Genetic Variation and Risk of Endometrial Cancer

Katie Ann Ashton
B.Sc(Biotech)(Hons)

Doctor of Philosophy – Medical Genetics
University of Newcastle

April 2009
DECLARATION

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

________________ ______ ____________________
Date

KATIE A. ASHTON
ACKNOWLEDGEMENTS

It is a pleasure to thank the many people who made this thesis possible. Foremost, I would like to thank my supervisor, Professor Rodney J. Scott, for giving me a very interesting and challenging project to study and for his guidance and support throughout the duration of this research. Thank you for the many hours spent proof reading my thesis and manuscripts drafts.

I am extremely grateful to Professor Ute Hamann for allowing me to perform part of my research in her laboratory for 6 months at the German Cancer Research Center (DKFZ), Heidelberg, Germany. The experience was fantastic and very rewarding in many different personal and professional ways. In addition, thank you for your help with the manuscripts drafts.

I wish to acknowledge funding support from the University of Newcastle, the Hunter Medical Research Institute (HMRI) and especially Ms Jennie Thomas for the funds to support my overseas adventure. Also, I would like to thank all of the women who participated in this study and the gynaecological oncologists, Dr Anthony Proietto and Dr Geoffrey Otton. Without your involvement, this study would not have been possible.

I also have to thank my fellow researchers, especially Dr Bente Talseth-Palmer, Dr Nikola Bowden, Raewyn Billings, Melissa Tooney, Janelle Collins-Langworthy, Dr Amanda Cox, Tiffany Evans, Dr Ricardo Vilain, Dr Carla Kairupan, David Mossman and Mathew Cox for their never-ending support, encouragement and friendship. Thank you to the clinical staff members in the Molecular Genetics Laboratory at Hunter Area Pathology Service (HAPS) for help with technical issues and being great to work with.

I would have never got to this stage of my career without the love, support and guidance from my family. A special thank you to my brother who proofread my thesis, a very big effort on your behalf!

Finally, I would like to thank my partner, Geoff, who kept me sane throughout the writing process. Thank you for being loving, caring, supportive and always making sure I had a smile on my face 😊
TABLE OF CONTENTS

Declaration .. i
Acknowledgements .. ii
Table of Contents .. iii
Abstract ... vi

<table>
<thead>
<tr>
<th>Chapter I</th>
<th>Introduction</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Endometrial Cancer</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Incidence and Death Rates of Endometrial Cancer</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Symptoms, Diagnosis and Treatment of Endometrial Cancer</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>The Role of Hormones in Endometrial Cancer</td>
<td>6</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Estrogens</td>
<td>7</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Progesterone</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>Risk Factors Associated with the Development of Endometrial Cancer</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>Estrogen Dependent and Independent Endometrial Cancer</td>
<td>10</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Genetic Alterations in Estrogen Dependent Endometrial Carcinomas</td>
<td>11</td>
</tr>
<tr>
<td>1.6.1.1</td>
<td>Microsatellite Instability (MSI)</td>
<td>11</td>
</tr>
<tr>
<td>1.6.1.2</td>
<td>K-ras</td>
<td>11</td>
</tr>
<tr>
<td>1.6.1.3</td>
<td>Beta-catenin</td>
<td>12</td>
</tr>
<tr>
<td>1.6.1.4</td>
<td>PTEN</td>
<td>12</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Genetic Alterations in Estrogen Independent Endometrial Carcinomas</td>
<td>13</td>
</tr>
<tr>
<td>1.6.2.1</td>
<td>HER2/neu</td>
<td>13</td>
</tr>
<tr>
<td>1.6.2.2</td>
<td>TP53</td>
<td>13</td>
</tr>
<tr>
<td>1.7</td>
<td>Genetic Alterations in Hereditary and Sporadic Endometrial Cancer</td>
<td>14</td>
</tr>
<tr>
<td>1.8</td>
<td>Types of DNA Sequence Variations</td>
<td>15</td>
</tr>
<tr>
<td>1.9</td>
<td>The Relationship between Hormone Biosynthesis and Endometrial Cancer</td>
<td>17</td>
</tr>
<tr>
<td>1.9.1</td>
<td>CYP11A1</td>
<td>18</td>
</tr>
<tr>
<td>1.9.2</td>
<td>CYP17A1</td>
<td>19</td>
</tr>
<tr>
<td>1.9.3</td>
<td>CYP19A1</td>
<td>19</td>
</tr>
<tr>
<td>1.9.4</td>
<td>HSD17β1 and HSD17β2</td>
<td>20</td>
</tr>
</tbody>
</table>
1.10 The Relationship between Hormone Receptors and Endometrial Cancer

1.10.1 Estrogen Receptor α and β (ESR1 and ESR2) 20
1.10.2 Progesterone Receptor (PGR) 21
1.10.3 Androgen Receptor (AR) 22
1.10.4 Amplified in Breast Cancer 1 (AIB1) 23

1.11 The Relationship between Estrogen Metabolism and Endometrial Cancer

1.11.1 Phase I Estrogen Metabolism 25
 1.11.1.1 CYP1A1 26
 1.11.1.2 CYP1A2 26
 1.11.1.3 CYP1B1 27
1.11.2 Phase II Estrogen Metabolism 28
 1.11.2.1 COMT 28
 1.11.2.2 Glutathione S Transferases (GSTs) 28
 1.11.2.3 SULT1E1 29
 1.11.2.4 UGT1A1 30

1.12 The Relationship between Testosterone Metabolism and Endometrial Cancer 30

1.12.1 5α-reductase II (SRD5A2) 31

1.13 The Relationship between Genes involved in DNA Repair and Cell Cycle Control, and Endometrial Cancer 31

1.13.1 Cyclin D1 32
1.13.2 MUTYH 32
1.13.3 TP53 and MDM2 34

1.14 Summary 36

Aims 36

Statement I Author Contribution to Chapter II Manuscript 37

Chapter II The Association of the COMT V158M Polymorphism with Endometrial/Ovarian Cancer in HNPCC families adhering to the Amsterdam Criteria 38

Statement II Author Contribution to Chapters III-VI Manuscripts 48
Chapter III Polymorphisms in genes of the steroid hormone biosynthesis and metabolism pathways and endometrial cancer risk 50

Chapter IV Estrogen receptor polymorphisms and the risk of endometrial cancer 76

Chapter V Polymorphisms in TP53 and MDM2 combined are associated with high grade endometrial cancer 86

Chapter VI The influence of the Cyclin D1 870 G>A polymorphism as an endometrial cancer risk factor 93

Statement III Author Contribution to Chapter VII Manuscript 100

Chapter VII Genetic variants in MUTYH are not associated with endometrial cancer risk 101

Chapter VIII General Discussion 107

8.1 HNPCC Related Endometrial Cancer and Genetic Variation in Estrogen Metabolism 109

8.2 Polymorphisms in Hormone Biosynthesis and Hormone Receptors Genes and Risk of Endometrial Cancer 110

8.2.1 Estrogens Receptors (ESR1 and ESR2) 111

8.2.2 Androgen Receptor (AR) 111

8.3 Polymorphisms in Estrogen Metabolism Genes and Risk of Endometrial Cancer 112

8.4 Polymorphisms in DNA Repair and Cell Cycle Control Genes, and Risk of Endometrial Cancer 113

8.5 Overall Conclusions 114

8.6 Recommendations 115

8.7 Summary 116

References 117
ABSTRACT

Endometrial cancer is one of the most common female cancers in industrialized countries. Traditional risk factors associated with endometrial cancer are well understood and include excessive exposure to estrogen or estrogen unopposed by progesterone. However, variations in the genes that influence these hormones and their association with endometrial cancer have not been well investigated. By studying genetic variation in endometrial cancer, novel markers of risk may be discovered that can be used to identify women at high risk and for the implementation of specialised treatments. Polymorphisms in the genes involved in the following pathways; hormone biosynthesis, hormone receptors, estrogen metabolism, DNA repair and cell cycle control, have been suggested to be involved in the initiation and development of endometrial cancer. The focus of this study was to examine genetic variants in these pathways to assess the existence of an association with the risk of endometrial cancer.

In the first part of this study, the COMT V158M polymorphism was examined in a hereditary non-polyposis colorectal cancer (HNPCC) cohort to determine its association with disease expression. The heterozygous genotype was over-represented in women with endometrial/ovarian cancer that did not harbour mismatch repair (MMR) gene mutations. This result suggested that the COMT V158M polymorphism may alter the risk of developing HNPCC related endometrial/ovarian cancer in MMR mutation negative women. Since COMT is involved in the metabolism of estrogen and that estrogen is the main risk factor for endometrial cancer development, closer examination was warranted to determine the association of genetic variation involved in hormone-related pathways and endometrial cancer risk, outside of the context of an inherited predisposition to disease.

In the second part of this study, a cohort of 191 women with endometrial cancer and 291 healthy control women were genotyped for polymorphisms in genes involved in hormone biosynthesis, hormone receptors, estrogen metabolism, DNA repair and cell cycle control. The results revealed that variations in estrogen receptor alpha (ESR1) and beta (ESR2), and the androgen receptor (AR), were associated with an increase and decrease in endometrial cancer risk, respectively. Additionally, polymorphisms in CYP1A1, CYP1B1, GSTM1 and GSTP1 were related to a decrease in endometrial cancer risk. A trend was observed for the cyclin D1 870 G>A polymorphism and an increase in endometrial cancer risk, however, this result did not
reach significance. Taken together, these results revealed that perturbations in the hormone receptors and estrogen metabolism genes, may aid in the identification of women at high risk of developing endometrial cancer. Interestingly, stratification of the women with endometrial cancer revealed that combinations of polymorphisms in TP53 and MDM2 were associated with higher grades of cancer. This finding may possibly have significant implications as women with reduced apoptotic ability, due to combinations of polymorphisms in these genes, have an increased risk of presenting with higher grades of endometrial cancer, that are associated with lower survival rates.

In summary, the results of this thesis showed that variation in the estrogen and androgen receptors, and estrogen metabolism genes, may alter the risk of developing endometrial cancer. Moreover, polymorphisms in the cell cycle control genes, TP53 and MDM2, appear to be associated with higher grades of endometrial cancer. This study of polymorphisms may help explain genetic differences in individual susceptibility to endometrial cancer and are markers of risk that aid in the development of effective and personalised strategies to prevent disease development.

This study has improved the understanding of genetic variation associated with endometrial cancer risk. It has the potential to enhance our ability to treat women with endometrial cancer through improved identification and treatment strategies, by virtue of the genetic variation identified, that appears to predispose to disease.