submitted to fulfil the requirements of the degree:

Doctor of Philosophy

Submitted March 2010

Discipline of Chemistry
The University of Newcastle, Callaghan
NSW 2308, Australia
Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

..

Timothy W. Jones
Acknowledgements

No project of the size of something the size of postgraduate research can feasibly be completed without the teamwork etc, and as such, I would like to take the opportunity to show my thanks for the support that has been shown.

The first person I would like to thank is my supervisor, A/Prof. Scott Donne. Throughout the 5 years he has been my academic supervisor — including one year of honours research — he has consistently shown a good sense of direction in research, whilst still giving me enough license to follow where my own instincts take me, which has allowed both interesting and rewarding research to be performed. He has also introduced me to a host of new electrochemical and physical characterisation methods which have been both useful in my postgraduate research, and widely applicable to many systems important and relevant to modern society which has increased my employability, for which I am grateful.

Next up I would like to thank the people who have performed work directly on my research. These include Arek Lewandowski, who performed the non-aqueous cycling tests as well as prepared unit cell figures, Dr Doabin Mu the visiting professor from Beijing who helped me with some of my project during his time here in early 2009, Jenny Zobec, who performed the bulk of my X-ray diffraction experiments as well as being available for technical related discussions of the results. And lastly Jenny Forrester and A/Prof Erich Kisi from the Mechanical Engineering department, who both performed for me as well as taught me how to perform my own Rietveld analysis.

I would also like to take the opportunity to thank a number of fellow research students within the Battery Materials and Applied Electrochemistry Group. These include the senior members of the group when I commenced my work — Dr. Aaron Malloy, Ewen Skipworth, Jeremy Arnott and Ben Jones, who helped me settle in and bring me up to speed during the initial stages of my work. I would also like to thank Samala Shepherd who went through both honours and her PhD at the same time as me, and performed the bulk of the bookings for the conference we attended in the USA. Thanks also goes to Jaws Nerkar CSIRO Clayton, who have helped with regards to
passing on knowledge with regards to non-aqueous material testing. I would also like to thank the junior members of the group, who include Chris Reilly, Andrew Cross and Mark Bailey.

During my four years of postgraduate study, a number of academic staff have been available for technical discussions closely related to their own research interests. I would like to thank Prof. Geoff Lawrance, Prof. Bob Burns and A/Prof. Erica Wanless.

A number of experiments were able to be completed quicker by being able to use undergraduate teaching equipment and laboratory space outside of class times. For this I would like to thank Stephen Hopkins, Caroline Freeburn and Vicki Wold.

Thanks also to some of the individuals who have made other contributions — Andrew Stapleton and Dean Spong for help with compiling chapters, and Matthew Quinn for helping with some aesthetics of some of the unit cells.

I would like to thank the Electrochemical Society Battery Division for the Student Travel Grant which was helpful for attending the 214th Meeting of the Electrochemical Society, Honolulu HI, USA in October 2008.

To the Newy Boys Crew, particularly those regulars on away trips — Sam Adamson, Jacob Robinson, Stuart Murray, Will Priest, Reece Thompson, Daniel Sayers, Dean Spong, James Sneesby, Michael Sneesby, Paul Barnett, Nigel Bosworth, Stefan Pfister— we’ve had some amazing times. Long may these days continue.

Lastly, I would like to offer my gratitude to my friends who have helped me unwind outside my work. Andrew Lee, Stephen Connors, James McCallum, Joshua Brander, Ben Alderton, Andrew Stapleton and Sandee Date.
I would like to dedicate this Thesis to the sentiment embodied in the following Carl Sagan quote.

"In science it often happens that scientists say, 'You know that's a really good argument; my position is mistaken,' and then they would actually change their minds and you never hear that old view from them again. They really do it. It doesn't happen as often as it should, because scientists are human and change is sometimes painful. But it happens every day. I cannot recall the last time something like that happened in politics or religion."

—Carl Sagan (1934–96), Astronomer.
Abstract

The electrochemical performance of a number of novel battery materials was investigated. These systems included the high-capacity primary alkaline AgCuO$_2$ cathode, the high-rate capable primary alkaline CuO cathode, and the secondary non-aqueous LiFe$_{1-y}$Mn$_y$PO$_4$ cathode.

AgCuO$_2$ samples are prepared via an aqueous co-precipitation route from Ag$^+$ and Cu$^{2+}$ nitrate salts, followed by chemical oxidation with sodium persulfate. The materials were tested as alkaline cathode materials for primary batteries in terms of their rate capabilities. AgCuO$_2$ discharges via four equivalent-charge reduction processes, via $\text{AgCuO}_2 \rightarrow \text{Ag}_2\text{Cu}_2\text{O}_3 \rightarrow \text{Ag}^0/\text{CuO} \rightarrow \text{Cu}_2\text{O} \rightarrow \text{Cu}^0$. The exchange current density of each process was determined for each sample. At ambient temperature AgCuO$_2$ displays superior rate capabilities for the two highest voltage processes. For all samples, the rate capability of the two lower voltage processes — that of CuO and Cu$_2$O — is always superior to those at higher voltage. This is in part due to the electrode intrinsically doping itself with elemental silver during discharge as part of the second reduction process, which both facilitates excellent electronic contact to the oxide material, as well as mechanically breaks-down the material as a result of Ag0 extrusion from the second discharge process. The electrode compares favourably with commercial electrolytic manganese dioxide but is prone to self-discharge, the kinetics of which are also discussed.

Stemming from the excellent rate capabilities of CuO and Cu$_2$O discharge intermediates of AgCuO$_2$, a library of CuO samples were prepared by conventional (thermal decomposition of Cu(II) salts) and novel (microwave-assisted, hydrothermal etc.) methods, and their electrochemical performance evaluated. A material prepared by the room temperature conversion of Cu(OH)$_2$ precipitated in ethylene glycol solvent (glycol-CuO) possessed superior electrochemical performance, and as such was chosen for fundamental mechanistic studies. This material discharged by a two-step mechanism with a Cu$_2$O intermediate. A material produced from the thermal decomposition of Cu(NO$_3$)$_2$·2.5H$_2$O at 500 °C (nitrate-CuO) displayed a vastly different reduction
mechanism containing only one step, and too was chosen for mechanistic analysis. Amorphous glycol-CuO discharged via two, equivalent charge single electron reduction processes at −0.30 and −0.70 V vs. Hg/HgO, whereas crystalline nitrate-CuO discharged via a single, sharp reduction process at −0.72 V, which integrated to the theoretical capacity of CuO, implying a $2e^-$ reduction to metallic copper. The differences in this behaviour are attributed to a solubility mechanism of discharge, itself derived from indirect evidence of diminishing electrochemical performance in decreasing KOH concentration electrolytes.

The mechanism of the first reduction of glycol-CuO involves the insertion of electrons into the host tenorite CuO structure, before the quick solubilisation of the copper(I) intermediate. The soluble copper(I) intermediate then saturates the electrode, causing a potential depression, which recovers with crystallisation of the soluble material as Cu$_2$O (cuprite). Cu$_2$O then goes on to discharge to Cu0. The soluble intermediate is first hypothesised to account for the drastic decrease in performance with KOH electrolyte concentration (9.0–0.1 M), before being confirmed via its direct electrochemical detection using a novel Pt loop detector electrode. Decreasing the concentration of KOH in the electrolyte decreased the activity of OH$^-$ ions within solution, which contributes to poor kinetics of solubilisation. As this solubilisation step is kinetically poor under low OH$^-$ activity conditions, the electrode discharges via another discharge process equivalent in voltage (once reference electrode activities are taken into consideration) as the nitrate-CuO discharge process mentioned above.

In the case of the reduction of crystalline nitrate-CuO, the highly crystalline nature of the material along with a deceased BET surface area compared to glycol-CuO (191.9 vs. 0.9 m2 g$^{-1}$, respectively) contributes to an overall poor solubilisation for the reduction mechanism, which leads to the different discharge mechanism — one independent of OH$^-$ concentration. The other materials in the CuO library had their performance described in light of the solubilisation mechanism. Those materials with large BET surface areas possessed good electrochemical kinetics on account of their large material|electrolyte interface. This was not the only way to achieve good electrochemical performance however, as materials with large levels of amorphicity also displayed good performance. The impact of both these physico-chemical properties was able to be conveniently analysed in a case study whereby a material with electrochemical performance intermediate to that of two- and one-step materials was compared to other materials with similar levels of crystallinity or size of BET surface
area, but different in the other. The results are consistent with the solubilisation mechanism — other things being equal, a larger BET surface area or lower level of crystallinity will lead to a better electrochemical performance, on account of the increased facilitation of the solubilisation of the soluble copper(I) intermediate.

Due to the solubilisation of CuO in alkaline electrolyte — and the resulting difficulties for a commercial alkaline Zn/CuO cell due to cell gassing — a number of concepts were implemented to attempt to suppress CuO solubilisation or diffusion of the soluble species, Cu(OH)$_4^{2-}$. This included incorporating the material into an alkaline poly(acrylic acid) hydrogel by mechanically grinding CuO material with graphite conductor and electrolyte-softened poly(acrylic acid). Where the hydrogel was included, solubilisation of CuO was suppressed compared to where it was absent, as determined by a novel electrochemical method. However, the electrochemical performance is unacceptably compromised, so no further investigation was performed.

Whilst no separator technology was tested to limit Cu(OH)$_4^{2-}$ movement, the ramifications of a successful separator were investigated. If any separator technology were uncovered which was impermeable to Cu(OH)$_4^{2-}$, then an alkaline Zn/CuO cell would offer a potential solution to the cell gassing problem. The electrochemical performance of Cu(OH)$_4^{2-}$-saturated 9.0 M KOH was also investigated. This test was done to mimic conditions a commercial cell would encounter when its manufacture and shelf life are considered, where the electrolyte in the cathode compartment would become saturated in copper. The testing indicates that despite the solubilisation mechanism of CuO discharge, performance in Cu(OH)$_4^{2-}$-saturate 9.0 M electrolyte is not greatly compromised.

A series of mixed-metal LiFe$_{1-y}$Mn$_y$PO$_4$/C olivine composites were prepared via a simple single-step non-aqueous sol-gel technique. The materials were characterised by X-ray diffraction to be of good phase purity, and the unit cell parameters followed Vegard’s law with the increased concentration of manganese in the material. Materials prepared where manganese was present took on a novel cross-like morphology, with particle sizes ranging from 1.5−8.0 µm, depending on agglomeration.

The materials were cycled in both conventional 1 M LiPF$_6$ in 1:1 ethylene carbonate/dimethyl carbonate and 0.5 mol kg$^{-1}$ lithium bis(trifluoromethane-sulfonyl)imide salt in N-methyl-N-propyl-pyrrolidinium bis(fluorosulfonyl)imide ionic liquid electrolyte. Where the ionic liquid was used, superior cycling performance was observed. This may be due to the decreased electrochemical decomposition of
electrolyte at the charging voltage limit of 4.4 V vs. Li/Li\(^+\). The ionic liquid electrolyte also allowed for a greater separation of the 4.1 V Mn\(^{3+/2+}\) couple from the contribution of the Fe\(^{3+/2+}\) couple than did the conventional electrolyte.
Table of Contents

Title..i
Page..i
Declaration...ii
Acknowledgements...iii
Dedication ..v
Abstract ...vi
Table of Contents ..x

Chapter 1 — Prospecting for Advanced Battery Materials ...1

1.1. Motivation and Background – the Technological Advancement of Portable Electronic Devices ..1

1.2. Battery Materials ..3

1.2.1. An Overview of Some Common, Established Battery Systems ..3

1.2.1.1. The Primary Alkaline Zn/MnO$_2$ Battery ..4

| Table 1.1. Summary of the common consumer-available battery systems available today. | 5
| 1.2.1.2. Primary Alkaline Zn/Ag$_2$O Button Cells ... 5
| 1.2.1.3. The Primary Non-Aqueous Li/MnO$_2$ Battery ... 6
| 1.2.1.4. The Primary Non-Aqueous Li/FeS$_2$ Battery System ... 6
| 1.2.1.5. The Secondary Aqueous NiOOH/Cd and NiOOH/MH Battery Systems 6
| 1.2.1.6. The Secondary Non-Aqueous Li-Ion Systems ... 7
| 1.2.1.6.1. C/LiCoO$_2$ Batteries ... 7
| 1.2.1.6.2. C/LiFePO$_4$ Batteries .. 8
| 1.2.2. An Overview of Some Common, Novel Battery Systems ... 8

1.2.2.1. Secondary Lead-Acid Batteries .. 9

1.2.2.2. Primary Lithium/Iodine-Polyvinylpyridine Batteries .. 9

1.2.2.3. Primary Lithium/Silver Vanadium Oxide Batteries ... 10

1.2.3. So, Why Research Battery Materials? .. 11

1.2.3.1. Fundamental Battery Material Research ... 11

1.2.3.2. Novel Battery Material Research ... 11
1.2.3.3. New Battery Material Research .. 12

1.3. Other Active Areas of Battery Research ... 13

1.3.1. Electrolytes ... 13

1.3.2. Battery Construction and Design ... 13

1.4. A Brief Overview of Alternative Portable Power Sources 14

1.4.1. Metal-Air Batteries .. 14

Figure 1.1. Ragone plot for a series of common battery systems and other electrochemical-based power sources constructed from the references [40,41] ... 15

1.4.2. Electrochemical Capacitors .. 16

1.4.3. Fuel-Cells .. 16

1.4.4. Photovoltaics ... 17

1.5. References .. 18

Chapter 2— Review of ACu$_{III}$O$_2$ Structures (A = Ag, Li, Na) and Related Reduced Species as Cathode Materials ... 21

2.1. A Suitable Approach for Identifying Attractive New Cathode Materials 21

2.2. Literature Review of Ternary Cuprate Systems ... 23

2.2.1. Silver Cuprates .. 23

2.2.1.1. The Copper(II) Species, Ag$_2$Cu$_2$O$_3$.. 23

Table 2.1. Structural parameters of the silver copper oxides. 23

Figure 2.1. Unit cell of Ag$_2$Cu$_2$O$_3$. ... 24

Figure 2.2. Schematic of the synthesis of, (a) Ag$_2$Cu$_2$O$_3$; and of (b) AgCuO$_2$ from the Ag$_2$Cu$_2$O$_3$ precursor via the reported synthetic routes [17,20,21] ... 24

2.2.1.2. The Copper(III) Species, AgCuO$_2$... 25

Figure 2.3. Unit cell of AgCuO$_2$. Extra oxygen atoms are included to demonstrate the CuO$_4$ chain and O—Ag—O. ... 26

2.2.2. Alkali Metal Cuprates .. 26

2.2.2.1. Lithium Cuprates .. 26

Table 2.2. Structural parameters of the common alkali metal cuprates. 27

Figure 2.4. Unit cell of LiCuO$_2$. Extra oxygen atoms are included to demonstrate the CuO$_4$ and LiO$_6$ units. .. 28

Figure 2.5. Unit cell of Li$_2$CuO$_2$. ... 28

2.2.2.2. Sodium Cuprates ... 29

2.2.3. Electrochemical Behaviour of the Metal Cuprates 29
Figure 3.5. Trend in material BET surface area as a function of synthesis temperature..43

Figure 3.6. (a) Linear sweep voltammogram of the AgCuO$_2$ sample prepared at 90 °C at 0.02 mV.s$^{-1}$ in 9 M KOH electrolyte. (b) Discharge profile of AgCuO$_2$ compared with that of EMD, constructed from their respective linear sweep voltammograms. ...44

3.3.2.2. Rate Capabilities...45

Figure 3.7. Determination of the exchange current density (i_0) of a discharge process; (a) Illustration of the selection of the voltage data for each current density examined; and (b) determination of the exchange current density via the construction of a Tafel plot..................48

Figure 3.8. Example Tafel plots for processes (3.3)–(3.6) for samples prepared at 90 °C (solid line) and 22 °C (dashed line). ...49

Figure 3.9. Exchange current density (i_0) of process (3.3)–(3.6) for each AgCuO$_2$ sample of the synthesis temperature series.................................50

Figure 3.10. Trend in exchange current density of process (3.3) as a function of material BET surface area ...50

3.3.2.3. Preliminary Self-Discharge Investigation ...51

Figure 3.11. Discharge profiles of process (3.3) for the AgCuO$_2$ sample prepared at 90 °C as a function of galvanostatic discharge rate; and coulombic efficiency determined from these discharge curves (inset)52

Figure 3.12. Modelled examples of normalized capacity as function of time for (a) purely galvanostatic discharge, (b) purely first-order self-discharge, and (c) total contribution of galvanostatic and self-discharge to overall extent of discharge. ..53

Figure 3.13. First-order self-discharge modelling (solid curved lines) determined from experimental data (symbols) for the AgCuO$_2$ samples prepared..54

3.3.3. Efficiency vs. Current Density ..54

Table 3.2. Self-discharge kinetic data determined from the model........55

Figure 3.14. Discharge capacity of (a) process (3.3), and (b) process (3.4) as a function of discharge rate for each sample in the series56

Figure 3.14. (cont.) Discharge capacity of (c) processes (3.5), and (d) (3.6) as a function of discharge rate for each sample in the series.57

3.3.4. Discussion of the Source of the Ag$_2$O Impurity ..58

Figure 3.15. Capacity attributed to Ag$_2$O impurity based on AgCuO$_2$ loading...58
Figure 3.16. Discharge profile of the AgCuO₂ material prepared at 90 °C at 250 mA g⁻¹ focussing on discharge process (3.3); and inset: the suspected solubilisation step. ... 61

Figure 3.17. Powder XRD patterns of AgCuO₂ and the Ag₂Cu₂O₃ precursor. ... 62

Figure 3.18. Linear sweep voltammograms of AgCuO₂ and the Ag₂Cu₂O₃ precursor from which it was prepared. ... 62

3.4. Conclusions ... 63

3.5. References .. 64

Chapter 4—Review of Copper Oxides: Structure, Chemistry and Applications 66

4.1. Copper(II) Oxide—Tenorite .. 67

Table 4.1. Structural parameters and relevant crystallographic parameters of the main copper oxides reviewed in this chapter. 67

4.2. Copper(I) Oxide—Cuprite ... 67

Figure 4.1. Unit cell of tenorite. ... 68

4.3. Copper(II) Hydroxide—Spertiniite ... 68

4.3.1. Structure and Info ... 68

Figure 4.2. JCPDS cards for the most commonly occurring binary copper oxides; (a) tenorite (b) cuprite; and (c) spertiniite (Cu(OH)₂) – a potential synthesis impurity. ... 69

Figure 4.2. (cont.) (d) JCPDS card of paramelaconite. 70

4.3.2. Metastability—Transformation of Cu(OH)₂ into CuO 70

Figure 4.3. Unit cell of cuprite. .. 71

Figure 4.4. Unit cell of spertiniite. ... 71

4.3.2.2. High-Temperature Solid-State Transformation 72

4.3.2.3. Transformation in Alkaline Solution 72

Figure 4.5. Illustration of the reversible structural weakening of the pyramidal Cu—O bond in Cu(OH)₂ at 50 °C. ... 73

Figure 4.6. Illustration of the mechanism of the transformation of Cu(OH)₂ into CuO under thermal conditions [10]. (a) Pristine state; (b) atoms lost as H₂O; (c) shift associated with the loss of H₂O; and (d) shifts associated with atomic rearrangements in forming CuO. ... 73

4.4. Some Reported Synthetic Schemes for CuO 74

4.4.1. Conventional Methods for CuO Fabrication 74

4.4.1.1. Solid-State Room Temperature Transformation of Cu(OH)₂ 75
4.4.1.2. Microwave-Assisted Synthesis ... 75
4.4.1.3. Hydrothermal ... 75

4.5. Review of the Less Common Copper Oxides .. 76
4.5.1. Paramelaconite — Mixed Copper(I)/Copper(II) Oxide 76
4.5.2. Cu3O2 — Metastable Mixed Cu(II)/Cu(I) Precursor to CuO 77
4.5.3. Copper Oxyhydroxide — CuOOH ... 77
4.5.4. Copper Sesquioxide (Cu2O3) and Copper Peroxide (CuO2) 78

4.6. Aqueous Thermodynamics of the CuO/Cu2O System 78

Figure 4.7. Pourbaix (E–pH) diagram [20] for the copper system. Cu(OH)2 is metastable. [Cu2+]T = 10^{-2} \text{ M} ... 79

4.7. Copper(II) Oxide and Copper(I) Oxide as Battery Materials 79
4.7.1. CuO as a Non-Aqueous Battery Material ... 79
4.7.2. Primary Alkaline Cathode Material ... 80
4.7.3. Secondary Alkaline Anode Material Additive .. 81

4.8. Electrochemical Behaviour of CuO and Cu2O in Aqueous Electrolytes 81
4.8.1. Alkaline Electrochemistry ... 81

Figure 4.8. Schematic of the Cu0|Cu2O|Cu0 sandwich structure of partially oxidised Cu wire and the two mechanisms proposed by Nakayama et al. [52]. (a) CuO \rightarrow Cu^0, and Cu2O \rightarrow Cu^0; and (b) CuO \rightarrow Cu2O \rightarrow Cu^0. ... 82

4.8.2. Weakly Alkaline or Neutral (NaCl and KCl) Electrolytes 83

4.9. Copper Oxide Research in Other Novel Applications 85
4.9.1. Copper Oxide High-Temperature Superconductor Prerequisite 85
4.9.2. Copper Oxide Chemical Sensors .. 85
4.9.3. Copper Oxide Electrochemical Capacitors .. 86
4.9.4. Copper Oxides in Photovoltaic and Photocatalytic Devices 86
4.9.5. Oxide Catalysis (Conversion of CO to CO2) ... 87
4.9.6. Other Applications of Research into Copper Oxide 87

4.10. References .. 87

Chapter 5 — Elucidation of the Alkaline CuO Cathode Discharge Mechanism.. 91

5.1. Motivation and Background – High Rate Capabilities of the Primary CuO Alkaline Cathode ... 91

5.2. Experimental ... 93
5.2.1. Material Synthesis ... 93
5.2.1.1. Chemicals and Solvents .. 93
5.2.1.2. Material Synthesis ... 93

5.2.2. Physical Characterisation ... 94
 5.2.2.1. X-Ray Diffraction ... 94
 5.2.2.2. Scanning Electron Microscopy .. 94
 5.2.2.3. Gas Adsorption/Desorption .. 94

5.2.3. Electrochemical Testing .. 95

5.3. Results and Discussion ... 95
 5.3.1. Synthesis Discussion ... 95
 5.3.2. Physical Characterisation .. 96

Figure 5.1. Powder XRD patterns for the amorphous glycol-CuO and crystalline nitrate-CuO materials. Markers indicate Cu$_2$O positions from the JPCDS pattern. ... 96

Figure 5.2. SEM images of the two materials prepared. (a) smaller amorphous glycol-CuO; and (b) large crystalline nitrate-CuO. 97

5.3.3. Electrochemical Characterisation .. 98

Figure 5.3. (a) Linear sweep voltammogram of the amorphous glycol-CuO and crystalline nitrate-CuO at 0.02 mV s$^{-1}$ in 9 M KOH electrolyte; and (b) discharge profiles of the materials constructed from their respective linear sweep voltammograms. ... 99

Figure 5.4. Ex situ XRD pattern of the discharge intermediate collected at −0.55 V vs. Hg/HgO, along with the cuprite Cu$_2$O JCPDS pattern. Markers (+) index residual tenorite CuO. ... 102

Figure 5.5. Hydroxide activity as a function of KOH molarity. Inset: modelling of activity–concentration data to interpolate OH$^-$ activity at 1.0 and 9.0 M KOH. .. 105

Figure 5.6. Discharge profiles of the amorphous glycol-CuO material at a current density of 200 mA g$^{-1}$ as a function of KOH electrolyte concentration. Voltages are corrected, according to Equation (5.11). 106

Figure 5.7. Capacity above equivalent to 1.0 V vs. Zn/ZnO for the amorphous glycol-CuO material as a function of current density for each electrolyte. ... 106

Figure 5.8. Galvanostatic discharge of amorphous glycol-CuO in 9.0 M KOH electrolyte at 200 mA g$^{-1}$. Figure shows the dominant species in determining electrode voltage at each stage of reduction. 108

Figure 5.9. The two different solubilisation-crystallisation mechanisms proposed for Equation (5.1): (i) an ECC; and (ii) CEC mechanism. 110
Figure 5.10. Illustration of the pathway by which alkaline soluble CuO; i.e. Cu(OH)$_4^{2-}$ would be reduced if the mechanism follows that of pathway (ii).

Figure 5.11. Reduction voltages compared between the solid glycol-CuO material and a bulk solution of Cu(OH)$_4^{2-}$ at a glassy carbon electrode.

Figure 5.12. Results of the soluble intermediate detection experiment. The CuO working electrode was discharged galvanostatically from 1200 s at 400 mA g$^{-1}$. The platinum loop detector electrode followed a chronoamperometry protocol with $E_{\text{loop}} = +0.05$ V vs. Hg/HgO.

Figure 5.13. Discharge performance of glycol-CuO material in 9.0 M KOH as a function of particle size fraction.

Figure 5.14. TGA/DTA of the glycol-CuO material, as well as of the heat-treated series.

Figure 5.15. Powder XRD pattern of the heat-treated glycol series, focusing on the (111) and (111) diffractions.

Figure 5.16. Electrochemical performance of heat-treated materials.

Figure 5.17. Illustration of the effect of method of water removal from glycol-CuO; (a) washing of water with ethanol and acetone, and (b) oven drying with thermal collapse of pores due to the large surface tension of water.

Figure 5.18. Comparison of the electrochemical discharge of nitrate-CuO in 0.1 and 9.0 M KOH electrolyte, and glycol-CuO in 0.1 M electrolyte by LSV. Inset is an expansion of the poor electrochemical performance of Equation (5.1) of glycol-CuO in 0.1 M KOH electrolyte.

5.3.4. Attempts at Reconciling the Literature Pertaining to the Electrochemical Reduction of CuO in Alkaline Electrolyte with this Work

Figure 5.19. Proposed mechanism to account for the anomalous voltammogram recorded by Nakayama et al. [10] which led to their adoption of the incorrect reduction mechanism.

Figure 5.20. Comparison of the discharge voltages of glycol-CuO prepared with LiOH and KOH base to the discharge processes (3.5) and (3.6) of AgCuO$_2$ discharge in 9.0 M KOH electrolyte.

5.4. Conclusions

5.5. References

Chapter 6— Electrochemical Performance and Physical Characterisation of CuO Materials Produced via Conventional and Novel Synthetic Routes
6.2.1. Material Synthesis ... 132
 6.2.1.1. Chemicals and Solvents... 132
 6.2.1.2. Thermal Decomposition of Copper(II) Salts................................. 133
 6.2.1.3. CuO from the Room-Temperature Decomposition of Base-Precipitated Cu(OH)₂ Prepared in Ethylene Glycolic Solutions................................. 133
 6.2.1.4. CuO from the Room-Temperature Decomposition of Base-Precipitated Cu(OH)₂ Prepared in Aqueous Solutions ... 134
 6.2.1.5. CuO from the Decomposition of Cu(OH)₂ Base-Precipitated Under Ultrasonication ... 134
 6.2.1.6. Emulsion Synthesis ... 134
 6.2.1.7. Hydrothermal Synthesis of CuO .. 135
 6.2.1.8. Persulfate-Assisted Decomposition of an Aqueous Cu(OH)₂ Gel 135

Figure 6.1. Acid digestion bomb with Teflon-lined reaction vessel used in this study for the preparation of a CuO material hydrothermally. 136

6.2.1.9. Room-Temperature Solid-State Decomposition of Copper Acetate-Lithium Hydroxide Precursor Mixture ... 136
 6.2.1.10. Microwave-Assisted CuO Synthesis ... 137
 6.2.1.11. Hydrogen Peroxide-Assisted Preparation 137

6.2.2. Physical Characterisation.. 138
 6.2.2.1. X-Ray Diffraction ... 138
 6.2.2.2. Scanning Electron Microscopy (SEM) ... 138
 6.2.2.3. Gas Adsorption/Desorption .. 138
 6.2.2.4. Thermogravimetric Analysis (TGA) .. 138

6.2.3. Electrochemical Testing .. 138

6.3. Results and Discussion... 139
 6.3.1. Material Naming Convention .. 139
 6.3.2. Material Characterisation ... 139

Table 6.1. Labelling scheme for the library of CuO materials prepared and discussed within this chapter ... 140

6.3.3. Synthesis Discussion and Synthesis Method/Physico-Chemical Properties Relationship .. 141
 6.3.3.1. Samples from the Thermal-Decomposition of Copper Salts — Nitrate-CuO and Acetate-CuO .. 141

Figure 6.2. Powder XRD patterns of the library of CuO samples studied within this chapter .. 143
Figure 6.2. (cont.) Powder X-ray diffraction patterns of the remaining samples in the material library produced for this chapter. 144

Figure 6.3. SEM images of the library of CuO materials produced in this chapter. 145

Figure 6.3. (cont.) Remaining SEM images of the CuO materials produced in this chapter. 146

Figure 6.4. TGA/DTA analysis of the decomposition of Cu(OAc)$_2$·H$_2$O and Cu(NO$_3$)$_2$·2.5H$_2$O under air. Lighter colours indicate the normalised DTA data for the respective series. 148

6.3.3.2. Precipitation Series — Aqueous & Ethylene Glycol Solvents 148

Figure 6.5. Precipitation model of the precipitation of the Cu(OH)$_2$ precursor for the glycol- and aqueous-CuO materials prepared. Differences in the data sets are a result of the different precipitation mechanism between glycolic and aqueous solvents. 149

6.3.3.3. Aqueous Base Precipitated Materials — Aqueous-, Ultrasonic- and Emulsion-CuO 151

Figure 6.6. Illustration as to how the formation of Cu(OH)$_2$ precursor from an aqueous dispersed phase within a continuous oil phase in a W/O emulsion was hypothesised to limit the amount of reagents and thus particle size compared to that prepared in conventional aqueous solution. 152

6.3.3.4. Hydrothermally-Prepared CuO 154

6.3.3.5. Persulfate-Assisted Decomposition of an Aqueous Cu(OH)$_2$ Gel 154

6.3.3.6. Ground-CuO 156

6.3.3.7. Microwave-CuO 157

6.3.3.8. Peroxide-CuO 157

Figure 6.7. Reported coordination of Cu centres in (µ-η2·η2-peroxo)dicopper(II) complexes. 158

Figure 6.8. Cross-sectional diagram of the proposed crystallite growth mechanism for the peroxide-CuO sample. The extrusion of hydrophobic oxygen bubbles inhibits growth in regions occupied by the bubble, and directs crystallite growth around the bubble, giving rise to the observed material morphology. 161

Figure 6.9. Influence on particle etching by acetic acid on particle size. 162

6.3.4. Electrochemical Characterisation and Electrochemical Performance/Physico-Chemical Properties Relationship 163

Figure 6.10. Linear sweep voltammograms in 9.0 M KOH at 0.02 mV s$^{-1}$ of the library of CuO samples produced in this study. 164

6.3.4.2. Performance Comparison to Electrolytic Manganese Dioxide 167
Figure 6.11. Tafel plot of EMD discharge constructed from galvanostatic discharge data between 5–2000 mA g⁻¹. The two intercepts are likely a result of accessing the reduction of different processes at higher current densities. .. 168

6.3.4.3. Exchange Current Density of Material Discharge 169

Figure 6.12. Example Tafel plots of process (5.1) of CuO materials which discharge via the two-step discharge mechanism. ... 169

6.3.4.4. Electrode Capacity as a Function of Discharge Rate............................... 170

Figure 6.13. Exchange current density of process (5.1) of the library of CuO materials which discharged via the two-step mechanism as a function of BET surface area.. 170

Figure 6.14. Capacity-rate data of the library of CuO samples that discharge via the two-step mechanism, along with that of EMD for comparison. .. 171

Figure 6.15. Capacity-rate data of the library of CuO samples that discharge via the two-step mechanism, along with that of EMD for comparison. .. 174

6.4. Conclusions .. 175

6.5. References .. 176

Chapter 7— Attempts to Suppress the Dissolution of the High-Rate Glycol-CuO Cathode in Alkaline Electrolyte... 178

7.1. Motivation and Background – Cell Gassing.. 178

Figure 7.1. Pourbaix (Eh–pH) diagram of zinc [1].. 179

7.2. Other Battery Materials Affected by Solubility in their Respective Electrolyte. 180

7.2.1. The Non-Aqueous Secondary Spinel LiMn₂O₄ Cathode 181

7.2.2. Alkaline Super-Ferrate Materials – AFeO₄... 181

7.2.3. Aluminium in selected Metal Hydride electrodes 182

7.3. Discussion of Proposed Strategies in Overcoming CuO Solubility in Concentrated KOH Electrolyte... 183

7.3.1. Proposed General Strategies ... 184

7.3.1.1. Improvement in Separator Membrane Technology 184

7.3.1.2. Changes to the Electrolyte .. 185

7.3.1.3. Altering the Material ... 185

7.4. A Brief Review of Selected Alkaline Hydrogel Systems 186

7.4.1. Poly(acrylic acid) Hydrogel Electrolytes.. 187

Figure 7.2. Comparison of the specific conductivity of KOH solutions to PAA hydrogels equilibrated in those KOH solutions [11] 188
7.4.2. Poly(ethylene oxide) Hydrogel Electrolytes .. 188
7.4.3. Conclusions of Hydrogel System Review .. 188
7.5. Experimental ... 189
 7.5.1. Material Synthesis .. 189
 7.5.1.1. Chemicals and Solvents .. 189
 7.5.1.2. Material Synthesis .. 189
 7.5.2. Physical Characterisation ... 190
 7.5.3. Electrochemical Characterisation ... 190
7.6. Results and Discussion .. 191
 Figure 7.3. Cross-sectional illustration as to the proposed mechanism of the suppression of Cu(OH)$_4^{2-}$ diffusion. (a) pristine PAA-KOH-H$_2$O hydrogel; (b) CuO encapsulated in hydrogel; and, (c) CuO in hydrogel where a surface layer has been dissolved. .. 192
 Figure 7.4. 600 mA g$^{-1}$ galvanostatic discharge duplicate experiments performed in order to gain confidence in blackmix homogeneity as a result of including PAA in the electrode. ... 193
 7.6.1. PAA-Containing Electrodes .. 193
 7.6.1.1. Electrochemical Performance .. 193
 Figure 7.5. Discharge performance of glycol-CuO in 9.0 M KOH electrolytes as a function of PAA content ... 194
 Figure 7.6. Solubilisation of glycol-CuO in 9.0 M KOH electrolyte as a function of PAA content and OCP sitting time .. 194
 7.6.1.2. Solubilisation Suppression of PAA-Containing Electrodes 195
 7.6.2. Glycol-CuO in Cu(OH)$_4^{2-}$-Saturated 9.0 M KOH Electrolyte 196
 7.6.2.1. Electrochemical Performance ... 196
 Figure 7.7. Discharge performance of glycol-CuO in 9.0 M KOH and Cu(OH)$_4^{2-}$-saturated 9.0 M KOH electrolytes ... 198
 Figure 7.8. Solubilisation of glycol-CuO in 9.0 M KOH and Cu(OH)$_4^{2-}$-saturated 9.0 M KOH electrolytes as a function of OCP sitting time. 198
 7.6.2.2. Solubilisation Suppression ... 199
 7.6.3. Solubilisation Suppression of the Heat-Treated Glycol-CuO Crystallinity Series ... 199
 Figure 7.9. Solubilisation of heat-treated glycol-CuO materials encountered in Chapter 5 in 9.0 M KOH as a function of OCP sitting time. ... 200
7.7. Conclusions .. 201
Chapter 8 — Review of the Secondary Non-Aqueous Olivine LiFePO₄ Cathode

8.1. Introduction to LiFePO₄ ... 204
8.2. Socio-Economic Features of LiFePO₄ .. 205
8.3. Structural Characterisation of LiFePO₄ ... 206
 Figure 8.1. Structure of LiFePO₄ ... 207
 Figure 8.2. Unit cell of FePO₄ ... 207
 Table 8.1. Typical structural parameters of LiFePO₄ and FePO₄ [6]...208
8.4. Electrochemical Performance ... 208
 8.4.1. Discharge Voltage ... 208
 8.4.2. Electrode Capacity ... 208
 Figure 8.3. Redox potential of the Fe³⁺/²⁺ couple in selected NASICON
 frameworks and the oxide framework ... 209
 8.4.3. High Rechargeability ... 209
8.5. Charging/Discharging Mechanism ... 210
 Figure 8.4. Schematic diagram of the biphasic reaction mechanism of
 LiFePO₄. Regions outside this domain insert lithium by a solid solution
 process .. 211
8.6. Factors Affecting Rate Performance .. 212
8.7. Successful Strategies to Improving Rate Performance 213
 8.7.1. Morphological Optimisation ... 214
 Figure 8.5. Schematic diagram of the effect of particle size on diffusion
 length ... 214
 Figure 8.6. (a) The TEM image of the sample synthesised by Kim et al.
 using a polyol reflux process. (b) The Field-emission transmission electron
 microscopy (FETEM) magnified image of one single nanoparticle in (a)
 taken from the literature [37] .. 215
 8.7.2. Doping the LiFePO₄ Structure ... 216
 8.7.3. Producing LiFePO₄/C Composites ... 217
 Figure 8.7. Illustration of how carbon composites; (a) facilitate charge
 transfer to the active materials surface and reduce interparticle contact
 resistance; and (b) offer better electrical contact than traditional
 blackmixes .. 218
 8.7.4. Co-Synthesis of LiFePO₄ with a Li⁺-Conducting Fe³⁺-Containing
 Amorphous Lithium Phosphate Surface Impurity Phase 219
8.8. Some Described Synthetic Routes to LiFePO₄ ... 221
 8.8.1. Solid-State Calcination ... 222
 8.8.2. Sol-Gel Methods .. 222
 8.8.3. Hydrothermal Methods .. 223
 8.8.4. Templating Schemes ... 223
 8.8.5. Chemical Lithiation of FePO₄ ... 223
 8.8.6. Emulsion Drying .. 224
 8.8.7. Spray Pyrolysis .. 224
 8.8.8. Microwave Heating ... 224
8.9. Transition Metal Substituted LiMPO₄ (M = Mn, Co and Ni) Olivines 225
 8.9.1. Motivation Behind These Materials .. 225

Figure 8.8. Redox potential of various first row transition metal M³⁺/²⁺ couples in the olivine LiMPO₄ framework ... 226

8.9.2. Ionic Liquids as Battery Electrolytes ... 226

8.10. References ... 227

CHAPTER 9— Mixed-Metal Olivines: Electrochemical Performance of
LiFe₁₋ₓMnₓPO₄/C Composite Cathode Materials Prepared via a Non-Aqueous Sol-Gel Route 231

9.1. Motivation and Background ... 231

9.2. Mixed-Metal LiFe₁₋ₓMnₓPO₄ Olivines ... 232
 9.2.1. Structural Characterisation ... 232
 9.2.2. Discharge Mechanism ... 233
 9.2.3. Electronic and Ionic Conductivity .. 234

9.3. Experimental .. 234
 9.3.1. Material Synthesis ... 234
 9.3.1.1. Chemicals & Reagents ... 234
 9.3.1.2. Mixed-Metal Olivine Materials Prepared 234
 9.3.1.3. Non-Aqueous Sol-Gel Method ... 234
 9.3.2. Physical Characterisation ... 235
 9.3.2.1. X-Ray Diffraction (XRD) ... 235
 9.3.2.2. Scanning Electron Microscopy (SEM) .. 236
 9.3.2.3. Carbon Composition Determination ... 236
 9.3.3. Electrochemical Characterisation ... 236
 9.3.3.1. Electrode Preparation ... 236
9.3.3.2. Electrolyte Preparation ... 237
9.3.3.3. Coin Cell Construction ... 237
9.3.3.4. Electrochemical Cycling Regime ... 237

Figure 9.1. Schematic diagram of the CR-2023 cell used in all the non-aqueous electrochemical testing .. 238

9.4. Results and Discussion .. 238
9.4.1. Material Characterisation and Synthesis Discussion ... 238

Figure 9.2. Powder XRD patterns of the LiFe$_{1-y}$Mn$_y$PO$_4$/C materials prepared in this work. .. 239

Figure 9.3. Unit cell parameters of the LiFe$_{1-y}$Mn$_y$PO$_4$ materials prepared, determined via Rietveld analysis (diamonds) as a function of Mn concentration compared to the literature [11] (squares). (a) a_0, (b) b_0, and (c) c_0. .. 242

9.4.1.2. Material Morphology .. 243

Figure 9.4. Carbon content of the LiFe$_{1-y}$Mn$_y$PO$_4$/C materials determined by TGA. .. 243

Table 9.1. Carbon contents of the LiFe$_{1-y}$Mn$_y$PO$_4$/C series as determined by TGA. .. 243

Figure 9.5. SEM images of the LiFe$_{1-y}$Mn$_y$PO$_4$/C materials produced in this study. (a) $y = 0.00$, (b) $y = 0.25$, (c) $y = 0.50$, (d) $y = 0.75$, and (e) $y = 1.00$. .. 245

9.4.2. Electrochemical Characterisation .. 245

Figure 9.6. Cycling of LiFe$_{1-y}$Mn$_y$PO$_4$ materials in conventional 1 M LiPF$_6$ in 1:1 (wt./wt.) EC/DMC at 50 °C. ... 246

Figure 9.7. Cycling of LiFe$_{1-y}$Mn$_y$PO$_4$ materials in conventional 1 M LiPF$_6$ in 1:1 (wt./wt.) EC/DMC at room temperature. ... 246

Figure 9.8. Cycling performance of LiFe$_{1-y}$Mn$_y$PO$_4$ materials in 0.5 mA g$^{-1}$ LiTFSI in P$_3$mpyrFSI ionic liquid electrolyte. ... 247

Figure 9.9. Cycling of LiFe$_{1-y}$Mn$_y$PO$_4$ materials for $y = 0.0$ and 0.25 as a function of electrolyte and cycling temperature. ... 249

9.5. Conclusions .. 249

Figure 9.10. Cycling of LiFe$_{1-y}$Mn$_y$PO$_4$ materials for $y = 0.0$ and 0.25 as a function of electrolyte and cycling temperature. ... 250

9.6. References .. 251