Towards the Development of a Benzylpiperazine Specific Molecular Imprinted Polymer

Kathleen M Wright B.Sc (Hons)
Discipline of Chemistry, The University of Newcastle
Callaghan, NSW 2308, Australia

A thesis submitted for the degree of

Doctor of Philosophy (Chemistry)

March, 2010
This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Signature: .. Date:
To

My Family and Peter

for all your love, support, encouragement and understanding.
Acknowledgements

Firstly I would like to thank my supervisors Dr. Clovia Holdsworth, Dr Michael Bowyer and Prof. Adam McCluskey for their unlimited wealth of knowledge, guidance, help, and encouragement throughout my PhD. They have helped me develop and hone my research and laboratory skills into what I hope is a better chemist.

I would like to acknowledge financial support from ARC - LP - APAI.

I would like to thank Dave Phelan for his assistance with obtaining SEM images for all my samples I know they were quite troublesome.

A number of other people deserve many thanks for their assistance and input throughout my PhD. The first are the other postgrads, Jenny, Carrie, Kate, Tim, Sunsan and Sorwaporun, that have been in the office over the time. I would like to thank you all for your friendship and helpfulness that you have given me, for keeping the office amusing with the antics that went on and for your support. I would also like to acknowledge Chris Gordon for all his help in organic synthesis matters.

To everyone else in the Chemistry Building who I have had the pleasure of working with and who has helped me over the years, a big thank you for all your assistance and help.

Finally I would like to thank my family, Peter and his family for their love, continued support and encouragement throughout my entire PhD, they were always there when I needed them the most.
Contents

List of Figures vii
List of Tables xii
Abbreviations xiii

1 Introduction 1
 1.1 Benzylpiperazine 2
 1.2 Molecular Imprinting 4
 1.2.1 Introduction to Molecular Imprinting 4
 1.2.2 History of Molecular Imprinting 5
 1.2.3 The Imprinting Process 6
 1.2.3.1 Covalent Molecular Imprinting 7
 1.2.3.2 Non-Covalent Molecular Imprinting ... 10
 1.2.4 Optimisation of Molecularly Imprinted Polymers 12
 1.2.4.1 Optimisation of Template-Functional Monomer Interactions 13
 1.2.4.2 Optimisation of the Cross-linking Agent 17
 1.2.4.3 Porogen Selection for Polymerisation 19
 1.2.4.4 Temperature Effects 20
 1.2.5 Evaluation of Binding Capabilities 20
 1.2.5.1 Evaluation by Batch methods 21
 1.2.5.2 Evaluation by Chromatography 25
 1.2.6 Characterisation of Polymers 26
 1.2.6.1 Surface Area and Porosity 26
CONTENTS

1.2.6.2 Swelling Measurements 27
1.2.6.3 Further Characterisation 28
1.3 Project Outline 29

2 Materials and Methods 31
2.1 Reagents 31
2.2 Monomer Synthesis 32
 2.2.1 Preparation of \(N,O\)-bismethacryloyl Ethanolamine (NOBE) 32
 2.2.2 Preparation of 7-Hydroxy-4-methylcoumarin Acrylate (HMCA) 33
 2.2.3 Preparation of Benzylpiperazine(4-Vinylphenyl) Carbamate
 (TM adduct) 34
 2.2.3.1 Step 1: Preparation of 4-Vinylphenol 34
 2.2.3.2 Step 2: Preparation of 4-Vinylphenyl Chlorothio-
 formate 34
 2.2.3.3 Step 3: Preparation of Benzylpiperazine(4-Vinylphenyl)
 Carbamate 35
 2.3 Molecular Modelling 36
 2.4 NMR Spectroscopic Analysis 36
 2.5 Polymer Synthesis 36
 2.5.1 Non-covalent MIPs 36
 2.5.2 Covalent MIPs 37
 2.6 Batch Binding Experiments 37
 2.7 Selectivity and Cross-reactivity Studies 38
 2.8 Characterisation 39
 2.8.1 Swelling Measurements 39
 2.8.2 Scanning Electron Microscopy (SEM) 39
 2.8.3 Porosity and Surface Area 39

3 Pre-synthesis: Template-Monomer Interaction Studies 40
 3.1 Introduction 40
 3.2 Results and Discussion 43
 3.2.1 Computer Generated Molecular Modelling Data 43
 3.2.1.1 Selection of Monomers 43
 3.2.2 NMR Analysis 51
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2.1 Template-Functional Monomer Investigations</td>
<td>51</td>
</tr>
<tr>
<td>3.2.2.2 Optimisation of the Cross-linker</td>
<td>59</td>
</tr>
<tr>
<td>3.3 Conclusions</td>
<td>63</td>
</tr>
<tr>
<td>4 Preparation of Benzylpiperazine MIPs: The Self-assembly (non-covalent) Approach</td>
<td>64</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>64</td>
</tr>
<tr>
<td>4.2 Results and Discussion</td>
<td>66</td>
</tr>
<tr>
<td>4.2.1 Selection of Cross-linker</td>
<td>66</td>
</tr>
<tr>
<td>4.2.2 Preparation of BZP Imprinted Polymers: Physical Characterisation</td>
<td>69</td>
</tr>
<tr>
<td>4.2.3 Polymer Absorption of BZP: Evaluation of Imprinting Effect</td>
<td>73</td>
</tr>
<tr>
<td>4.2.4 Determination of Optimal Time of Contact</td>
<td>85</td>
</tr>
<tr>
<td>4.2.5 Saturation Curve and Analysis</td>
<td>89</td>
</tr>
<tr>
<td>4.3 Conclusion</td>
<td>97</td>
</tr>
<tr>
<td>5 Preparation of Benzylpiperazine MIPs: The Semi-covalent Approach</td>
<td>99</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>99</td>
</tr>
<tr>
<td>5.2 Results and Discussion</td>
<td>101</td>
</tr>
<tr>
<td>5.2.1 Synthesis of Benzylpiperazine (4-vinylphenyl) carbamate and Semi-covalent MIPs</td>
<td>101</td>
</tr>
<tr>
<td>5.2.2 Preparation of Semi-covalent MIPs</td>
<td>102</td>
</tr>
<tr>
<td>5.2.3 Physical Characterisation of the MIPs</td>
<td>103</td>
</tr>
<tr>
<td>5.2.4 Polymer Absorption of BZP: Evaluation of Imprinting Effect</td>
<td>104</td>
</tr>
<tr>
<td>5.2.5 Determination of Optimal Time of Contact</td>
<td>107</td>
</tr>
<tr>
<td>5.2.6 Saturation Curve and Analysis</td>
<td>110</td>
</tr>
<tr>
<td>5.3 Conclusion</td>
<td>116</td>
</tr>
<tr>
<td>6 Semi-Covalent versus Non-covalent BZP MIPs: A Comparative Assessment</td>
<td>118</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>118</td>
</tr>
<tr>
<td>6.2 Polymer Synthesis</td>
<td>120</td>
</tr>
<tr>
<td>6.3 Binding Affinity</td>
<td>121</td>
</tr>
</tbody>
</table>
6.4 Physical Characterisation .. 124
6.5 Binding Dynamics ... 125
6.6 Conclusion .. 131

7 Cross-Reactivity and Selectivity Studies 132
 7.1 Introduction ... 132
 7.2 Results and Discussion ... 134
 7.2.1 Cross-reactivity Studies 134
 7.2.1.1 Non-Covalent Imprinted Polymers 134
 7.2.1.2 Covalent Imprinted Polymers 143
 7.2.2 Selectivity Studies 147
 7.2.2.1 Non-Covalent Polymers 147
 7.2.2.2 Covalent Polymers 153
 7.3 Conclusions ... 158

8 Summary and Recommendations 162
 8.1 Summary of Results .. 162
 8.2 The Next Step .. 165

References 167
List of Figures

1.1 Structure of benzylpiperazine (1) and its related analogues 3
1.2 Schematic of the imprinting process 7
1.3 Reversible covalent imprinting using the boronate ester 8
1.4 Covalent imprinting with ketal 9
1.5 Covalent imprinting with Schiff’s base 9
1.6 Template monomer of cholesteryl(4-vinyl)phenyl carbonate . . . 10
1.7 Templates and template monomers using the carbonyl sacrificial
 spacer technique: . 11
1.8 Proposed mechanism of template-functional monomer interaction 12
1.9 Chemical structure of common cross-linkers 19
1.10 Appearance of MIP binding isotherm 23
1.11 Binding isotherm (A) and corresponding Scatchard plot (B) . . 25
1.12 Langmuir plot for a Neu5AC-MIPs. 25
2.1 Synthesis of N,O-bismethacryloyl ethanolamine (NOBE). 33
2.2 Synthesis of 7-hydroxy-4-methylcoumarin acrylate (HMCA). . . . 33
2.3 Synthesis of 4-vinylphenol from 4-acetoxy styrene. 34
2.4 Synthesis of 4-vinylphenyl chlorothioformate. 35
2.5 Synthesis of Benzylpiperazine(4-vinylphenyl) carbamate. . . . 35
3.1 Chemical structure of BZP . 41
3.2 A library of potential functional monomers 44
3.3 Computer generated molecular modelling images of BZP:MAA 1:1
 (A), 1:2 (B) and 1:3 (C) . 46
3.4 Computer generated molecular modelling images of BZP:AA 1:1 (A), 1:2 (B) and 1:3 (C) .. 48
3.5 Computer generated molecular modelling images of BZP:HEM 1:1 (A) and 1:4 (B) .. 49
3.6 Computer generated molecular modelling image of BZP:IA 1:1 (A) and 1:2 (B) .. 49
3.7 Computer generated molecular modelling images of BZP with 4-vinyl pyridine (4-VP) (A) and styrene (STY) (B) 50
3.8 Molecular modelling images of BZP:HMCA ... 51
3.9 NMR analysis of BZP with MAA ... 53
3.10 NMR analysis of BZP with IA .. 55
3.11 NMR analysis of BZP with AA ... 56
3.12 NMR analysis of BZP with HMCA .. 57
3.13 NMR titration of BZP with NOBE ... 58
3.14 NMR titration of BZP with NOBE, MAA and EGDMA 59
3.15 NMR titration of BZP with EGDMA, TRIM, DVB and MAA ... 60
3.16 Computer generated molecular modelling image for BZP:EGDMA ... 60
3.17 Computer generated molecular modelling image for BZP:TRIM ... 61
3.18 Computer generated molecular modelling image for BZP:DVB ... 62
4.1 BZP binding results for EGDMA, TRIM and DVB polymers ... 67
4.2 SEM images for NC-MAA-EGDMA-2A 70
4.3 SEM images for the polymers prepared for the three functional monomers ... 71
4.4 SEM images for two different ratios ... 71
4.5 SEM images for NC-MAA-2A MIPs ... 72
4.6 SEM images for NC-MAA-EGDMA-2 MIPs 72
4.7 Swelling results ... 74
4.8 BZP binding results for BZP:AA polymer formulations prepared in AN ... 75
4.9 BZP binding results for BZP:MAA polymer formulations prepared in AN ... 76
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10</td>
<td>BZP binding results for BZP:IA polymer formulations prepared in AN</td>
<td>77</td>
</tr>
<tr>
<td>4.11</td>
<td>BZP binding results for BZP:AA polymer formulations prepared in CHCl$_3$</td>
<td>78</td>
</tr>
<tr>
<td>4.12</td>
<td>BZP binding results for BZP:MAA polymer formulations prepared in CHCl$_3$</td>
<td>79</td>
</tr>
<tr>
<td>4.13</td>
<td>Imprinting factors calculated from the rebinding studies for MAA prepared polymers</td>
<td>82</td>
</tr>
<tr>
<td>4.14</td>
<td>Imprinting factors calculated from the rebinding studies for IA prepared polymers</td>
<td>83</td>
</tr>
<tr>
<td>4.15</td>
<td>Imprinting factors calculated from the rebinding studies for the AA prepared polymers</td>
<td>84</td>
</tr>
<tr>
<td>4.16</td>
<td>Rebinding results for BZP:MAA formulations</td>
<td>86</td>
</tr>
<tr>
<td>4.17</td>
<td>Time rebinding results for BZP:MAA 1:1 (A) and 1:2 (B) CHCl$_3$ EGDMA</td>
<td>87</td>
</tr>
<tr>
<td>4.18</td>
<td>Time rebinding results for BZP:MAA 1:1 (A) and 1:2 (B) CHCl$_3$ TRIM</td>
<td>88</td>
</tr>
<tr>
<td>4.19</td>
<td>Binding isotherm data</td>
<td>90</td>
</tr>
<tr>
<td>4.20</td>
<td>Scatchard plots</td>
<td>93</td>
</tr>
<tr>
<td>4.21</td>
<td>Langmuir linear plots</td>
<td>95</td>
</tr>
<tr>
<td>5.1</td>
<td>Chemical structure of BZP TM adduct with proposed sacrificial spacer and functional monomer</td>
<td>101</td>
</tr>
<tr>
<td>5.2</td>
<td>Synthetic scheme for the preparation of TM adduct</td>
<td>102</td>
</tr>
<tr>
<td>5.3</td>
<td>Proposed mechanism of BZP rebinding</td>
<td>103</td>
</tr>
<tr>
<td>5.4</td>
<td>SEM images for the covalent EGDMA polymers prepared in CHCl$_3$</td>
<td>104</td>
</tr>
<tr>
<td>5.5</td>
<td>SEM images for the covalent TRIM polymers prepared in CHCl$_3$</td>
<td>105</td>
</tr>
<tr>
<td>5.6</td>
<td>Swelling results for the EGDMA and TRIM covalent polymers</td>
<td>105</td>
</tr>
<tr>
<td>5.7</td>
<td>Rebinding results for semi-covalent BZP polymers prepared with EGDMA and TRIM in CHCl$_3$</td>
<td>106</td>
</tr>
<tr>
<td>5.8</td>
<td>Time rebinding results for covalent BZP polymers</td>
<td>108</td>
</tr>
<tr>
<td>5.9</td>
<td>Rebinding results for covalent BZP polymer prepared with TRIM in water</td>
<td>110</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

5.10 Binding isotherm data .. 111
5.11 Scatchard plots produced for the semi-covalent polyers 113
5.12 Langmuir regression plots produced for the semi-covalent polyers . 114

6.1 BZP binding capacities and imprinting factors for 30 mg of the 1:1
BZP:MAA NC MIPs and the SC MIPs 122
6.2 SEM images ... 124
6.3 Swelling results for non-covalent and semi-covalent BZP imprinted
polymers .. 126
6.4 Binding isotherm for NC EGDMA and NC TRIM (A) and SC
EGDMA and SC TRIM (B) .. 128
6.5 Langmuir regression plot for NC EGDMA and NC TRIM (A) and
SC EGDMA and SC TRIM (B) ... 129
6.6 Scatchard regression plot for NC EGDMA and NC TRIM (A) and
SC EGDMA and SC TRIM (B) ... 130

7.1 Chemical structures of three common drugs of abuse, 133
7.2 Cross-reactivity studies of NC EGDMA1 135
7.3 Cross-reactivity studies of NC EGDMA2 136
7.4 Cross-reactivity studies of NC TRIM1 137
7.5 Cross-reactivity studies of NC TRIM2 138
7.6 Molecular modelling images of BZP (A) and PHP (B) 140
7.7 Molecular modelling image of PHP with 1 MAA unit 140
7.8 Molecular modelling images of BZP (A) and MO (B) 141
7.9 Molecular modelling image of MO with 1 MAA unit 141
7.10 Molecular modelling images of BZP (A) and CO (B) 142
7.11 Molecular modelling image of CO with 1 MAA unit 143
7.12 Molecular modelling images of BZP (A) and EPH (B) 144
7.13 Molecular modelling image of EPH with 1 MAA unit 144
7.14 Cross-reactivity studies of the EGDMA prepared semi-covalent im-
printed polymers ... 145
7.15 Non-competitive cross reactive study of TRIM prepared covalent
imprinted polymers .. 146
7.16 Molecular modelling image of 1 phenol unit with the analytes ... 148
LIST OF FIGURES

7.17 Molecular modelling image of 1 phenol unit with the analytes . . 149
7.18 Selectivity studies of NC EGDMA1 151
7.19 Selectivity studies of NC EGDMA2 152
7.20 Selectivity studies of NC TRIM1 154
7.21 Selectivity studies of NC TRIM2 155
7.22 Competitive studies of BZP semi-covalent imprinted polymers with
BZP and morphine. 156
7.23 Competitive study of BZP semi-covalent imprinted polymers with
BZP and cocaine. 157
7.24 Competitive study of BZP semi-covalent imprinted polymers with
BZP and ephedrine. 158
List of Tables

3.1 Calculated ∆E values for the template-monomer clusters from molecular modelling studies. All calculations were performed in triplicate. 45

4.1 Binding constants (K_d and number of binding sites (n) extracted from the binding isotherm, Scatchard plot and Langmuir plot for the BZP:MAA 1:1 and 1:2, EGDMA and TRIM polymers prepared in CHCl_3. 91

4.2 Summary of absorption and time rebinding results for BZP:MAA non-covalent imprinted polymers 98

5.1 Binding constants, K_d and number of binding sites (n), extracted from the binding isotherm, Scatchard plot and Langmuir plot for the semi-covalent EGDMA and TRIM polymers prepared in CHCl_3. 112

6.1 Binding constants (K_d and number of binding sites (n)) extracted from the binding isotherm for NC EGDMA, NC TRIM, SC EGDMA and SC TRIM 127

7.1 Selectivity factors calculated from the ∆B values for the cross-reactivity study with the NC and SC polymers 160

7.2 Selectivity factors calculated from the ∆B values for the selectivity study with the NC and SC polymers 160
Abbreviations

13C NMR Carbon NMR
1H NMR Proton NMR
4VP 4-vinyl pyridine
6-MAM 6-monoacetylmorphine
AA Acrylic acid
AAm Acrylamide
AFM Atomic force microscopy
AIBN 2,2’ Azob(isobutyronitrile)
AN Acetonitrile
ATS Amphetamine type substances
BET Brunauer Emmett and Teller
BJH Barret, Joyner and Halenda
BZP Benzylpiperazine
CHCl$_3$ Chloroform
CNS Central nervous system
CO Cocaine
DEA Drug Enforcement Administration
DMSO Dimethyl sulfoxide
DSC Differential scanning couliometry
DVB Divinyl benzene
EGDMA Ethylene glycol dimethacrylate
EPH Ephedrine
EtOAc Ethyl acetate
FM Functional monomer
FT-IR Furier transform-infrared
GC-MS Gas chromatography - mass spectrometry
H₃PO₄ Phosphoric acid
HCl Hydrochloric acid
HEM 2-Hydroxyethyl methacrylate
HMCA 7-Hydroxy-4-methylcoumarin acrylate
HPLC High pressure liquid chromatography
IA Itaconic acid
KCl Potassium chloride
KH₂PO₄ Dihydrogen phosphate
KOH Potassium hydroxide
LOD Level of detection
LSD Lysergic acid diethylamide
MAA Methacrylic acid
MAAm Methacrylamide
mCPP 1-(3-Chlorophenyl)piperazine
MDA 3,4-Methylenedioxymphetamine
MDBP 1-(3,4-Methylenedioxyphenyl)piperazine
MDMA 3,4-Methylenedioxy-N-methylamphetamine
MDMA 3,4-Methylenedioxymethamphetamine
MIP Molecular imprinted polymer
MISPE Molecular imprinted solid phase extraction
MO Morphine
mTFMPP 1-(3-Trifluoromethylphenyl)piperazine
NaHCO₃ Sodium carbonate
NaOH Sodium hydroxide
NC Non-covalent
NDPSC National Drugs and Poisons Scheduling Committee
NIP Non-imprinted polymers
NMR Nuclear magnetic resonance
NOBE N,O-bis-methacryloyl ethanolamine
OMNiMIP One monomer molecularly imprinted polymer
PETA Pentaerythritol triacrylate
PHP Phenylpiperazine
pMeOPP 1-(4-Methoxyphenyl)piperazine
SC Semi-covalent
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SNS</td>
<td>Sympathic nervous system</td>
</tr>
<tr>
<td>STY</td>
<td>Styrene</td>
</tr>
<tr>
<td>SUSDP</td>
<td>Standard for the Uniform of Scheduling of Drugs and Poisons</td>
</tr>
<tr>
<td>T</td>
<td>Template</td>
</tr>
<tr>
<td>T:FM</td>
<td>Template:functional monomer ratio</td>
</tr>
<tr>
<td>TEGDMA</td>
<td>Tetraethylene glycol dimethacrylate</td>
</tr>
<tr>
<td>TGA</td>
<td>Therapeutic Goods Administration</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermal gravitational analysis</td>
</tr>
<tr>
<td>TRIM</td>
<td>Trimethylolpropane trimethacrylate</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultra violet - visable spectroscopy</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile organic compound</td>
</tr>
<tr>
<td>XL</td>
<td>Cross-linker</td>
</tr>
</tbody>
</table>
Abstract

Molecular imprinting has proved to be an effective technique for the creation of artificial recognition sites within a polymer matrix. These synthetic receptors known as MIPs, are cheap, are relatively simple to prepare and can be tailor made for potentially any target including large molecular-weight molecules. Two approaches, non-covalent (self assembly) and semi-covalent, have been employed to prepare MIPs for benzylpiperazine (BZP), a dominant bioactive compound in a new class of piperazine-base designer drugs. To the best of my knowledge, this is the first report on the synthesis of BZP MIPs via either approach.

Non-covalent MIPs were prepared in 1:1, 1:2 and 1:4 template:monomer ratios employing itaconic acid (IA), methacrylic acid (MAA) and acrylic acid (AA), identified through molecular modelling and NMR spectroscopy studies as favourable functional monomers, with two cross-linkers, ethyleneglycol dimethacrylate (EGDMA) and trimethylolpropane trimethacrylate (TRIM), shown to exhibit the lowest affinity to BZP, and using acetonitrile (AN) and chloroform (CHCl₃) as porogens. Of the 30 polymer formulations assessed, only MIPs prepared with MAA in 1:1 and 1:2 ratios in CHCl₃ exhibited moderate to impressive imprinting (I > 2).

The novel synthesis of benzylpiperazine (4-vinylphenyl) carbamate was required for the preparation of the semi-covalent MIPs. This was obtained through the multi-step synthesis of 4-vinylphenol with thiophosgene, the product of which was reacted with BZP, neat. Two polymers were prepared in CHCl₃ using EGDMA and TRIM as cross-linker.
The semi-covalent MIPs exhibited higher imprinting effect than the non-covalent MIPs. The highest imprinting factor obtained for the non-covalent polymers was 7.7 for the BZP:MAA 1:2 TRIM polymer bound in CHCl₃ while the semi-covalent polymer prepared with TRIM gave an imprinting factor of 28. For both non- and semi-covalent systems, BZP binding equilibrium was established with two hours or less. Rapid BZP up-take was observed for all polymers, with more than 80% of the equilibrium up-take occurring prior to 10 minutes. Quantitative analysis of the binding isotherm, Scatchard and Langmuir plots, showed the semi-covalent polymers to exhibit a stronger affinity to BZP and more homogeneous binding sites than the non-covalent polymers.

Cross-reactivity and selectivity experiments were carried out in non-competitive and binary competitive environments with morphine (MO), cocaine (CO), ephedrine (EHP) and phenylpiperazine (PHP). Low affinity was observed for MO and CO analytes, with high selectivity for BZP in these systems. For PHP an equivalent affinity was observed, while the polymers had a greater affinity for EPH. No selectivity was observed for EPH in the competitive system. Both non-covalent and semi-covalent MIPs exhibited high selectivity towards BZP in the presence of MO and CO analytes but equivalent affinity towards PHP and EPH.