Regulation of the Tumour Suppressor PP2A by Oncogenic Tyrosine Kinases

Kathryn G. Roberts
B.BiomedSci (Hons)

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

December 2009
STATEMENT OF ORIGINALITY

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due references has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Kathryn Roberts
TABLE OF CONTENTS

Abstract xi
Acknowledgments xiv
Publications xvi
Abbreviations xviii

CHAPTER 1 – INTRODUCTION

1.1 Overview 1

1.2 BCR/ABL 2

1.2.1 Clinical presentation of Chronic Myeloid Leukaemia (CML) 2

1.2.2 The Philadelphia chromosome 4

1.2.3 Overview of signalling pathways 6

1.2.3.1 Mitogen activated protein kinase (MAPK) 6

1.2.3.2 PI3K/Akt 6

1.2.3.3 Src family kinases (SFK) 9

1.2.3.4 Janus kinases (JAKs)/signal transducers and activators of transcription (STATs) 9

1.2.3.5 Wnt/β-catenin 9

1.2.4 Transition from chronic phase to blast crisis CML 10

1.3 Receptor Tyrosine Kinase c-KIT 11

1.3.1 Structure and function 11

1.3.2 Expression of c-KIT in human malignancies 15

1.3.2.1 Gastrointestinal stromal tumours (GIST) 15

1.3.2.2 Core-binding factor Acute Myeloid Leukaemia (CBF-AML) 18

1.3.2.3 Mastocytosis 22

1.3.2.4 Melanoma 22

1.3.2.5 c-KIT mutations at codon 816 22

1.4 Small Molecule Inhibitors Targeting BCR/ABL and c-KIT 24

1.4.1 Imatinib 24

1.4.1.1 CML clinical trials 26

1.4.1.2 GIST clinical trials 27

1.4.1.3 AML and mastocytosis clinical trials 28
1.4.2 Second generation inhibitors

1.4.2.1 Nilotinib

1.4.2.2 Dasatinib

1.4.2.3 Sunitinib

1.4.2.4 Alternative therapeutic strategies for resistant disease

1.5 Protein Phosphatase 2A (PP2A)

1.5.1 PP2A subunits

1.5.1.1 The catalytic subunit (PP2Ac)

1.5.1.2 The structural subunit (PP2A A)

1.5.1.3 The regulatory subunits (PP2A B)

1.5.1.3.1 The B55 family

1.5.1.3.2 The B56 family

1.5.1.3.3 The B” family

1.5.1.4 PP2Ac interacting proteins

1.5.2 Signalling pathways regulated by PP2A

1.5.2.1 PP2A and MAPK signalling

1.5.2.2 PP2A and PI3K/Akt signalling

1.5.2.3 PP2A and Wnt/β-catenin signalling

1.5.2.4 PP2A and p53 regulation

1.5.2.5 PP2A and c-Myc regulation

1.5.3 PP2A as a tumour suppressor

1.5.3.1 Okadaic acid and SV40 ST

1.5.3.2 Inhibition of PP2A by BCR/ABL

1.5.3.3 Role of PP2A regulatory subunits in transformation

1.5.3.4 Role of PP2A structural subunits in transformation

1.5.4 PP2A activators

1.5.4.1 Forskolin

1.5.4.2 Ceramide

1.5.4.3 FTY720

1.6 Aims of this Thesis
CHAPTER 2 – MATERIALS AND METHODS

2.1 Buffers and Reagents

2.2 Recombinant DNA Techniques

2.2.1 Plasmid vectors

2.2.1.1 cDNA constructs

2.2.1.2 shRNA constructs

2.2.2 Restriction digests

2.2.3 DNA electrophoresis

2.2.4 DNA purification from agarose gel

2.2.5 Nucleic acid quantification

2.2.6 Ligation of insert into plasmid

2.2.7 Expansion and purification of plasmid DNA

2.2.7.1 Preparation of competent bacteria

2.2.7.2 Transformation of competent bacteria

2.2.7.3 Purification of plasmid DNA from bacteria

2.2.8 DNA sequencing and analysis

2.3 Cell Culture

2.3.1 Media, solutions and cytokines

2.3.2 Cell lines and maintenance

2.3.3 Reviving cell lines

2.3.4 Cryopreservation

2.3.5 Retroviral infection of FDC-P1 cells

2.3.5.1 Generation of FDC-P1 cells expressing BCR/ABL and e-KIT

2.3.5.2 Generation of shRNA-expressing FDC-P1 WT BCR/ABL cells

2.3.6 Drug treatments

2.4 Polymerase Chain Reaction (PCR)

2.4.1 RNA extraction

2.4.2 Reverse transcription PCR (RT-PCR)

2.4.3 Quantitative real-time PCR (qRT-PCR)

2.5 PP2A phosphatase activity assay

2.6 Analytical Procedures for Proteins
2.6.1 Flow cytometry 82
2.6.2 Immunoblotting 83
2.6.3 Immunoprecipitation 86
2.6.4 Phosphorylation assay 86

2.7 Cellular Growth and Survival Assays 88
2.7.1 Cellular proliferation 88
2.7.2 Analysis of cellular morphology 89
2.7.3 Apoptosis assay 89
2.7.4 Cell cycle analysis 90
2.7.5 Colony-forming assay 90

2.8 Animal Procedures 90
2.8.1 Syngeneic mouse model 90
 2.8.1.1 Establishing the FDC-P1 mutant c-KIT tumour model 90
 2.8.1.2 Evaluating the safety of FTY720 in DBA/2J mice 91
 2.8.1.3 FTY720 treatment of FDC-P1 mutant c-KIT tumours 91
 2.8.1.4 Immunohistochemistry 92
 2.8.1.5 TUNEL staining 93

2.9 Statistical Analysis 95

CHAPTER 3 – BCR/ABL ALTERS THE EXPRESSION OF PP2A SUBUNITS 96

3.1 Introduction 96

3.2 Results 98
 3.2.1 Expression of p210 kDa BCR/ABL oncoprotein in FDC-P1 cells 98
 3.2.2 Sensitivity of WT and Y253F BCR/ABL to imatinib 100
 3.2.3 BCR/ABL impairs the activity of PP2A 102
 3.2.4 BCR/ABL upregulates the PP2A scaffolding subunit 102
 3.2.4.1 SET expression 102
 3.2.4.2 PP2A catalytic subunit expression 105
 3.2.4.3 PP2A scaffolding subunit expression 105
 3.2.5 BCR/ABL alters the expression of PP2A regulatory subunits 109
 3.2.5.1 PP2A B55 subunit family expression 109
 3.2.5.2 PP2A B56 subunit family expression 109
3.2.6 PP2A mRNA levels in BCR/ABL+ FDC-P1 cells 113
3.2.7 BCR/ABL disrupts PP2A assembly in FDC-P1 cells 119

3.3 Discussion 122

CHAPTER 4 – THE ROLE OF PP2A COMPLEXES IN BCR/ABL+ LEUKAEMOGENESIS 129

4.1 Introduction 129
4.2 Results 131
 4.2.1 Subcloning of shRNA B56δ into pSR 131
 4.2.2 Stable knockdown of PP2A regulatory subunits in FDC-P1 WT BCR/ABL cells 131
 4.2.3 Functional effects of PP2A regulatory subunit knockdown 133
 4.2.3.1 shB56α restores PP2A activity in FDC-P1 WT BCR/ABL cells 133
 4.2.3.2 shB56α impairs the proliferation of FDC-P1 WT BCR/ABL cells 133
 4.2.3.3 Suppression of B56α and B56δ alters the cellular morphology of FDC-P1 WT BCR/ABL cells 142
 4.3 Discussion 145

CHAPTER 5 – INHIBITION OF PP2A BY ONCOGENIC c-KIT MUTATIONS 153

5.1 Introduction 153
5.2 Results 154
 5.2.1 Mutant c-KIT impairs the activity of PP2A 154
 5.2.2 Mutant c-KIT alters the expression of PP2A subunits 156
 5.2.3 Reactivation of PP2A in mutant c-KIT FDC-P1 cells 159
 5.2.4 Reactivation of PP2A inhibits the proliferation of mutant c-KIT FDC-P1 cells 159
 5.2.5 Reactivation of PP2A induces apoptosis of mutant c-KIT FDC-P1 cells 162
 5.2.6 Reactivation of PP2A inhibits the clonogenic potential of mutant c-KIT cells 165
 5.2.7 Reactivation of PP2A dephosphorylates c-KIT in FDC-P1 cells 169
5.3 Discussion 169
CHAPTER 6 – FTY720 INHIBITS MUTANT C-KIT TUMOUR GROWTH IN VIVO

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>176</td>
</tr>
<tr>
<td>6.2 Results</td>
<td>177</td>
</tr>
<tr>
<td>6.2.1 Establishing an in vivo model for FDC-P1 c-KIT tumour growth</td>
<td>177</td>
</tr>
<tr>
<td>6.2.2 Evaluating the toxicity of FTY720 in DBA/2J mice</td>
<td>177</td>
</tr>
<tr>
<td>6.2.3 FTY720 delays mutant c-KIT tumour growth</td>
<td>179</td>
</tr>
<tr>
<td>6.2.4 FTY720 improves the survival of mice bearing mutant c-KIT tumours</td>
<td>183</td>
</tr>
<tr>
<td>6.2.5 FTY720 prevents the infiltration of D816V c-KIT cells into secondary organs</td>
<td>183</td>
</tr>
<tr>
<td>6.3 Discussion</td>
<td>195</td>
</tr>
</tbody>
</table>

CHAPTER 7 – CONCLUSIONS AND FUTURE DIRECTIONS

APPENDIX

REFERENCES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX</td>
<td>211</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>216</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1.1 Haematopoiesis and the characteristics of CML progenitors 3
Figure 1.2 The Philadelphia chromosome and functional domains of the BCR and ABL proteins 5
Figure 1.3 Oncogenic signalling by p210 kDa BCR/ABL 8
Figure 1.4 Functional domains of the c-KIT receptor 12
Figure 1.5 Signalling pathways activated by c-KIT 14
Figure 1.6 Mutations in c-KIT detected in human malignancies 16
Figure 1.7 Structure of BCR/ABL in complex with imatinib 25
Figure 1.8 Structure of BCR/ABL in complex with nilotinib and dasatinib 30
Figure 1.9 Mechanism of action of sunitinib 34
Figure 1.10 Structure of PP2A holoenzymes 38
Figure 1.11 Post-translational modifications of PP2Ac 40
Figure 1.12 Schematic overview of MAPK signalling regulation by PP2A 46
Figure 1.13 Schematic overview of Wnt/β-catenin signalling regulation by PP2A 48
Figure 1.14 Schematic overview of p53 signalling regulation by PP2A 50
Figure 1.15 BCR/ABL-induced inhibition of PP2A in CML 53
Figure 1.16 Regulation of c-Myc by PP2A and CIP2A 56
Figure 1.17 Mechanisms by which mutant PP2A Aα may induce transformation 58
Figure 1.18 Tumour suppressive properties of PP2A Aβ 59
Figure 1.19 Sphingolipid metabolic pathway and structure of FTY720 62
Figure 1.20 Mechanism of FTY720 immunomodulation 64
Figure 1.21 Reactivation of PP2A inhibits BCR/ABL-mediated leukaemogenesis 66

Figure 2.1 Schematic model for the growth of FDC-P1 mutant c-KIT tumours and FTY720 treatment 94

Figure 3.1 Expression of BCR/ABL in myeloid progenitors 99
Figure 3.2 Inhibition of BCR/ABL⁺ myeloid progenitors with imatinib 101
Figure 3.3 Inhibition of BCR/ABL phosphorylation with imatinib 103
Figure 3.4 BCR/ABL inhibits PP2A activity in FDC-P1 myeloid progenitors 104
Figure 3.5 Expression of SET in BCR/ABL⁺ myeloid progenitors 106
Figure 3.6 Expression of PP2Ac and PP2A A subunits in BCR/ABL⁺ myeloid progenitors

Figure 3.7 Quantitation of PP2Ac and PP2A A in BCR/ABL⁺ myeloid progenitors

Figure 3.8 Expression of PP2A regulatory subunits in BCR/ABL⁺ myeloid progenitors

Figure 3.9 Quantitation of PP2A regulatory subunits in BCR/ABL⁺ FDC-P1 cells

Figure 3.10 Quantitation of PP2A regulatory subunits in 32D and K562 cells

Figure 3.11 mRNA levels of PP2Ac and PP2A A in BCR /ABL⁺ FDC-P1 cells

Figure 3.12 mRNA levels of PP2A B55 in BCR/ABL⁺ FDC-P1 cells

Figure 3.13 mRNA levels of PP2A B56 in BCR/ABL⁺ FDC-P1 cells

Figure 3.14 mRNA levels of PPP2R3A and PPP2R4 in BCR/ABL⁺ FDC-P1 cells

Figure 3.15 PP2A holoenzyme composition in BCR/ABL⁺ FDC-P1 cells

Figure 3.16 Proposed model of PP2A regulation by BCR/ABL in FDC-P1 cells

Figure 4.1 shRNA-mediated gene silencing in mammalian cells

Figure 4.2 Expression of GFP in shRNA-WT BCR/ABL FDC-P1 cells

Figure 4.3 Knockdown of PP2A regulatory subunits in WT BCR/ABL FDC-P1 cells

Figure 4.4 mRNA levels of PP2A regulatory subunits in shRNA-WT BCR/ABL FDC-P1 cells

Figure 4.5 PP2A activity in shRNA-WT BCR/ABL FDC-P1 cells

Figure 4.6 Growth rate of shRNA-WT BCR/ABL FDC-P1 cells

Figure 4.7 Clonogenic potential of shRNA-WT BCR/ABL FDC-P1 cells

Figure 4.8 Colonies formed by shRNA-WT BCR/ABL FDC-P1 cells

Figure 4.9 Colonies formed by shRNA-WT BCR/ABL FDC-P1 cells at a higher magnification

Figure 4.10 Cellular morphology of shRNA-WT BCR/ABL FDC-P1 cells

Figure 4.11 Quantitative analysis of the morphological characteristics displayed by shRNA-WT BCR/ABL FDC-P1 cells

Figure 4.12 Involvement of PP2A B56δ in cell cycle regulation

Figure 4.13 Proposed model of PP2A regulation by BCR/ABL in FDC-P1 cells

Figure 5.1 Surface expression of c-KIT on FDC-P1 cells
Figure 5.2 Expression of PP2A regulatory subunits in c-KIT+ FDC-P1 cells

Figure 5.3 Quantitation of PP2A subunits in c-KIT+ FDC-P1 cells

Figure 5.4 Reactivation of PP2A in mutant c-KIT FDC-P1 cells

Figure 5.5 Reactivation of PP2A induces apoptosis of mutant c-KIT FDC-P1 cells

Figure 5.6 Reactivation of PP2A increases the sub-G₀ population of mutant c-KIT FDC-P1 cells

Figure 5.7 Reactivation of PP2A impairs the clonogenic potential of mutant c-KIT FDC-P1 cells

Figure 5.8 Colony formation of FTY720-treated FDC-P1 cells

Figure 5.9 Cytotoxic effect of FTY720 on mutant c-KIT+ FDC-P1 cells requires PP2A reactivation

Figure 5.10 Reactivation of PP2A dephosphorylates c-KIT

Figure 5.11 Regulation of PP2A by mutant c-KIT and reactivation with FTY720

Figure 6.1 Preliminary studies of FDC-P1 V560G and D816V c-KIT tumour growth

Figure 6.2 Safe administration of FTY720 in DBA/2J mice

Figure 6.3 FTY720 delays mutant c-KIT tumour growth

Figure 6.4 Effect of imatinib on mutant c-KIT tumour growth

Figure 6.5 FTY720 improves the survival of mice bearing mutant c-KIT tumours

Figure 6.6 Effect of imatinib on the survival of mice bearing mutant c-KIT tumours

Figure 6.7 FTY720 reduces mutant c-KIT tumour burden at day 14

Figure 6.8 FTY720 induces apoptosis in FDC-P1 V560G c-KIT tumours at day 14

Figure 6.9 FTY720 induces apoptosis in FDC-P1 D816V c-KIT tumours at day 14

Figure 6.10 FTY720 reduces the splenic weight of mice bearing FDC-P1 D816V c-KIT tumours

Figure 6.11 FTY720 prevents the infiltration of FDC-P1 D816V c-KIT cells into the spleen

Figure 6.12 FTY720 prevents the infiltration of FDC-P1 D816V c-KIT cells into the bone marrow

Figure 6.13 Mice bearing V560G c-KIT tumours do not develop splenomegaly

Figure 6.14 Absence of V560G c-KIT cells in the spleen
Figure 7.1 Proposed model of PP2A regulation by BCR/ABL in myeloid progenitors 203
Figure 7.2 Summary of PP2A regulation by oncogenic c-KIT in myeloid progenitors 206
Figure 7.3 Inhibition of PP2A as a general mechanism employed by oncogenic tyrosine kinases 210

Appendix Figure 1 Expression of PP2Ac-p^{Y307} in CD34⁺ CML primary samples 214
Appendix Figure 2 Combined effects of FTY720 and dasatinib on D816V c-KIT FDC-P1 cell growth 215

LIST OF TABLES

Table 1.1 Signalling pathways regulated by BCR/ABL 7
Table 1.2 Signalling pathways regulated by c-KIT 13
Table 1.3 Differential activation of signalling pathways by mutant c-KIT 17
Table 1.4 Clinical significance of c-KIT mutations in t(8;21) CBF-AML 20
Table 1.5 Clinical significance of c-KIT mutations in inv(16) CBF-AML 21
Table 1.6 Nomenclature and subcellular distribution of *Homo sapiens* PP2A subunits 37

Table 2.1 shRNA constructs 69
Table 2.2 Oligonucleotides for sequencing and standard PCR 73
Table 2.3 Cell lines and maintenance 77
Table 2.4 Oligonucleotides for quantitative real-time PCR (qRT-PCR) 81
Table 2.5 Primary antibody concentrations used for immunoblotting 84
Table 2.6 Secondary antibody concentrations used for immunoblotting 85
Table 2.7 Antibodies and beads used for immunoprecipitation 87

Table 3.1 Sensitivity of BCR/ABL to imatinib 100

Table 5.1 Mutant c-KIT impairs PP2A activity 156
Table 5.2 Cytotoxicity of PP2A activators in mutant c-KIT FDC-P1 cells 161
Table 6.1 Toxicity data for FTY720 treatment of DBA/2J mice 180
ABSTRACT

Reversible protein phosphorylation plays a central role in the regulation of intracellular signalling, and is controlled by the opposing activities of protein kinases and phosphatases. Deregulation of these mechanisms can result in increased proliferation and enhanced survival, which is a hallmark feature of malignant transformation. For example, over 90% of chronic myeloid leukaemia (CML) patients express the BCR/ABL oncoprotein, which exhibits unrestrained tyrosine kinase activity. In addition, activating mutations within the receptor tyrosine kinase, c-KIT, contribute to the pathogenesis of gastrointestinal stromal tumours (GIST), systemic mastocytosis, acute myeloid leukaemia (AML), testicular seminoma and melanoma. The advent of small molecule tyrosine kinase inhibitors, such as imatinib, has revolutionised the treatment of malignancies driven by these oncogenic kinases. However, a proportion of patients are either unresponsive or develop resistance, and as such, relapse and disease progression is a major clinical problem. In order to improve the treatment outcome for these patients, a greater understanding of the signalling pathways regulated downstream of BCR/ABL and c-KIT is required.

The data presented in this thesis indicates that oncogenic BCR/ABL and mutant c-KIT both require inhibition of the tumour suppressor, protein phosphatase 2A (PP2A), to induce tumourigenesis. PP2A is a large family of serine/threonine phosphatases that provide the fine control on signalling pathways by governing the rate and duration of phosphorylation. The heterotrimeric PP2A enzyme is comprised of a structural subunit (PP2A Aα and Aβ), a catalytic subunit (PP2Acα and cβ) and a regulatory subunit, which consists of three unrelated families: B55 (α, β, γ, δ), B56 (α, β, γ, δ, ε) and B” (PR72/130 / PR70/48). Binding of the regulatory subunit to the core PP2A AC dimer directs both the substrate specificity and cellular localisation of the enzyme. The combinatorial assembly of these individual components permits the formation of distinct complexes which have been implicated in numerous cellular functions such as proliferation, survival and mitosis. In particular, important roles for PP2A in various aspects of malignant transformation are beginning to emerge.

Recent work demonstrates that PP2A is functionally inactivated by BCR/ABL in myeloid progenitor cells. Using the mouse myeloid progenitor cell line, FDC-P1, these
observations were confirmed in the current study. Detailed investigation into the underlying mechanisms have demonstrated for the first time that active BCR/ABL increases the expression of the PP2A structural and certain regulatory subunits. This alters the PP2A holoenzyme composition and results in the abundance of complexes containing B55α and B56α. Consequently, B56γ, a known tumour suppressive subunit, appears to be simultaneously displaced. To investigate which subunits are functionally important for BCR/ABL-mediated leukaemogenesis, individual PP2A subunits were targeted with shRNA sequences in WT BCR/ABL FDC-P1 cells. Subsequent evaluation identified B56α as a key player which facilitates the leukaemic phenotype. In accordance with an increase in PP2A activity, knockdown of B56α significantly inhibited the cellular growth and reduced the clonogenic potential of BCR/ABL+ myeloid progenitors. Furthermore, suppression of the B56δ subunit in WT BCR/ABL FDC-P1 cells appears to delay progression through the cell cycle. Together, these findings provide new insights into the biology of PP2A and begin to define the precise mechanisms by which BCR/ABL induces leukaemogenesis via PP2A in CML.

Investigation of the regulation of PP2A was also extended to the oncogenic tyrosine kinase, c-KIT. Using FDC-P1 cells expressing imatinib-sensitive (V560G) or –resistant (D816V) mutant c-KIT, this work demonstrates for the first time that constitutive activation of c-KIT impairs the activity of PP2A, and this is essential for tumourigenesis. Pharmacological reactivation of PP2A with FTY720 significantly reduced the proliferation, impaired the clonogenic potential and induced apoptosis of oncogenic c-KIT cells, whilst having no effect on empty vector controls or WT c-KIT cells stimulated with stem cell factor (SCF). These cytotoxic effects of FTY720 are mediated, in part, by the rapid dephosphorylation, and hence inactivation, of oncogenic c-KIT receptors. These promising in vitro findings were translated into an in vivo model, where the daily administration of FTY720 significantly delayed the growth of mutant c-KIT+ tumours. Furthermore, FTY720 markedly prevented the infiltration of D816V c-KIT tumour cells into secondary lymphoid organs, such as the spleen and bone marrow. As a result, the survival of FTY720-treated mice was significantly prolonged compared to saline-treated controls.
Overall, this body of work greatly enhances our understanding of PP2A function and identifies the complex mechanisms of PP2A regulation by the oncogenic tyrosine kinases, BCR/ABL and c-KIT. Taken together, the data suggests that inhibition of PP2A may represent a general mechanism employed by constitutively active kinases to facilitate tumour growth. As such, this work supports the future application of PP2A-activating agents in a broad range of human malignancies.
ACKNOWLEDGEMENTS

Wow what an amazing journey I’ve experienced during this PhD candidature! Of course there are numerous people who have contributed along the way, and without which, the road to thesis submission would have seemed an almost impossible task. I’d like to acknowledge The University of Newcastle and The Ohio State University for providing the facilities to carry out this research. A special acknowledgement is extended to the Cancer Institute NSW for a Research Scholarship that provided project funding and also enabled me to present my work at national and international conferences. Firstly, a big thank you to my supervisor, Dr. Nikki Verrills, who has been such a fantastic mentor that I honestly could not have dreamed of a more appropriate person for guidance during the past 4 years. It continues to amaze (and scare me a little!) how much we are on the same wavelength on so many different levels. I’ve lost track how many times I’ve received an email saying “have you done/or thought about doing XYZ” when I have either just done the experiments or about to write a very similar email saying “I think it would be interesting to look at XYZ!” Being under the supervision of someone who has such a passion for research is truly inspiring and I have learnt so much from our interesting conversations. In addition to being an amazing role model, Nikki provided me with focus when required and pushed me above and beyond what I thought I was capable of. She was always there to listen and provide advice on any problems I was having, both work-related and personal. Thanks Nik!

I would like to thank Prof. Leonie Ashman for being a continual source of knowledge on a wide range of topics and helping me to think about my work in the bigger picture. Leonie has provided important guidance, particularly in the last six months, when I have had some big decisions to make. Thank you also to Prof. Alistair Sim, who is still officially my co-supervisor, although he has not worked at the University for the last two years. Despite this separation, he was always accessible and still interested in providing feedback on written work. A special thank you is extended to Prof. John Rostas, who I first met when applying for a travel grant through HMRI during the first year of my candidature. Since that time, John has showed a genuine interest in my progress and provided constructive feedback on several aspects of research such as grant writing, presentations and post-doctoral interviews. No matter what time of the
day, even if we ran into each other in the corridor, he was more than happy to stop and
give advice, which is something I really appreciate.

Within the laboratory I would like to send a very big thanks to Fiona McDougall,
without whose help I would still be struggling to catch mice, let alone inject and
measure them on a daily basis! Fiona provided an absolute wealth of knowledge on the
design of the animal experiments, helped with the daily management of the mice and
established the protocols for immunohistochemical and TUNEL staining. I’d also like to
thank Amanda Smith who has not only contributed to extra runs of several experiments,
but on a social level is the one person who has kept me sane! Our morning coffee breaks
was something I always looked forward to. Thanks to Helen Carpenter for her work in
setting up our plasmid database, and always willing to help with any experiment that
required an extra set of hands. Thank you also to Martin Horan for his help in setting up
the real-time PCR assay.

Six months of this work was conducted at The Ohio State University and made possible
by a travel award which was donated by Jennie Thomas through HMRI. Jennie is truly
an inspiring person and I can not thank her enough for enabling me the amazing
opportunity to study abroad. I would also like to thank my supervisor A/Prof. Danilo
Perrotti for accepting me into his laboratory and continuing to maintain contact and
provide feedback on my project. Thanks as well to the lab members, Anna, Paolo and
Josh for making the Perrotti lab such a welcoming and fun working environment! A
special thank you is extended to Anna, who started her PhD at the same time. It was
very comforting to know there was someone else out there who was pulling all nighters
and experiencing the same emotional and mental stress as myself!

I would like to save the biggest thanks to my wonderful parents who have always told
me “the sky is the limit”, and have provided me with every opportunity to achieve my
very best. Their never-ending love and support is a continual source of motivation for
me. Just knowing I could rely on them for anything (and that dinner would always be in
the microwave when I came home late!) was extremely comforting. To my beautiful
friends, especially Skye, Elizabeth, Katie and Ezz. Thank you for understanding when I
couldn’t make most social outings, particularly this year. You have no idea how much
all your thoughtful and motivating messages helped me get through the tough times.
PUBLICATIONS

Patents

International PCT Patent: Inhibition of c-KIT Cancers Filed March 2009

Oral Conference Presentations

Poster Conference Presentations

Awarded a travel scholarship for best student abstract submission.

Awarded runner-up for best student poster.

Awards

Best Poster Presentation – *Australia Society for Medical Research Annual Meeting*, Sydney, June 2009.

GlaxoSmithKline Best Student Poster Presentation – *Hunter Medical Research Institute Conference, Newcastle, September 2008*

Leukaemia Foundation Student Travel Scholarship – *New Directions for Leukaemia Research, Sunshine Coast, April 2008*.

GlaxoSmithKline Runner-up Best Student Poster Presentation – *Hunter Medical Research Institute Conference, Newcastle, September 2008*

Hunter Medical Research Institute Travel Grant – November 2007

Cancer Institute NSW Research Scholar Award – February 2006
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>μg</td>
<td>microgram</td>
</tr>
<tr>
<td>μl</td>
<td>microlitre</td>
</tr>
<tr>
<td>μM</td>
<td>micromolar</td>
</tr>
<tr>
<td>ALL</td>
<td>acute lymphoblastic leukaemia</td>
</tr>
<tr>
<td>AML</td>
<td>acute myeloid leukaemia</td>
</tr>
<tr>
<td>B-CLL</td>
<td>B-cell chronic lymphocytic leukaemia</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>CBF-AML</td>
<td>core-binding factor AML</td>
</tr>
<tr>
<td>CML</td>
<td>chronic myeloid leukaemia</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CML-BC</td>
<td>blast crisis CML</td>
</tr>
<tr>
<td>CML-CP</td>
<td>chronic phase CML</td>
</tr>
<tr>
<td>Ct</td>
<td>cycle threshold</td>
</tr>
<tr>
<td>DAB</td>
<td>diaminobenzidine</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle’s medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribose nucleic acid</td>
</tr>
<tr>
<td>ECL</td>
<td>enhanced chemiluminescence</td>
</tr>
<tr>
<td>ERK</td>
<td>extracellular signal-regulated kinase</td>
</tr>
<tr>
<td>EtOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>FACS</td>
<td>fluorescence-activated cell sorter</td>
</tr>
<tr>
<td>FCS</td>
<td>fetal calf serum</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FLT3</td>
<td>fms-like tyrosine kinase 3</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>g</td>
<td>gravity</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GIST</td>
<td>gastrointestinal stromal tumour</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>granulocyte-macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>GSK3β</td>
<td>glycogen synthase kinase 3β</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidise</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>HSC</td>
<td>haematopoietic stem cell</td>
</tr>
<tr>
<td>ID<sub>50</sub></td>
<td>concentration of drug that inhibits cells by 50%</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>IMDM</td>
<td>Iscove’s modified Dulbecco’s medium</td>
</tr>
<tr>
<td>i.p.</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>JAK</td>
<td>Janus kinases</td>
</tr>
<tr>
<td>JMD</td>
<td>juxtamembrane domain</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>m</td>
<td>molar</td>
</tr>
<tr>
<td>mAb</td>
<td>monoclonal antibody</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen-activated protein kinase</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>nt</td>
<td>nucleotide</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>pAb</td>
<td>polyclonal antibody</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PBA</td>
<td>PBS / 0.1%BSA / 0.1% sodium azide</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>Ph<sub>1</sub></td>
<td>Philadelphia chromosome</td>
</tr>
<tr>
<td>pH</td>
<td>potential of hydrogen</td>
</tr>
<tr>
<td>PI</td>
<td>propidium iodide</td>
</tr>
<tr>
<td>PI3K</td>
<td>phosphatidylinositol 3-kinase</td>
</tr>
<tr>
<td>p.o.</td>
<td>oral gavage</td>
</tr>
<tr>
<td>PP2A</td>
<td>protein phosphatase 2A</td>
</tr>
<tr>
<td>pSR</td>
<td>pSUPER.retro.neo+GFP</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>quantitative real time PCR</td>
</tr>
<tr>
<td>RIPA</td>
<td>radio-immunoprecipitation assay</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse-transcriptase PCR</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RTK</td>
<td>receptor tyrosine kinase</td>
</tr>
<tr>
<td>RTV</td>
<td>relative tumour volume</td>
</tr>
<tr>
<td>S1PR</td>
<td>sphingosine-1-phosphate receptor</td>
</tr>
<tr>
<td>s.c.</td>
<td>subcutaneous</td>
</tr>
<tr>
<td>SCF</td>
<td>stem cell factor</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>SFK</td>
<td>Src family kinases</td>
</tr>
<tr>
<td>SMP</td>
<td>skim milk powder</td>
</tr>
<tr>
<td>SphK</td>
<td>sphingosine kinase</td>
</tr>
<tr>
<td>ST</td>
<td>small T antigen</td>
</tr>
<tr>
<td>STAT</td>
<td>signal transducer and activator of transcription</td>
</tr>
<tr>
<td>SV40</td>
<td>simian virus 40</td>
</tr>
<tr>
<td>TBST</td>
<td>tris buffered saline-Tween 0.1%</td>
</tr>
<tr>
<td>TUNEL</td>
<td>terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling</td>
</tr>
<tr>
<td>U</td>
<td>units</td>
</tr>
<tr>
<td>Wnt</td>
<td>wingless/Int</td>
</tr>
<tr>
<td>WT</td>
<td>wild-type</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Overview

A plethora of signalling pathways are utilised to govern virtually all aspects of cellular function, enabling cells to respond to extracellular signals, such as hormones and growth factors, as well as environmental and nutritional stress. The ability to balance a complex network of signal transduction pathways is important for maintaining normal cellular homeostasis. Signalling pathways are exquisitely regulated through a variety of mechanisms, one of which is reversible phosphorylation. Protein phosphorylation is the most important post-translational modification mechanism utilised by eukaryotic cells to regulate dynamic protein functions. It involves the addition or removal of a negatively charged phosphate group, which can induce a conformational change of a target protein and subsequently alter its interactions with additional proteins. This is a key component that controls numerous cellular processes including gene expression, proliferation and differentiation. The level of protein phosphorylation inside the cell is controlled by the balanced activities of protein kinases and phosphatases. As the deregulation of these enzymes has been implicated in a variety of diseases (e.g. cancer, diabetes and neurodegeneration), an intense area of investigation has focused on the structure, function and regulation of these critical proteins.

During normal cellular function, signals from the microenvironment are detected by cell surface receptors and translated into the activation of protein kinases, which act by phosphorylating substrates, and induce a signal transduction cascade that directly affects the physiological response of a cell to external stimuli. Therefore, it is logical that genetic or functional alterations of these cell components can result in the aberrant activation of pathways that contribute to the development of a transformed phenotype. Some of the best known examples of oncoproteins displaying unrestrained kinase activity are BCR/ABL, which is the driving force behind chronic myeloid leukaemia (CML), and the receptor tyrosine kinase (RTK), c-KIT, which is implicated in the pathogenesis of acute myelogenous leukaemia (AML) and gastrointestinal stromal tumours (GIST).
Conversely, the reversal of protein phosphorylation by phosphatases is essential for providing the fine-tuning on signalling pathways and maintaining a balance in cellular physiology. In this light, the genetic or functional loss of these enzymes is now widely recognised as a hallmark of cancer initiation and progression. Although much is known regarding alterations in kinase function, the role of specific phosphatases in transformation remains poorly characterised. In recent years, the study of protein phosphatases and their regulation has become an expanding field of research aimed at elucidating the specific roles of these enzymes in tumourigenesis. In particular, protein phosphatase 2A (PP2A), which negatively regulates a multitude of signals targeted by oncogenic kinases, has been the subject of intense investigations that reveal its important role as a tumour suppressor protein.

1.2 BCR/ABL

1.2.1 Clinical presentation of Chronic Myeloid Leukaemia (CML)

CML accounts for 15% of adult leukaemia, and approximately 490 newly diagnosed cases are recorded every year in Australia. It can occur at any age but is more common in adults over the age of 50, who represent nearly 70% of all cases. CML is a proliferative disorder that typically involves the myeloid lineage of hematopoietic stem cells (HSC) and evolves in three distinct clinical phases: chronic (CP), accelerated and blast crisis (BC) (Figure 1.1). CML-CP has a relatively indolent presentation in patients and is characterised by the accumulation of mature cells in the peripheral blood, bone marrow and extramedullary sites (Savage et al. 1997). After 3 to 4 years, CML-CP evolves into the accelerated phase, which lasts 4 to 6 months and is characterised by an increase in the frequency of progenitor cells rather than terminally differentiated cells (Kantarjian et al. 1988). The disease finally progresses to CML-BC, which is associated with a severe reduction in cellular differentiation and the rapid expansion of myeloid or lymphoid precursor cells with over 30% of undifferentiated blasts present in the bone marrow and peripheral blood. Typical symptoms include anaemia, fatigue, increased bleeding, frequent infections and splenomegaly (Wong & Witte 2004). Once this end stage is reached, the survival rate is reduced to 3 to 5 months, and limited treatment is available. Therefore, the prognosis for patients presenting with CML-BC is poor (Sacchi et al. 1999, Kantarjian et al. 1987).

1 Australian Institute of Health and Welfare (2007)
A multipotent haematopoietic stem cell (HSC) can differentiate into common myeloid progenitors, which are the precursors for red blood cells, platelets and granulocytes. HSCs can also differentiate into common lymphoid progenitors, which are the precursors for T- and B-cell lymphocytes. The initial phase of chronic myeloid leukaemia is characterised by the expansion of cells from the granulocyte lineage (green). Acquisition of additional molecular and genetic abnormalities causes an arrest in cell differentiation to result in the rapid expansion of common myeloid or lymphoid progenitors (red). [Adapted from Stem Cells: Scientific Progress and Future Research Directions. Department of Health and Human Services (2001)].
1.2.2 The Philadelphia chromosome

Over 90% of CML cases are associated with an acquired genetic abnormality known as the Philadelphia chromosome (Ph¹), which results from a reciprocal translocation between the ABL gene on chromosome 9 and the BCR gene located on chromosome 22 (Figure 1.2A) (Nowell & Hungerford 1960). The Philadelphia chromosome is also present within a smaller subset of acute lymphoblastic leukaemia (ALL) patients (Chan et al. 1987). The reciprocal translocation generates the BCR/ABL fusion oncogene that is translated into the BCR/ABL oncoprotein (Ben-Neriah et al. 1986).

BCR is a signalling protein that contains multiple modular domains and is highly enriched in the brain and haematopoietic cells, with its expression downregulated during myeloid maturation (Wetzler et al. 1993) (Figure 1.2B). ABL is a 145 kDa non-receptor tyrosine kinase that is ubiquitously expressed and exhibits a broad cellular distribution within the nucleus and cytoplasm (Figure 1.2C). The major function of ABL is the transduction of signals from cell surface growth factor and adhesion receptors that regulate cytoskeletal structure (Hernandez et al. 2004, Woodring et al. 2003). The fusion of BCR to ABL during the translocation associated with CML constitutively activates ABL and creates new regulatory motifs (Konopka & Witte 1985). Depending on the precise breakpoints during translocation and RNA splicing, three different forms of BCR/ABL proteins (p185, p210, p230) can be generated in patients, with p210 being the most common (Figure 1.3) (Ren 2005).

It is well established that the unrestrained tyrosine kinase activity of BCR/ABL is necessary for inducing and maintaining the leukaemic phenotype. Ectopic expression of p210 BCR/ABL results in factor-independent growth, increased survival and altered differentiation of immortal haematopoietic cell lines (Daley & Baltimore 1988, Lugo et al. 1990). The introduction of BCR/ABL-transduced bone marrow cells into lethally irradiated mice causes a myeloproliferative disorder that resembles the chronic phase of human CML (Pear et al. 1998, Zhang & Ren 1998). In addition, BCR/ABL fusion transcripts detected by real time quantitative polymerase chain reaction (qRT-PCR) increase with disease progression in CML patients (Elmaagacli et al. 2000).
Figure 1.2 The Philadelphia chromosome and functional domains of BCR and ABL proteins

A) The Philadelphia chromosome results from the reciprocal translocation between ABL on chromosome 9 and BCR on chromosome 22. Adapted from Lydon & Druker 2004.

B) BCR contains a coil-coil oligomerisation domain (OD), serine/threonine kinase domain, Dbl/CDC24 guanine-nucleotide exchange factor homology domain (DH) and pleckstrin homology domain (PH), calcium-dependent lipid binding site (CaLB) and RAC guanosine triphosphase-activating protein domain (RAC-GAP). Points for fusion to ABL are indicated at p185, p210 and p230.

C) Two isoforms of ABL (1a and 1b) are generated by alternative splicing of the first exon. The amino terminal half contains tandem SRC homology 3 (SH3), SH2 and the tyrosine-kinase domains. In the carboxy-terminal region, ABL contains four proline-rich SH3 binding sites (PP); three nuclear localisation signals (NLS) and DNA binding domains (DBD; two actin binding domains (ABD); one nuclear exporting signal (NES). The point that fuses with BCR is indicated. Adapted from Ren 2005.
The predominant cytoplasmic location of BCR/ABL permits the assembly of phosphorylated substrates which are essential for the recruitment and activation of multiple pathways that promote proliferation and genetic instability while suppressing apoptosis (Cortez et al. 1995). These include, but are not limited to, RAS/mitogen activated protein kinase (MAPK) (Sawyers et al. 1995, Peters et al. 2001), phosphatidylinositol 3-kinase (PI3K)/Akt (Skorski et al. 1997, Skorski et al. 1995), CRK oncogene-like protein/focal adhesion kinase (CRKL) (ten Hoeve et al. 1994), signal transducer and activator of transcription 5 (STAT5) (Nieborowska-Skorska et al. 1999, Shuai et al. 1996) and the wingless/Int (Wnt)/β-catenin pathway (Coluccia et al. 2007) (Figure 1.3 and Table 1.1). Together, this data indicates that BCR/ABL plays a central role in the pathogenesis of CML-CP (Ren 2005).

1.2.3 Overview of signalling pathways

1.2.3.1 Mitogen activated protein kinase (MAPK)

The MAPK pathway represents a large family of protein kinases that regulate diverse signal transduction cascades controlling cellular proliferation, differentiation, adaptation to environmental stress and apoptosis (Widmann et al. 1999). Thus far, five well characterised families of mammalian MAPK have been identified: extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal activated protein kinases (JNK), p38 MAPK, ERK3/4 and ERK5 (Schaeffer & Weber 1999). Activation of these pathways can be induced by a diverse range of stimuli including cytokines, growth factors, hormones and cellular stress. This results in the phosphorylation of downstream substrates including membrane and cytosolic proteins as well as transcription factors (Pearson et al. 2001). The most extensively studied MAPK signalling cascade in BCR/ABL-induced transformation is the Ras-Raf1-MEK1/2-ERK1/2 pathway (Calabretta & Perrotti 2004).

1.2.3.2 PI3K/Akt

PI3K are a family of lipid kinases that phosphorylate the 3’-hydroxyl group of phosphoinositides at the cellular membrane and are classified as class 1A or class 1B based on their activation by RTKs or G protein-coupled receptors, respectively. The members of class 1A exist in a heterodimeric complex composed of a 110 kDa catalytic subunit and a 85 kDa regulatory subunit (Klippel et al. 1994). A major downstream
Table 1.1 Signalling pathways regulated by BCR/ABL

<table>
<thead>
<tr>
<th>Pathways</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proliferation</td>
<td></td>
</tr>
<tr>
<td>RAS</td>
<td>(Sawyers et al. 1995, Skorski et al. 1994)</td>
</tr>
<tr>
<td>ERK1/2</td>
<td>(Cortez et al. 1997)</td>
</tr>
<tr>
<td>β-catenin</td>
<td>(Coluccia et al. 2007)</td>
</tr>
<tr>
<td>c-Myc</td>
<td>(Stewart et al. 1995)</td>
</tr>
<tr>
<td>Survival / Apoptosis</td>
<td></td>
</tr>
<tr>
<td>PI3K/Akt</td>
<td>(Skorski et al. 1997, Skorski et al. 1995)</td>
</tr>
<tr>
<td>STAT5</td>
<td>(Shuai et al. 1996)</td>
</tr>
<tr>
<td>Bcl-xL</td>
<td>(Horita et al. 2000)</td>
</tr>
<tr>
<td>Bcl2</td>
<td>(Sanchez-Garcia & Grutz 1995)</td>
</tr>
<tr>
<td>BAD</td>
<td>(Salomoni et al. 2000)</td>
</tr>
<tr>
<td>Phosphatases</td>
<td></td>
</tr>
<tr>
<td>PP2A</td>
<td>(Neviani et al. 2005)</td>
</tr>
<tr>
<td>SHP-1</td>
<td>(Bruecher-Encke et al. 2001)</td>
</tr>
<tr>
<td>SHIP1</td>
<td>(Odai et al. 1997)</td>
</tr>
<tr>
<td>SHIP2</td>
<td>(Wisniewski et al. 1999)</td>
</tr>
<tr>
<td>Cytoskeletal</td>
<td></td>
</tr>
<tr>
<td>CrkL</td>
<td>(ten Hoeve et al. 1994)</td>
</tr>
<tr>
<td>Paxillin</td>
<td>(Salgia et al. 1995)</td>
</tr>
<tr>
<td>Cell Cycle / DNA Repair</td>
<td></td>
</tr>
<tr>
<td>Cyclin D2</td>
<td>(Jena et al. 2002)</td>
</tr>
<tr>
<td>p53</td>
<td>(Pierce et al. 2000)</td>
</tr>
<tr>
<td>Mdm2</td>
<td>(Trotta et al. 2003)</td>
</tr>
<tr>
<td>Ubiquitination</td>
<td></td>
</tr>
<tr>
<td>c-Cbl</td>
<td>(de Jong et al. 1995)</td>
</tr>
</tbody>
</table>
Figure 1.3 Leukaemogenic signalling by the p210 kDa BCR/ABL oncoprotein
Schematic representation of a selection of BCR/ABL-induced pathways regulating proliferation and survival of BCR/ABL-transformed haematopoietic stem cells.
effector of the PI3K pathway is the serine/threonine kinase, Akt, which is recruited to the plasma membrane upon activation and regulates various cellular processes including survival and apoptosis (Datta et al. 1996). Numerous reports have demonstrated Akt is a central node in tumour-promoting pathways that contribute to cell survival and evasion of apoptosis (Manning & Cantley 2007, Cully et al. 2006). Like most oncogenic kinases, deregulated activity of Akt results from aberrant regulation or, less frequently, transforming mutations (Carpten et al. 2007, Luo et al. 2003).

1.2.3.3 Src family kinases (SFKs)
The proto-oncogene Src encodes a nonreceptor tyrosine kinase whose expression and activity correlates with advanced malignancy and poor prognosis in a variety of human cancers (Wheeler et al. 2009). Nine enzymes with homology to Src, including Lyn, Lck and Fyn have been identified and collectively are referred to as Src family kinases (SFKs). Given the large number of family members, SFKs are involved in a wide range of cellular functions including proliferation, differentiation, cell cycle progression, survival and protein trafficking (Thomas & Brugge 1997).

1.2.3.4 Janus kinases (JAKs)/signal transducers and activators of transcription (STATs)
The Janus kinases (JAKs) are cytoplasmic tyrosine kinases that are rapidly activated by ligand binding to cytokine receptors or RTKs (Rane & Reddy 2002). Important targets for activated JAKs are the cytoplasmic STAT molecules. Upon phosphorylation, STATs undergo dimerisation and subsequently translocate to the nucleus where they initiate transcription of target genes by binding to upstream promoter regions (Steelman et al. 2004).

1.2.3.5 Wnt/β-catenin
The Wnt pathway is important for stem-cell maintenance and cellular proliferation during development (Reya & Clevers 2005). In the absence of Wnt factors, the modular protein axin provides a scaffold for the binding of adenomatous polyposis coli (APC), glycogen synthase kinase 3β (GSK3β) and β-catenin in a destruction complex (Ikeda et al. 1998). This facilitates serine/threonine phosphorylation of β-catenin by GSK3β, which results in its proteasome-dependent degradation (Aberle et al. 1997). Binding of Wnt ligand to its cell surface receptor, Frizzled, causes activation of Dishevelled, a cytoplasmic protein that is recruited to the plasma membrane where it antagonises
GSK3β activity (Miller et al. 1999). This results in β-catenin stabilisation, nuclear accumulation and interaction with T-cell factor/lymphoid enhancer factor (TCF/LEF) family members to induce transcription of numerous genes important for cell proliferation and survival (Reya & Clevers 2005). Deregulation of this pathway contributes to the pathogenesis of epithelial cancers including colon, pancreatic and skin (Eastman & Grosschedl 1999).

1.2.4 Transition from chronic phase to blast crisis CML

The evolution of CML from the chronic phase into blast crisis is associated with the accumulation of secondary chromosomal and/or molecular alterations (Kantarjian et al. 1987, Faderl et al. 1999). The precise mechanisms underlying these effects remain unclear. However, it is predicted that the unrestrained activity of BCR/ABL promotes additional abnormalities that are essential for the expansion of cell clones with increasingly malignant characteristics, such as enhanced proliferative potential and reduced apoptotic susceptibility. These events remain crucial for the leukaemic phenotype and directly promote the differentiation arrest of myeloid or lymphoid precursors, which is a distinctive feature of blast crisis (Calabretta & Perrotti 2004).

Interestingly, the vast majority of secondary changes involve 1) genes encoding nuclear-localised proteins or 2) mutation or loss of function of tumour suppressors. For example, inactivation of p53 occurs in approximately 30% of CML-BC patients (Ahuja et al. 1989), and loss of function impairs the response to the tyrosine kinase inhibitor, imatinib, in vitro and in vivo (Wendel et al. 2006). Deletion of the INK4-ARF tumour suppressor locus occurs in 50% of Ph1 ALL patients (Sill et al. 1995). Moreover, mice injected with Arf−/− BCR/ABL+ cells display enhanced development of leukaemia compared to Arf+/+ mice, and are resistant to high doses of imatinib (Williams et al. 2006). A recent finding demonstrates that increased expression of the leukaemia-associated SET protein functionally inactivates PP2A in blast crisis CD34+ progenitors, and this is essential for blastic transformation (Neviani et al. 2005). Together, these findings indicate that loss of tumour suppressor function may play a key role in the evolution of CML-BC. To direct the development of improved therapies that prevent the progression of CML into blast crisis, further investigation into the molecular aberrations regulated by BCR/ABL is required.
1.3 Receptor Tyrosine Kinase c-KIT

1.3.1 Structure and function

c-KIT is classified as a type III RTK and is structurally similar to platelet-derived growth factor receptor (PDGFR) and Fms-like tyrosine kinase 3 (FLT-3) (Qiu et al. 1988). The c-KIT gene is located at the locus 4q11-q21 (Yarden et al. 1987) and was identified at the genomic level as the cellular homologue of the v-kit oncogene, the transforming gene of the Hardy-Zuckerman 4 feline sarcoma virus (Besmer et al. 1986). Distinguishing features of the c-KIT receptor include an extracellular region comprised of five immunoglobulin-like loops followed by a single hydrophobic transmembrane domain that anchors the receptor to the plasma membrane. The intracellular region contains a juxtamembrane (JMD) and a tyrosine kinase domain split by an interkinase sequence into two sections, the ATP binding pocket and phosphotransferase catalytic site (Qiu et al. 1988) (Figure 1.4).

Binding of stem cell factor (SCF) to c-KIT induces homodimerisation of the receptor (Ashman 1999) and facilitates the autophosphorylation of specific tyrosine residues within the cytoplasmic domain (Mol et al. 2003). This creates a scaffold which forms docking sites for signal transduction molecules that activate pathways important for cellular proliferation, adhesion, migration, differentiation and survival (Figure 1.5 and Table 1.2) (Lennartsson et al. 2005, Masson & Rönnstrand 2009). These include MAPK (Hong et al. 2004, Lennartsson et al. 1999), PI3K/Akt (Lev et al. 1992, Blume-Jensen et al. 1998), JAK/STATs (Brizzi et al. 1999, Weiler et al. 1996), SFKs (Linnekin et al. 1997, Broudy et al. 1999, Voytyuk et al. 2003) and the Wnt/β-catenin pathway (Kajiguchi et al. 2008, Tickenbrock et al. 2008). The c-KIT receptor also associates directly with growth factor receptor binding protein-2 (Grb2) (Thommes et al. 1999), which recruits the scaffolding protein Grb2-associated binding protein (Gab2) (Nishida et al. 1999) into a multiprotein complex to activate downstream pathways including MAPK and PI3K (Sun et al. 2008).

Negative regulation of the c-KIT receptor is mediated through multiple mechanisms, two of which include the Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) (Kozlowski et al. 1998) and protein kinase C (PKC) (Blume-Jensen et al. 1995). SHP-1 interacts with Tyr569 in the c-KIT JMD, whilst PKC is
Figure 1.4 Functional domains of the c-KIT receptor
Structural features of c-KIT include an extracellular region comprised of five immunoglobulin-like loops (1-5), followed by a single hydrophobic transmembrane domain. The intracellular region contains a juxtamembrane domain and a tyrosine kinase split by the kinase insert into the ATP binding pocket and phosphotransferase catalytic site.
Table 1.2 Signalling pathways regulated by c-KIT

<table>
<thead>
<tr>
<th>Pathways</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proliferation</td>
<td></td>
</tr>
<tr>
<td>RAS</td>
<td>(Hong et al. 2004)</td>
</tr>
<tr>
<td>Shc</td>
<td>(Lennartsson et al. 1999)</td>
</tr>
<tr>
<td>SFK / Lyn</td>
<td>(Voytyuk et al. 2003, Linnekin et al. 1997)</td>
</tr>
<tr>
<td>β-catenin</td>
<td>(Kajiguchi et al. 2008, Tickenbrock et al. 2008)</td>
</tr>
<tr>
<td>c-Myc</td>
<td>(Kajiguchi et al. 2008)</td>
</tr>
<tr>
<td>Survival / Apoptosis</td>
<td></td>
</tr>
<tr>
<td>PI3K</td>
<td>(Lev et al. 1992)</td>
</tr>
<tr>
<td>Akt</td>
<td>(Blume-Jensen et al. 1998)</td>
</tr>
<tr>
<td>JAK2</td>
<td>(Weiler et al. 1996)</td>
</tr>
<tr>
<td>STAT5</td>
<td>(Brizzi et al. 1999)</td>
</tr>
<tr>
<td>Ubiquitination</td>
<td></td>
</tr>
<tr>
<td>SFK</td>
<td>(Broudy et al. 1999)</td>
</tr>
<tr>
<td>Cbl</td>
<td>(Sun et al. 2007)</td>
</tr>
</tbody>
</table>
Figure 1.5 Signalling pathways activated by c-KIT

Binding of stem cell factor (SCF) to the first three immunoglobulin-like loops of c-KIT induces homodimerisation and autophosphorylation of the receptor. This leads to the activation of multiple signalling components involved in cellular proliferation and survival. SHP-1 and receptor ubiquitination by Cbl negatively regulates c-KIT signalling.
involved in a negative feedback loop following SCF stimulation and regulates c-KIT through the phosphorylation of two serine residues, 741 and 746, within the kinase insert. Another important mechanism of c-KIT modulation is through ubiquitin-mediated internalisation (Masson et al. 2006). This process is regulated by ubiquitin E3 ligases, such as the Cbl family, which become activated upon binding to c-KIT and attach ubiquitin molecules to the receptor, targeting it for degradation (Sun et al. 2007).

1.3.2 Expression of c-KIT in human malignancies

Expression of c-KIT is important for the normal development of HSCs, mast cells, germ cells, melanocytes and interstitial cells of Cajal (Ashman 1999). Consistent with this, gain-of-function c-KIT mutations leading to constitutive activation of the receptor have been documented in core-binding factor acute myeloid leukaemia (CBF-AML) (Mrozek et al. 2008), systemic mastocytosis (Worobec et al. 1998), GIST (Hirota et al. 1998), testicular seminoma (Kemmer et al. 2004) and a subset of melanoma patients (Figure 1.6) (Smalley et al. 2009). Subsequent studies have revealed that amino acid changes in the JMD are commonly detected in GIST, whilst mutations in the kinase domain, are important in the pathology of CBF-AML and mastocytosis (Lennartsson et al. 2005).

1.3.2.1 Gastrointestinal stromal tumours (GIST)

GIST constitutes a distinct group of stromal neoplasms that arise from the transformation of interstitial cells of Cajal, or their mesenchymal stem cell precursors (Duensing et al. 2004). Although GIST account for 5% of tumours located within the gastrointestinal tract, they are the most common form found within the mesenchyme (Antonescu et al. 2004, Fletcher et al. 2002). Expression of c-KIT is readily detected by immunohistochemical staining on up to 90% of patient samples (Logrono et al. 2004). Somatic c-KIT mutations detected within GIST patients are extremely heterogeneous and include in frame deletions and insertions of various sizes along with point mutations that result in amino acid substitutions (Hirota et al. 1998). However, the most frequent mutations are observed within exon 11, which corresponds to the JMD (e.g V560G) (Corless et al. 2004, Taniguchi et al. 1999). This region interacts with the ATP binding lobe of the kinase domain to modulate its catalytic activity (Chan et al. 2003). Consequently, oncogenic mutations cause structural alterations that relieve this auto-inhibitory function.
Figure 1.6 Mutations of c-KIT detected in human malignancies
Location of activating c-KIT mutations that contribute to the development of gastrointestinal stromal tumours (GIST), mastocytosis, core-binding factor acute myeloid leukaemia (CBF-AML), testicular seminoma and melanoma.
The differential activation of downstream signalling cascades from JMD mutations (V560G and del559) have been examined in cellular mouse models (Table 1.3). Notably, del559 c-KIT constitutively associates with the 85 kDa regulatory subunit of PI3K (Vanderwinden et al. 2006). Interestingly, there is a general consensus that JMD mutations do not activate the MAPK/ERK pathway (Casteran et al. 2003, Frost et al. 2002). With respect to other downstream signalling pathways, very low constitutive phosphorylation of Akt and STAT3/STAT5 have been reported, with a sustained response only evoked upon SCF stimulation (Chen et al. 2003, Frost et al. 2002, Casteran et al. 2003). The ability of these cells to activate multiple signalling pathways similar to WT c-KIT when exposed to SCF indicates that pathways driving growth factor-independent proliferation and those controlling cellular responses are distinctly regulated. SHP-1 is also regulated by oncogenic c-KIT activation, as inhibition of c-KIT with imatinib in BaF3 lymphoid cells expressing del559 c-KIT elevates the levels of SHP-1, and this effect is reversed after drug removal. In the same cellular model, the levels of alternate phosphatases including SHP-2, PTEN and the tyrosine phosphatase SH-PTP1 were comparable to WT c-KIT, indicating a specific effect on SHP-1 (Vanderwinden et al. 2006).

<table>
<thead>
<tr>
<th>Signalling molecule</th>
<th>WT c-KIT</th>
<th>JMD c-KIT mutant</th>
<th>D816V c-KIT mutant</th>
</tr>
</thead>
<tbody>
<tr>
<td>p85 – PI3K</td>
<td>No*</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Akt</td>
<td>No*</td>
<td>No*</td>
<td>No*</td>
</tr>
<tr>
<td>ERK1/2</td>
<td>No*</td>
<td>No*</td>
<td>Yes*#</td>
</tr>
<tr>
<td>STAT3</td>
<td>No</td>
<td>Yes#</td>
<td>Yes</td>
</tr>
<tr>
<td>STAT5</td>
<td>No*</td>
<td>No*</td>
<td>NR</td>
</tr>
<tr>
<td>SFK</td>
<td>No*</td>
<td>NR</td>
<td>No</td>
</tr>
<tr>
<td>SHP-1</td>
<td>Basal</td>
<td>Basal</td>
<td>Reduced</td>
</tr>
</tbody>
</table>

*Induced with SCF stimulation; #Low levels
JMD, juxtamembrane domain; NR, not reported; WT, wild-type

Table 1.3 Differential activation of signalling pathways by mutant c-KIT
1.3.2.2 Core-binding factor Acute Myeloid Leukaemia (CBF-AML)

AML is a heterogeneous disease that is classified based on the presence of specific cytogenetic abnormalities as well as the French-American-British classification of leukaemic cells and immunophenotype (Tefferi & Vardiman 2008). It has a prevalence of 7.4 cases per 100 000, rising to 36.7 cases in adults over 65 years of age\(^1\). CBF-AML is among the most common cytogenetic subtype of AML, being detected in ~13% of adults with de novo disease (Byrd et al. 2002). Current therapeutic options involve multiple cycles of high-dose cytarabine (Byrd et al. 2004, Byrd et al. 1999, Bloomfield et al. 1998), however, only 50% of patients are cured using this treatment (Appelbaum et al. 2006, Marcucci et al. 2005, Schlenk et al. 2004). Thus, to direct the development of improved therapies, further investigation underlying the mechanisms of this disease is required.

CBFs are a group of heterodimeric transcriptional regulators that function in haematopoietic development. They consist of three distinct DNA-binding CBF\(\alpha\) subunits, Runx-related transcription factor 1 (RUNX1; also known as AML1), and a common CBF\(\beta\) component (CBFB) (Speck & Gilliland 2002). Homozygous loss of either gene in a mouse knockout model results in lack of definitive haematopoiesis and embryonic death at day 12.5-13.5 (Downing 2003). The most common chromosomal rearrangements observed in CBF-AML are t(8;21) (Downing et al. 1993) and inv(16) (Liu et al. 1993), that result in expression of the fusion genes AML1/ETO and CBFB/MYH11, respectively.

Both in vitro (Peterson et al. 2007) and in vivo models (Yuan et al. 2001) have demonstrated that expression of AML1/ETO and CBFB/MYH11 contribute to the development of leukaemia by acting as dominant negative inhibitors of normal myeloid differentiation, thereby facilitating the expansion of a progenitor pool (Speck & Gilliland 2002). However, their expression exerts limited effect on cellular proliferation (Dayyani et al. 2008, Yuan et al. 2001), and neither fusion protein alone is sufficient for leukaemogenesis (Muller et al. 2008, Peterson et al. 2007). This is highlighted by mouse models of CBF-AML utilising either conditional knock in of AML1/ETO (Higuchi et al. 2002) or knock in of CBFB/MYH11 in embryonic stem cells (Castilla et

\(^{1}\) Australian Institute of Health and Welfare (2007)
al. 1999). In both cases, the development of AML requires secondary mutations induced by chemical mutagens such as N-ethyl-N-nitrosurea (ENU) (Castilla et al. 1999, Yuan et al. 2001).

These observations support a multi-step model of leukaemogenesis involving the cooperation between activating mutations (class I) and gene rearrangements (class II) in haematopoietic progenitors. Class I mutations confer a proliferative and/or survival advantage and are best exemplified by constitutively activated tyrosine kinases. Class II mutations, such as CBF rearrangements, are associated with impaired haematopoietic differentiation (Speck & Gilliland 2002). In support of this theory, co-expression of AML1/ETO and FLT3 length mutation potently synergise to promote the development of aggressive leukaemia in a mouse bone marrow transplantation model (Schessl et al. 2005).

Activating mutations of c-KIT are an ideal candidate for transforming haematopoietic cells. Indeed mutations within c-KIT have been detected in up to 47% of patients with t(8;21) (Table 1.4) and 38% of patients with inv(16) (Table 1.5). A large proportion of activating c-KIT mutations in AML patients are located within the kinase domain, and particularly involve a substitution at codon 816 (e.g. D816V/H/Y) (Beghini et al. 1998, Beghini et al. 2000). In most cases, the presence of D816V is associated with a higher relapse rate and reduced overall survival compared to patients expressing the WT receptor (Paschka et al. 2006, Schnittger et al. 2006, Boissel et al. 2006, Shimada et al. 2006, Jiao et al. 2009). Furthermore, the Kasumi-1 cell line, which was established from the peripheral blood of a t(8;21) CBF-AML patient in relapse (Asou et al. 1991), expresses an N822K substitution (Beghini et al. 2002).

The presence of a novel c-KIT mutation comprising small in-frame deletions or insertions in exon 8 has also been identified in CBF-AML patients. This mutation results in the consistent loss of asparagine at codon 419, which is located in the fifth immunoglobulin-like domain of c-KIT (e.g. del D419) (Gari et al. 1999, Cammenga et al. 2005). Clinical observations demonstrate an association between exon 8 mutations and an increase in relapse rate (Care et al. 2003).
<table>
<thead>
<tr>
<th>Cohort</th>
<th>Age range (median)</th>
<th>% mutated / total</th>
<th>Type of mutation (number of cases)</th>
<th>Prognostic outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK Medical Research Council AML trials and DBHOG</td>
<td>16-83</td>
<td>13% (6/47)</td>
<td>D816 (5) Exon 8 (1)</td>
<td>NR</td>
<td>(Care et al. 2003)</td>
</tr>
<tr>
<td>Adult de novo CBF-AML</td>
<td>NR</td>
<td>46.8% (15/32)</td>
<td>D816 (NR) Exon 8 (NR)</td>
<td>NR</td>
<td>(Beghini et al. 2004)</td>
</tr>
<tr>
<td>CBF-AML</td>
<td>3-68 (27.4)</td>
<td>48.1% (26/54)</td>
<td>D816 (9) N822K (10) Exon 8 (1)</td>
<td>NR</td>
<td>(Wang et al. 2005)</td>
</tr>
<tr>
<td>De novo CBF-AML</td>
<td>4-48 (46)</td>
<td>38% (14/37)</td>
<td>D816 (7) N822K (9) Exon 8 (1)</td>
<td>RFS significantly lower for c-KIT mutations compared to WT. No impact on OS.</td>
<td>(Nanri et al. 2005)</td>
</tr>
<tr>
<td>Adult de novo CBF-AML. CALGB clinical trial.</td>
<td>18-71 (37)</td>
<td>22% (11/49)</td>
<td>D816 (4) N822 (4) Exon 8 (2)</td>
<td>CIR significantly higher for c-KIT mutations compared to WT. No impact on OS.</td>
<td>(Paschka et al. 2006)</td>
</tr>
<tr>
<td>Adult and pediatric de novo CBF-AML</td>
<td>1-75 (33)</td>
<td>12% (6/50)</td>
<td>D816 (3) Exon 8 (3)</td>
<td>EFS, RFS and OS significantly shorter for c-KIT mutations compared to WT.</td>
<td>(Boissel et al. 2006)</td>
</tr>
</tbody>
</table>
Table 1.4 Clinical significance of c-KIT mutations in t(8;21) CBF-AML continued

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Age range (median)</th>
<th>% mutated / total</th>
<th>Type of mutation (number of cases)</th>
<th>Prognostic outcome</th>
<th>Reference</th>
</tr>
</thead>
</table>
| Untreated adult CBF-AML from 6 Italian medical centres | 16-76 (40.5) | 47% (19/42) | D816 (12)
Exon 8 (5)
Exon 11 (2) | No impact on RI or OS | (Cairoli et al. 2006) |
| Pediatric de novo CBF-AML. JCACSG trial. | 2-15 (7.5) | 17.4% (8/46) | D816 (4)
N822K (4) | RR significantly higher, EFS and OS shorter for c-KIT mutations compared to WT. | (Shimada et al. 2006) |
| Pediatric de novo CBF-AML. | <17 | 43% (12/28) | D816 (NR)
N822K (NR)
Exon 8 (NR) | No impact on EFS or OS | (Shih et al. 2007) |
| Adult and pediatric de novo CBF-AML | 1.6-72.2 (29.3) | 21% (7/34) | D816 (4)
Exon 8 (1)
JMD (2) | No impact on CIR or OS. | (Marková et al. 2009) |

CIR, cumulative incidence of relapse; EFS, event-free survival; NR, not reported; OS, overall survival; RFS; relapse-free survival; RR, relapse risk.
DBHOG, Dutch-Belgian Haematology-Oncology Group; CALGB, Cancer and Leukemia Group B. JCACSG, Japanese Childhood AML Cooperative Study Group.
<table>
<thead>
<tr>
<th>Cohort</th>
<th>Age range, (median)</th>
<th>% mutated / total</th>
<th>Type of mutation (number of cases)</th>
<th>Prognostic outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK Medical Research Council AML trials and DBHOG</td>
<td>16-83</td>
<td>32% (20/63)</td>
<td>D816 (5) Exon 8 (15)</td>
<td>RR significantly higher for exon 8 mutations. No impact on OS.</td>
<td>(Care et al. 2003)</td>
</tr>
<tr>
<td>Adult CBF-AML</td>
<td>NR</td>
<td>45% (9/20)</td>
<td>D816 (NR) Exon 8 (NR)</td>
<td>NR</td>
<td>(Beghini et al. 2004)</td>
</tr>
<tr>
<td>Adult de novo CBF-AML. CALGB trial.</td>
<td>19-57 (40)</td>
<td>30% (18/61)</td>
<td>D816 (10) Exon 8 (8)</td>
<td>CIR significantly higher and OS shorter for c-KIT mutations compared to WT.</td>
<td>(Paschka et al. 2006)</td>
</tr>
<tr>
<td>Adult and pediatric de novo CBF-AML</td>
<td>1-75 (33)</td>
<td>22% (10/46)</td>
<td>D816 (1) Exon 8 (9)</td>
<td>No significant difference in 6 year EFS or OS compared to WT</td>
<td>(Boissel et al. 2006)</td>
</tr>
<tr>
<td>Untreated adult CBF-AML from 6 Italian medical centres</td>
<td>17-88 (51)</td>
<td>48% (12/25)</td>
<td>D816 (8) Exon 8 (3) V530I (1)</td>
<td>NR</td>
<td>(Cairoli et al. 2006)</td>
</tr>
<tr>
<td>Pediatric de novo CBF-AML.</td>
<td><17</td>
<td>38% (5/13)</td>
<td>D816 (NR) N822K (NR) Exon 8 (NR)</td>
<td>No impact on EFS or OS</td>
<td>(Shih et al. 2007)</td>
</tr>
<tr>
<td>Adult and pediatric de novo CBF-AML</td>
<td>1.6-72.2 (29.3)</td>
<td>50% (13/26)</td>
<td>D816 (3) N822K (2) Exon 8 (9)</td>
<td>No impact on CIR or OS.</td>
<td>(Marková et al. 2009)</td>
</tr>
</tbody>
</table>

CIR, cumulative incidence of relapse; EFS, event-free survival; NR, not reported; OS, overall survival; RFS, relapse-free survival; RR, relapse risk. DBHOG, Dutch-Belgian Haematology-Oncology Group; CALGB, Cancer and Leukemia Group B.
1.3.2.3 Mastocytosis
Mastocytosis refers to a heterogeneous group of conditions characterised by hyper-proliferation of mast cells. Cutaneous mastocytosis is limited to the skin and can be treated successfully with anti-mediator drugs that inhibit mast cell activation (Hennessy et al. 2004). In contrast, systemic mastocytosis involves the infiltration of mast cells into various organs such as the spleen, bone marrow, lymph nodes and the liver. The current therapy for these patients includes interferon (IFN)-α or cladribine, but their efficacy is limited and the prognosis remains poor (Valent et al. 2005). Systemic mastocytosis is associated with kinase domain c-KIT mutations and nearly all patients express the 816 codon substitutions (Longley et al. 1999). Clinical observations also indicate these patients are more likely to display symptoms of an associated haematological disorder (Worobec et al. 1998).

1.3.2.4 Melanoma
Interest in the role of c-KIT in melanoma has recently been sparked following the identification of subgroups harbouring activating c-KIT mutations. These particular lesions are found on sites of the body that receive very little UV exposure, such as the soles of the feet (acral) or mucosal membranes. Notably, activating mutations have been detected in up to 62% of acral and mucosal melanomas, as well as 28% of melanomas on chronic sun-induced damaged skin (Curtin et al. 2006, Ashida et al. 2009, Rivera et al. 2008). Within these subgroups, there are also cases in which overexpression of c-KIT leads to constitutive signalling in the absence of an activating mutation (Smalley et al. 2008).

1.3.2.5 c-KIT mutations at codon 816
Constitutive activation induced by the D816V c-KIT mutation occurs independently of receptor dimerisation in the extracellular domain (Tsujimura et al. 1999). Molecular modelling has demonstrated that aspartic acid at codon 816 forms two hydrogen bonds with the peptide backbone to stabilise the activation loop into an inactive confirmation. These bonds are disrupted when aspartate is replaced by another amino acid and results in the transition of the activation loop away from the ATP binding pocket to lock the kinase domain into a constitutively active confirmation (Foster et al. 2004, Mol et al. 2004).
Although the mechanisms of signal transduction by the WT c-KIT receptor are well characterised (Lennartsson et al. 2005), the mechanisms by which the oncogenic D816V mutant induces transformation have been less studied (Table 1.3). Cells expressing D816V exhibit constitutive c-Cbl phosphorylation and receptor ubiquitination, which leads to rapid receptor turnover and reduced cell surface expression (Sun et al. 2009). Consistent with this observation, the D816V mutant drives transformation through intracellular receptors trapped to the Golgi (Xiang et al. 2007), and this has the potential to alter substrate specificity (Piao et al. 1996). Indeed this phenomenon has been noted for FLT-3, where trapping of the internal tandem duplication (ITD) mutant to the endoplasmic reticulum leads to selective phosphorylation of STAT5 (Schmidt-Arras et al. 2009).

In addition to factor-independent activation of the kinase domain, the D816V mutation amplifies the intrinsic catalytic activity of c-KIT (Lam et al. 1999). For example, the p85 subunit of PI3K is constitutively phosphorylated and associated with D816V c-KIT in the immortalised murine progenitor cell line, MIHC. Inhibition of PI3K by wortmannin abrogates the autonomic proliferation of cells expressing D816V, indicating the importance of the PI3K pathway in transformation (Chian et al. 2001, Shivakrupa et al. 2003).

Several studies have also demonstrated aberrant phosphorylation of STAT3 by D816V c-KIT in a variety of leukaemia cell lines including HMC-1.2, FDC-P1 and MO7e (Frost et al. 2002, Ning et al. 2001a, Pan et al. 2007, Ning et al. 2001b). Suppression of STAT3 by a dominant negative molecule severely impairs the transforming capacity of D816V c-KIT in vitro and in vivo, and is accompanied by downregulation of its downstream targets Bcl-xL and c-Myc (Ning et al. 2001a, Ning et al. 2001b). The role of ERK1/2 in D816V signalling is controversial. Whilst WT c-KIT induces strong ERK1/2 activation, undetectable levels have been recorded in cells expressing the D816V mutant (Chian et al. 2001, Frost et al. 2002, Ning et al. 2001a). Sun et al., recently reported weak activation of ERK1/2 in D816V BaF3 cells, which increased dramatically with SCF stimulation (Sun et al. 2009).
Differences also exist in the requirement for SFK signalling. In contrast to WT c-KIT, the D816V mutant receptor circumvents the requirement for SFK by mimicking Src kinase activity; an action which contributes to its transforming potential (Sun et al. 2009). Furthermore, mutation at the equivalent position in the murine c-KIT gene (D814Y) results in the ubiquitin-dependent degradation of SHP-1, a known negative regulator of c-KIT (Piao et al. 1996). This suggests that signals emanating from a tyrosine kinase can target specific proteins for proteolysis. More recently, reduced levels of the pro-apoptotic BH3-only death regulator, Bim, was detected in BaF3 cells expressing D816V c-KIT; an observation which introduces another level of complexity to this potently transforming mutation (Aichberger et al. 2009).

Taken together, it is clear that the signal transduction pathways and downstream biological pathways mediated by D816V c-KIT are markedly different from those activated by the WT receptor. In particular, this mutant induces oncogenic transformation by enhancing signals that are required for growth and survival, whilst abrogating the effects of negative regulation. Further work aimed at identifying additional signal transduction molecules involved in the transformation potential of D816 substitutions could provide novel targets for selective therapy against highly oncogenic versions of c-KIT.

1.4 Small Molecule Inhibitors Targeting BCR/ABL and c-KIT

1.4.1 Imatinib

As malignant transformation in CML is dependent on the activity of BCR/ABL, the most rational approach to treating this disease was to develop a compound that inactivates the kinase domain. Imatinib mesylate, (Gleevec®, STI571; Novartis) is a 2-phenylaminopyrimidine derivative that was among the first inhibitors developed for targeted cancer therapy (Figure 1.7A). The small molecule selectively regulates tyrosine kinase activity through competitive inhibition at the ATP binding site and interacts with the inactive confirmation of the kinase domain to lock it into position (Figure 1.7B) (Buchdunger et al. 1996). Consequently, the phosphorylation of cellular substrates is prevented, and downstream signalling cascades normally generated by kinase activation are inhibited (Druker et al. 1996) (Figure 1.7C and D).
Figure 1.7 Structure of BCR/ABL in complex with imatinib

A) Molecular structure of imatinib (Kantarjian et al. 2007c). B) Binding of imatinib (purple) to the inactive confirmation of the ABL kinase domain. The nucleotide-binding loop (yellow) is bent over the inhibitor and the activation loop (green) adopts an inactive conformation (Weisberg et al. 2007). C) ATP binds to the ABL kinase domain in BCR/ABL and phosphorylates substrate/effector molecules that activate oncogenic signalling pathways. D) Imatinib competes with ATP and inhibits downstream signalling cascades.
1.4.1.1 CML clinical trials

The first clinical trials conducted with imatinib demonstrated high cytogenetic and molecular response rates, long-term efficacy and superior tolerability over IFN-based therapy in CML-CP patients (Kantarjian et al. 2002a, Druker et al. 2001b, O'Brien et al. 2003). As a result, imatinib received approval by the United States Food and Drug Administration (FDA) as a standard therapy for newly diagnosed CML-CP patients, in addition to all CML patients who had failed stem cell transplant or IFN-α therapy (Talpaz et al. 2002). The phase III IRIS¹ trial compared 400 mg/day imatinib with IFN-α plus cytarabine in 1,106 newly diagnosed CML-CP patients (Hughes et al. 2003, O'Brien et al. 2003). With a follow up of 5 years, the major cytogenetic response rate (MCR²) was 87% and the estimated 5-year survival rate was 89% (Druker et al. 2006). Therefore, imatinib treatment demonstrates remarkable therapeutic effects in CML patients who present with chronic phase disease. However, the outcome for CML-BC patients treated with imatinib remains poor (Kantarjian et al. 2002b, Druker et al. 2001a). In a phase II trial, the MCR rates were 6% in patients treated with 400 mg/day (Sawyers et al. 2002), with a follow-up survival rate of 14% at 36 months (Silver et al. 2004).

In addition to the low response rates observed with imatinib in late stage disease, approximately 4% of newly diagnosed CML-CP patients develop resistance (Druker et al. 2006), as evidenced by the persistence of BCR/ABL transcripts (Hughes et al. 2003, Bhatia et al. 2003). The acquisition of secondary point mutations in the BCR/ABL gene alter the protein structure and prevent imatinib from effectively inhibiting the ABL kinase domain (Gorre et al. 2001, Shah & Sawyers 2003). Mutations clustered around the imatinib binding site result in the substitution of amino acids that sterically prevent the molecule from binding. This commonly involves the gatekeeper residue Thr315 (e.g. T315I) (Schindler et al. 2000). Mutations that cause resistance through an indirect mechanism (e.g. E255K, Y253F/H), destabilise the inactive conformation of ABL and reduce imatinib binding (Roumiantsev et al. 2002). Notably, mutations at Y253 and T315 elicit a higher in vitro and in vivo transforming potential than WT BCR/ABL (Griswold et al. 2006). Each drug-resistant mutant displays a unique substrate recognition profile that may affect disease progression through activation of altered

¹ International Randomized Study of IFN versus STI571
² MCR; 35% or less of cells positive for the Philadelphia chromosome
downstream signalling pathways (Skaggs et al. 2006). Accordingly, patients harbouring these mutations show reduced time to disease progression and overall survival compared to patients expressing WT BCR/ABL (Soverini et al. 2005).

Another contributing factor to resistance is the insensitivity of leukaemia stem cells to imatinib treatment (Graham et al. 2002, Roeder et al. 2006). Recent in vitro studies demonstrate 5 μM imatinib reduces BCR/ABL-mediated CRKL phosphorylation by 86% in CD34⁺ cells. However, in the more primitive CD34⁺CD38⁻ cells, imatinib exerts very little effect with only a 4% reduction in p-CRKL observed (Copland et al. 2006). Furthermore, primitive CML cells do not readily undergo apoptosis, even after prolonged in vitro exposure to 10 μM imatinib (Graham et al. 2002). It is plausible that the expansion of BCR/ABL⁺ quiescent stem cells could result in the progression of disease into blast crisis (Chu et al. 2005). The rapid relapses observed in some patients who have discontinued imatinib therapy after a period of PCR negativity support this theory (Cortes et al. 2004).

1.4.1.2 GIST clinical trials
Imatinib is also potent at inhibiting c-KIT tyrosine kinase activity in GIST models in vitro (Buchdunger et al. 2000, Heinrich et al. 2000) and in vivo (Chen et al. 2003). Clinical trials showed partial response or stable disease in approximately 80% of patients with advanced or metastatic GIST (Demetri et al. 2002, van Oosterom et al. 2001), with a 2 year survival rate of 70% (Verweij et al. 2004). Based on these results, imatinib was approved by the FDA for the treatment of malignant metastatic and/or unresectable GIST (Dagher et al. 2002). The location of the c-KIT mutation correlates with clinical efficacy of imatinib, with 83.5% of patients harbouring a JMD mutation (exon 11) achieving a partial response compared to only 47.8% of patients expressing mutations in the extracellular region (exon 9) (Heinrich et al. 2003).

Although many GIST patients benefit from imatinib, ~15% of patients are unresponsive, and most patients who respond or stabilise initially will develop resistance after 2 years of treatment (Van Glabbeke et al. 2005, Verweij et al. 2004). This phenomenon of acquired resistance in GIST patients recapitulates treatment failure

1 <5% of total CD34⁺
observed in CML patients (Gorre et al. 2001), and is a major setback that must be addressed when developing targeted protein kinase inhibitors (Boyar & Taub 2007). Similar to BCR/ABL, the main mechanism underlying imatinib resistance is the acquisition of secondary \textit{c-KIT} mutations in exon 13 (e.g. V654A) or exon 14 (T670I) (Chen \textit{et al.} 2004a, Debiec-Rychter \textit{et al.} 2005, Antonescu \textit{et al.} 2005, Wardelmann \textit{et al.} 2005, Tamborini \textit{et al.} 2004, Heinrich \textit{et al.} 2008). These substitutions confer resistance to imatinib by altering the structural confirmation of the ATP/drug binding pocket (Tamborini \textit{et al.} 2004, Roberts \textit{et al.} 2007). Mutations within the kinase activation loop (e.g D816V) have also been detected in imatinib-resistant GIST patients (Heinrich \textit{et al.} 2008).

1.4.1.3 AML and mastocytosis clinical trials

As WT \textit{c-KIT} expression is detected on over 70% of blast cells from AML patients (Bene \textit{et al.} 1998, Ikeda \textit{et al.} 1991), it seemed logical to evaluate the effectiveness of imatinib treatment in these patients. However, clinical trials administering high doses up to 800 mg/day have shown a complete lack of efficacy with very little to no responses observed (Cairoli \textit{et al.} 2005, Chevallier \textit{et al.}, Cortes \textit{et al.} 2003, Heidel \textit{et al.} 2007, Kindler \textit{et al.} 2004, Malagola \textit{et al.} 2005, Piccaluga \textit{et al.} 2007). These results indicate that the expression of \textit{c-KIT} as a sole marker for predicting sensitivity to imatinib in AML patients is insufficient. It should be noted that the mutational status of \textit{c-KIT} was not investigated in a majority of these trials.

It has been widely demonstrated that kinase domain \textit{c-KIT} mutations, present in systemic mastocytosis and CBF-AML, are intrinsically resistant to imatinib inhibition. This phenomenon was originally discovered in the human mast cell line, HMC-1.2, and mouse factor-dependent myeloid cell line, FDC-P1, expressing the D816V mutant \textit{c-KIT} (Ma \textit{et al.} 2002, Frost \textit{et al.} 2002). The D816V substitution induces a conformational change in the protein to favour the active confirmation. As such, imatinib is unable to effectively inhibit the receptor due to the presence of an Asp-Phe-Gly motif within the ATP pocket that interferes with drug binding (Foster \textit{et al.} 2004). Clinical studies investigating the effectiveness of imatinib for systemic mastocytosis and CBF-AML have confirmed that all unresponsive patients harbour D816 mutations (Pardanani \textit{et al.} 2003, Cairoli \textit{et al.} 2005, Wang \textit{et al.} 2005, Vega-Ruiz \textit{et al.} 2009). Thus, to improve therapy options for these resistant patients, a better understanding of
the signalling pathways activated downstream of imatinib-resistant c-KIT mutants is required.

1.4.2 Second generation inhibitors

The discovery of resistance mechanisms and the persistence of stem cells in response to imatinib therapy spurred the development of second generation inhibitors designed to overcome this major clinical problem. A selection of these FDA approved compounds are discussed below.

1.4.2.1 Nilotinib

Nilotinib (Tasigna®, AMN107; Novartis) was approved by the FDA in 2007 for the treatment of imatinib-resistant CML (Figure 1.8A). It exhibits superior potency to imatinib in a wide range of CML-derived cell lines and inhibits a majority of imatinib-resistant BCR/ABL mutants \textit{in vitro}, excluding T315I (Weisberg et al. 2006, O'Hare et al. 2005, Weisberg et al. 2005). For the treatment of imatinib-resistant disease, phase II studies reported complete haematological response CHR1 in 69% and CCR2 in 32% of CML-CP patients. However, in a similar observation to imatinib treatment, 400 mg twice a day was not effective in treating CML-BC, with only 4% reaching CHR and 21% displaying CCR. This is attributable to the fact that nilotinib, like imatinib, is not effective against the CD34+ CML population (Jorgensen \textit{et al.} 2007). In addition, an alarming fraction of patients suffered serious side effects including severe neutropaenia and thrombocytopaenia (Kantarjian \textit{et al.} 2006, Kantarjian \textit{et al.} 2007b, le Coutre \textit{et al.} 2008, Giles \textit{et al.} 2006). Recent reports also indicate that patients harbouring mutations which are less sensitive to nilotinib \textit{in vitro} (e.g. Y235H, T315I), display less favourable clinical responses (Hughes \textit{et al.} 2009).

Nilotinib exerts little effect on HMC-1.2 and FDC-P1 cells expressing the D816V c-KIT mutation (Verstovsek \textit{et al.} 2006, Roberts \textit{et al.} 2007). Furthermore, primary bone marrow derived mast cells from D816V+ systemic mastocytosis patients are completely unresponsive to nilotinib treatment \textit{in vitro} (Verstovsek \textit{et al.} 2006). Thus in a similar manner to imatinib, the issue of drug-resistance remains a significant hurdle in treating patients harbouring c-KIT kinase domain mutations.

1 CHR; achievement of a normal white blood cell count and no symptoms of CML

2 CCR; absence of Ph+ cells
Figure 1.8. Structure of nilotinib and dasatinib in complex with the ABL kinase domain
A) Molecular structure of nilotinib (Kantarjian et al. 2007c) B) bound to the inactive confirmation of the ABL kinase domain. The nucleotide-binding loop (yellow) is bent over the inhibitor and the activation loop (green) adopts an inactive confirmation (Weisberg et al. 2007). C) Molecular structure of dasatinib (Kantarjian et al. 2007c) D) bound to the active confirmation of the ABL kinase domain. The nucleotide-binding loop adopts an extended confirmation and the activation loop is in the active position (Weisberg et al. 2007).
1.4.2.2 Dasatinib

Dasatinib (Sprycell®, BMS-354825; Bristol-Myers Squibb) is a highly potent orally active dual SRC/ABL inhibitor that binds to both the active and inactive confirmation of the ABL kinase domain (Tokarski et al. 2006) (Figure 1.8B). It is effective against many imatinib-resistant BCR/ABL mutations in vitro, again excluding T315I (O'Hare et al. 2005, Shah et al. 2004). Dasatinib has been investigated in a series of clinical trials involving CML patients who showed resistance or intolerance to imatinib (START). CML-CP patients display favourable CHR and CCR with a maximum tolerated dose of 70 mg twice daily (Talpaz et al. 2006, Cortes et al. 2007, Hochhaus et al. 2007, Guilhot et al. 2007, Kantarjian et al. 2007a), although a recent investigation demonstrated that 140 mg daily has a similar efficacy, with an improved safety profile (Kantarjian et al. 2009a). In June 2006, dasatinib received accelerated approval from the US FDA and European Medicines Agency for the treatment of CML patients in all phases following imatinib failure. A follow up study of patients with accelerated phase has shown CHR and CCR rates of 45% and 32%, respectively (Apperley et al. 2009). As previously observed with imatinib, dasatinib exhibits lower efficacy in CML-BC patients compared to CML-CP, with only 26% achieving both CHR and CCR by 6 months. In addition, these effects are short-lived and by 8 months 69% of patients had withdrawn from the study due to either disease progression or toxic side effects (Cortes et al. 2007). Failure to respond is associated with expression of the T315I BCR/ABL mutation (Soverini et al. 2007).

Although dasatinib is moderately effective in imatinib-resistant patients (Kantarjian et al. 2009b), it still does not eliminate the most primitive and quiescent CML stem cell fraction (Copland et al. 2006). Furthermore, haematological toxicity is frequently associated with dasatinib therapy, with 72% of patients experiencing grade 2 to 4 cytopaenia (Alfonso et al. 2009). Notably, these complications can compromise the achievement of a desirable clinical response (Sneed et al. 2004).

The efficacy of dasatinib in imatinib-resistant c-KIT+ cell lines has also been examined (O'Hare et al. 2005). Preclinical studies showed it potently inhibits the growth of HMC-1.2 cells (Schittenhelm et al. 2006) and primary mast cells expressing the D816V

1 SRC/ABL Tyrosine Kinase Inhibition Activity Research Trials of Dasatinib
mutation at clinically relevant concentrations (Shah et al. 2006). These results suggested that dasatinib might be effective in c-KIT\(^+\) AML and systemic mastocytosis patients expressing a kinase domain mutation. A recent phase II trial investigating the efficacy of dasatinib in nine patients with AML reported one complete response in an 80-year-old male who expressed c-KIT on 66% of bone marrow blasts and had previously achieved a short complete response with cytarabine and daunorubicin chemotherapy (Verstovsek et al. 2008). However, the c-KIT mutation status of these patients was not investigated. Disappointingly, no other favourable clinical responses were observed in this trial. Out of 33 patients with systemic mastocytosis, only 2 achieved a complete response, and both tested negative for the D816V c-KIT mutation. Nine patients experienced symptomatic improvement with duration ranging from 3 – 18 months. In addition, 23 patients discontinued therapy due to toxicity and adverse effects, with pleural effusion being the most common (Verstovsek et al. 2008). Similar low response rates and poor tolerance to dasatinib has been observed in additional systemic mastocytosis cases (Purtill et al. 2008, Rondoni et al. 2007). Of note, these studies did not investigate the phosphorylation status of c-KIT or its downstream substrates after treatment to confirm the receptor was in fact inhibited by dasatinib.

The mechanisms underlying the reduced efficacy of dasatinib therapy in patients expressing kinase domain c-KIT mutations are largely unknown. One explanation is that increased toxicity precludes administration of the drug at therapeutically relevant concentrations. Indeed, in a general sense, dasatinib is associated with side effects that may prevent long-term therapeutic use of this agent even in patients who initially respond to treatment. Another possibility is the existence of unidentified molecular alterations that contribute to transformation. These would not be targeted by dasatinib and therefore continue to drive cancer cell proliferation. Data from a phase II trial evaluating the safety and efficacy of dasatinib in a larger cohort of c-KIT\(^+\) AML and systemic mastocytosis patients will be available in December 2009\(^1\). In addition, a phase I study specifically focussing on dasatinib treatment in newly diagnosed CBF-AML patients has begun recruiting\(^2\). The preliminary clinical trial results observed with dasatinib suggest that screening of c-KIT mutations prior to treatment may filter those patients who are not likely to respond, and therefore improve the outcome of the study.

\(^1\) ClinicalTrials.gov identifier: #NCT00255346
\(^2\) ClinicalTrials.gov identifier: #NCT00850382
1.4.2.3 Sunitinib

Sunitinib malate (Sutent, SU11248; Pfizer) is another tyrosine kinase inhibitor currently used for imatinib-refractory GIST (Goodman et al. 2007). It is a broad spectrum indolin-2-one compound that targets multiple kinases including c-KIT (Abrams et al. 2003), vascular endothelial growth factor receptors (VEGFR), PDGFR (Sun et al. 2003) and FLT3 (O’Farrell et al. 2003) (Figure 1.9A). As such, it exerts both potent anti-tumour effects via inducing cell death, as well as anti-angiogenic effects by inhibiting the formation of new blood vessels and disrupting the existing vascular system (Figure 1.9B) (Faivre et al. 2007).

The FDA approval of sunitinib for GIST in January 2006 was based on a Phase III randomized, double-blinded, placebo-controlled multicenter trial including 312 patients who had documented failure or intolerance to imatinib (Demetri et al. 2006). The median time to tumour progression in patients receiving sunitinib was 27 weeks, compared to 6 weeks for placebo-treated patients (Demetri et al. 2006). Despite a significant improvement in time to tumour progression, two studies evaluating sunitinib treatment in imatinib-resistant GIST patients (Goodman et al. 2007, Demetri et al. 2009) have reported a partial response rate of only 7%, as defined by RECIST1 (Therasse et al. 2000). Therefore, it seems to exert a cytostatic rather than a cytotoxic effect and may delay progression and/or death whilst having little effect on tumour size (Demetri et al. 2006).

In a similar mechanism to imatinib, it appears the initial c-KIT mutation strongly influences the response to sunitinib. Patients expressing exon 9 (e.g insA501Y502) c-KIT mutants display significantly longer time to disease progression and an improvement in overall survival compared to exon 11 (e.g.V560G) patients (Maki et al. 2005, Heinrich et al. 2008). Interestingly, these results are in complete contrast to imatinib (Heinrich et al. 2003). The evaluation of several case studies confirms the emergence of resistance to sunitinib. One study identified different c-KIT mutations (V654A and D816H) within separate tumour samples obtained from the same patient during disease progression, which indicates polyclonal tumour evolution (Loughrey et al. 2006). In another study, the acquisition of mutations within the kinase domain

1 Response Evaluation Criteria in Solid Tumours; at least a 30% decrease in the sum of the longest diameter of target lesions, taking as reference the baseline sum
Figure 1.9 Mechanism of action of sunitinib

A) Molecular structure of sunitinib (Faivre et al. 2007)

B) Sunitinib interacts with the ATP-binding sites of receptor tyrosine kinases (c-KIT, FLT3 and PDGFR) within the tumour cell. Sunitinib also targets VEGFRs on blood vessels. Receptor inhibition exerts both anti-tumour and anti-angiogenic effects that contribute to tumour regression.
(D816V) conferred resistance to both imatinib and sunitinib (Heinrich et al. 2007). These studies demonstrate the urgent need for the development of treatment options for GIST patients that combat this major clinical problem of resistance to targeted therapies (Hopkins et al. 2008).

1.4.2.4 Alternative therapeutic strategies for resistant disease

Although research efforts are focussing on the development of a global compound that inhibits the full spectrum of identified BCR/ABL and c-KIT drug-resistant mutants, the issue of new mutations at crucial points that compromise drug binding continues to exist. Preclinical results from ENU-induced mutagenesis screens in BaF3 lymphoid progenitors have uncovered additional BCR/ABL mutations that are resistant to nilotinib and dasatinib (von Bubnoff et al. 2006, Bradeen et al. 2006). Imatinib-resistant patients are more likely to develop new mutations that confer resistance to second generation inhibitors compared with patients who do not express imatinib-resistant mutations (45% vs 18%, respectively) (Soverini et al. 2009). Furthermore, patients who demonstrate treatment failure with two tyrosine kinase inhibitors are unlikely to respond to third line therapy with an alternate second generation compound (Garg et al. 2009). This challenge warrants the development of new therapeutics that will decrease the rate of relapse and overcome tyrosine kinase resistance.

The investigation of signalling pathways that are aberrantly regulated by BCR/ABL and mutant c-KIT is required to identify molecular networks that, if appropriately modified, will simultaneously affect the function of these oncogenic tyrosine kinases and their downstream effectors. Recent studies have reported the loss of PP2A phosphatase activity plays a central role in the development of several haematological malignancies including CML and Ph1 ALL, as well as B-cell chronic lymphocytic leukaemia (B-CLL) (Neviani et al. 2005, Liu et al. 2008, Neviani et al. 2007). Importantly, restoration of PP2A activity significantly impairs the in vitro and in vivo growth of imatinib-resistant BCR/ABL+ myeloid and lymphoid progenitors (Neviani et al. 2007). Thus PP2A has emerged as a potential candidate which can be targeted in BCR/ABL-mediated leukaemogenesis. Furthermore, as BCR/ABL and mutant c-KIT activate similar oncogenic pathways, the inhibition of PP2A may also be important for c-KIT-driven cancers.
1.5 Protein Phosphatase 2A (PP2A)

Reversible phosphorylation is one of the most important mechanisms for regulating protein function in eukaryotic cells. Coordination of protein kinases and phosphatases controls the intracellular signalling response to changing physiological demands within the cell, and dysregulation of this process contributes to many disease states. Phosphatases regulate the rate and duration of phosphorylation, thereby providing the fine control on signalling pathways. Although much is known regarding alterations in kinase function, the role of specific phosphatases in cancer remains poorly characterised.

PP2A refers to a large family of heterotrimeric serine/threonine phosphatases that act to dephosphorylate proteins. It makes up 1% of total cellular proteins and along with PP1, accounts for over 90% of serine/threonine phosphatase activity in the cell (Eichhorn et al. 2009). The PP2A core enzyme consists of a structural subunit (PP2A A/PR65) and a catalytic subunit (PP2Ac). In mammals, two distinct genes (α and β) encode closely related versions of the A (Hemmings et al. 1990) and C subunits (Arino et al. 1988). A third regulatory subunit (PP2A B) binds to the AC heterodimer, and determines both the substrate specificity and cellular localisation of PP2A complexes. Three B subunit families have been identified to date: B/B55/PR55 (Strack et al. 1999, Zolnierowicz et al. 1994, Mayer et al. 1991), B’/B56/PR61 (McCright et al. 1996, McCright & Virshup 1995), B”/PR72/130/PR70/48 (Yan et al. 2000, Stevens et al. 2003, Hendrix et al. 1993) (Table 1.6 and Figure 1.10A).

The combinatorial assembly of these various A, B and C subunits permits the formation of over 70 distinct PP2A complexes that are involved in the regulation of cellular processes including development, proliferation, apoptosis, adhesion and cytoskeletal dynamics (Janssens & Goris 2001, Sontag 2001, Virshup 2000). In particular, recent work has implicated PP2A in various aspects of malignant transformation, and thus PP2A has emerged as an important tumour suppressor. Understanding how PP2A is regulated, and in turn how this complex enzyme modulates signalling pathways in both normal and BCR/ABL or c-KIT-transformed cells may provide novel targets for improved therapeutic strategies.
<table>
<thead>
<tr>
<th>Subunit Family</th>
<th>Gene Name</th>
<th>Isoforms</th>
<th>Protein Names</th>
<th>Subcellular localisation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalytic</td>
<td>PPP2CA</td>
<td>Cα</td>
<td>PP2A_cα</td>
<td>Cytoskeleton, cytoplasm, nucleus, plasma membrane, Golgi and endoplasmic reticulum</td>
<td>(Arino et al. 1988)</td>
</tr>
<tr>
<td></td>
<td>PPP2CB</td>
<td>Cβ</td>
<td>PP2A_cβ</td>
<td>Cytoplasm</td>
<td></td>
</tr>
<tr>
<td>Structural</td>
<td>PPP2R1A</td>
<td>Aα</td>
<td>PP2A Aα</td>
<td>Enriched in brain, located in cytosol</td>
<td>(Hemmings et al. 1990)</td>
</tr>
<tr>
<td></td>
<td>PPP2R1B</td>
<td>Aβ</td>
<td>PP2A Aβ</td>
<td>Enriched in brain, mainly cytoskeleton</td>
<td></td>
</tr>
<tr>
<td>Regulatory</td>
<td>PPP2R2A</td>
<td>B55α</td>
<td>PR55α</td>
<td>Cytosol</td>
<td>(Mayer et al. 1991)</td>
</tr>
<tr>
<td>B55</td>
<td>PPP2R2B</td>
<td>B55β</td>
<td>PR55β</td>
<td>Enriched in brain, located in cytosol</td>
<td>(Mayer et al. 1991)</td>
</tr>
<tr>
<td></td>
<td>PPP2R2C</td>
<td>B55γ</td>
<td>PR55γ</td>
<td>Nucleus</td>
<td>(Zolnierowicz et al. 1994)</td>
</tr>
<tr>
<td></td>
<td>PPP2R2D</td>
<td>B55δ</td>
<td>PR55δ</td>
<td>Nucleus, cytosol, mitochondria, microsome</td>
<td>(Strack et al. 1999)</td>
</tr>
<tr>
<td>B56</td>
<td>PPP2R5A</td>
<td>B56α</td>
<td>PR61α</td>
<td>Cytoplasm</td>
<td>(McCright & Virshup 1995)</td>
</tr>
<tr>
<td></td>
<td>PPP2R5B</td>
<td>B56β</td>
<td>PR61β</td>
<td>Cytoplasm</td>
<td>(McCright & Virshup 1995)</td>
</tr>
<tr>
<td></td>
<td>PPP2R5C</td>
<td>B56γ1-3</td>
<td>PR61γ1-3</td>
<td>Nucleus</td>
<td>(McCright & Virshup 1995)</td>
</tr>
<tr>
<td></td>
<td>PPP2R5D</td>
<td>B56δ1-4</td>
<td>PR61δ</td>
<td>Nucleus</td>
<td>(McCright et al. 1996)</td>
</tr>
<tr>
<td></td>
<td>PPP2R5E</td>
<td>Bε1-4</td>
<td>PR61ε</td>
<td>Cytoplasm</td>
<td>(McCright et al. 1996)</td>
</tr>
<tr>
<td>PR72</td>
<td>PPP2R3A</td>
<td>PR130</td>
<td>PR53</td>
<td>Centrosome and Golgi</td>
<td>(Hendrix et al. 1993)</td>
</tr>
<tr>
<td></td>
<td>PPP2R3B</td>
<td>PR72</td>
<td>PR53</td>
<td>Cytosol, nucleus</td>
<td>(Hendrix et al. 1993)</td>
</tr>
<tr>
<td></td>
<td>PPP2R3C</td>
<td>PR70</td>
<td>PR53</td>
<td>Unknown</td>
<td>(Stevens et al. 2003)</td>
</tr>
<tr>
<td></td>
<td>PPP2R3D</td>
<td>PR48</td>
<td>PR53</td>
<td>Nucleus</td>
<td>(Stevens et al. 2003)</td>
</tr>
<tr>
<td>Interacting</td>
<td>PPP2R4</td>
<td>PR53</td>
<td>PTPA</td>
<td>Post-synaptic densities of neurons</td>
<td>(Janssens et al. 2000)</td>
</tr>
<tr>
<td>STRN</td>
<td>PR110</td>
<td>Striatin</td>
<td></td>
<td>Nucleus</td>
<td>(Moreno et al. 2000)</td>
</tr>
<tr>
<td>STRN3</td>
<td>PR93</td>
<td>SG2NA</td>
<td></td>
<td>Nucleus</td>
<td>(Moreno et al. 2000)</td>
</tr>
</tbody>
</table>
Figure 1.10 Structure of PP2A holoenzymes
A) PP2A is a heterotrimeric complex composed of a structural subunit (A), a catalytic subunit (C) and one of several regulatory subunits (B55, B56, B”), each with specified isoforms. B) Ribbon diagrams based on the crystal structure of the PP2A AC dimer and A-C-B56γ holoenzyme. PP2Ac (purple) binds to HEAT repeats 11-15 of PP2A A (red). The regulatory subunits (B56γ; green) associate via HEAT repeats 1-10 of PP2A A (blue). The C-terminal tail of PP2Ac (circled; T^{304}PDYFL^{309}) is subject to post-translational modifications that determine dynamic B subunit interactions and locks the complex into a fully functional enzyme (Janssens et al. 2008).
1.5.1 PP2A subunits

1.5.1.1 The catalytic subunit (PP2Ac)

PP2Ac is a 37 kDa protein encoded by two distinct genes, α and β, with the former being expressed approximately 10 fold higher due to a stronger promoter (K Hew-Goodall & Hemmings 1988). The two isoforms share 97% sequence homology and are localised to human chromosome 5q23-31 and 8p12, respectively (Arino et al. 1988). As the catalytically active component of the enzyme, it has a large conserved domain that forms a bimetallic active site for phospho-ester hydrolysis and targets phosphate groups on either serine or threonine residues. Due to the promiscuous nature of PP2A, the consensus motifs required for PP2Ac/substrate interaction are not well characterised (Guergnon et al. 2006).

The levels of PP2Ac are tightly regulated in the cell by a potent autoregulatory mechanism that inhibits the efficiency of PP2A translation when there is an abundance of mRNA. This ensures PP2A protein levels remain constant and makes ectopic expression of this protein in cellular models extremely difficult (Baharians & Schonthal 1998). A fundamental role for PP2Ac in development is evidenced by the fact that Cα knockout mice are embryonically lethal (Gotz et al. 1998). Although both subunits are highly conserved, they are not redundant, as the expression of Cβ is unable to rescue this phenotype. Cα and Cβ exhibit similar subunit interaction properties and holoenzyme phosphatase activities in vitro (Zhou et al. 2003b). Thus, the functional differences may be explained by distinct subcellular patterns of these subunits within the developing embryo. PP2A-Cα complexes are found predominantly in the plasma membrane, whilst PP2A-Cβ holoenzymes localise to the cytoplasm and nucleus (Gotz et al. 1998).

The PP2A holoenzyme crystal structure revealed that the highly conserved C-terminal tail of PP2Ac (residues 304-309; TPDYFL), resides at a critical interface between the scaffolding subunit and regulatory subunits (Figure 1.10B) (Cho & Xu 2007, Xing et al. 2006). As such, the recruitment of B subunits to the core enzyme is tightly regulated by post-translational modifications including methylation and phosphorylation (Figure 1.11) (Janssens et al. 2008). Methylation on carboxyl Leu309 is catalysed by the S-adenosylmethionine-dependent leucine carboxyl transferase 1 (LCMT1)
Figure 1.11 Post-translational modifications of PP2Ac
Schematic overview of PP2A regulatory subunits and associated post-translational modifications on the PP2Ac C-terminal tail (T³⁰⁴PDYFL³⁰⁹). Flags; phosphorylation, circles; methylation. Colour coding: red; inhibitory, green; required, orange; no preference. A) The B55 subunits strictly require Leu³⁰⁹ methylation, whereas Tyr³⁰⁷ or Thr³⁰⁴ phosphorylation inhibits binding. B) For B56α, β, γ and ε subunit binding, methylation is not required and p-Tyr³⁰⁷ is unfavourable for holoenzyme assembly. C) B56δ and B” binding are not affected by either methylation or phosphorylation.
(Leulliot et al. 2004) and is reversed by the specific phosphatase methylesterase (PME-1) (Ogris et al. 1999). RNAi-mediated knockdown of LCMT1 results in the specific degradation of B55 family members, as they can not form stable complexes with unmethylated PP2Ac (Longin et al. 2007). Furthermore, deletion of Leu309 or a L309A substitution in PP2Ac abolishes B55 binding, whereas binding of B56 and B” is not affected (Longin et al. 2007, Nunbhakdi-Craig et al. 2007). Another important post-translational modification that regulates PP2A activity is phosphorylation of Tyr307 (Chen et al. 1992), or the newly identified Thr304 residue (Longin et al. 2007). Specifically, p-Tyr307 inhibits recruitment of the B55 and B56α, β, ε family members to the core enzyme (Chen et al. 1994). Mutational studies indicate that phosphorylation of Tyr307 limits the methylation status of Leu309, possibly explaining the defect in B55 binding (Longin et al. 2007). Interestingly, p-Tyr307 does not effect B56δ or B” holoenzyme assembly (Longin et al. 2007). As many tyrosine kinases (e.g. Src) are able to phosphorylate Tyr307, this may temporarily inactivate PP2A and allow signalling cascades to efficiently proceed from receptors through to nuclear effectors (Lechward et al. 2001). Although the role of p-Tyr304 is currently unclear, several studies using phospho-mimetic mutants suggest it might be a mechanism for preventing the recruitment of B55 or even facilitate the dissociation of B55 from an existing PP2A trimer (Longin et al. 2007).

1.5.1.2 The structural subunit (PP2A A)
The 65 kDa PP2A structural subunit is composed of 15 Huntington/elongation/A subunit/TOR (target of rapamycin) (HEAT) repeats and primarily acts as a scaffolding protein to assemble the individual subunits into one holoenzyme complex (Groves et al. 1999). Upon binding of PP2Ac to HEAT repeats 11-15, the protein folds into a horseshoe shape structure. This enables unimpeded access to the PP2A substrate that is recruited by the regulatory subunit (Xu et al. 2006, Cho & Xu 2007). Although PP2A A is encoded by two ubiquitously expressed genes, α and β, which share 87% sequence identity (Hemmings et al. 1990), a majority of PP2A complexes (~90%) contain the Aα isoform (Zhou et al. 2003a). While the Aα scaffold can interact with all B subunits, Aβ is unable to interact with the B55 family members and shows a preference for binding to B” (Zhou et al. 2003a). Downregulation of Aα by inducible RNAi in
neuronal cells leads to proteasomal degradation of the catalytic and B family regulatory subunits, with a concomitant loss of total PP2A activity that results in apoptotic cell death. This indicates the importance of PP2A in maintaining mammalian cell viability (Strack et al. 2004).

1.5.1.3 The regulatory subunits (PP2A B)
To date, 11 genes have been identified in the human genome which encode at least 24 alternate transcripts and splice forms that constitute the bona fide PP2A regulatory subunits. They are subdivided into distinct families, which share no sequence homology, apart from a few conserved amino acids that allow interaction with the N-terminal HEAT domains 1-10 of PP2A (Li & Virshup 2002). Binding of the B subunit to the core AC dimer directs the enzyme to various intracellular localisations and provides distinct substrate specificity (Janssens et al. 2008). It is believed the B subunit provides a docking platform upon which a substrate can bind in the correct orientation such that its serine/threonine residue is positioned within the active site. This prevents access of non-specific substrates and facilitates dephosphorylation by the otherwise promiscuous catalytic subunit (Janssens et al. 2008). The exact mechanisms determining this specificity are largely unknown.

1.5.1.3.1 The B55 family
The B55 family of regulatory subunits contains 4 identified members that are transcribed from different genes (α, β, γ, δ) into a 50/55 kDa protein (Mayer et al. 1991). They exhibit distinct temporal and spatial expression patterns, with B55α and B55δ displaying a widespread tissue distribution, whereas B55β and B55γ are highly enriched in the brain (Mayer et al. 1991, Strack et al. 1999, Zolnierowicz et al. 1994). Substrate binding is mediated by a stretch of 5 degenerate WD40 repeats; these are conserved amino acid sequences that end with tryptophan-aspartate (WD) and modulate protein-protein interactions. Loss of the PP2Ac C-terminal tail abolishes both carboxyl methylation (Ogris et al. 1997) and phosphorylation, and prevents binding of B55 to the core enzyme (Figure 1.11) (Bryant et al. 1999, Longin et al. 2007).
1.5.1.3.2 The B56 family
The B56 family consists of at least 9 members represented by 5 alternative genes (\(\alpha, \beta, \gamma, \delta, \epsilon\)). They show specific spatial patterns within the cell, with the B56\(\alpha\), B56\(\beta\) and B56\(\epsilon\) subunits expressed in the cytoplasm, whilst B56\(\gamma\) is expressed in the nucleus and B56\(\delta\) (72 kDa) is found in both (McCright & Virshup 1995, McCright et al. 1996). The PP2A B56\(\gamma\) locus resides at 14q32.2 and encodes three differentially spliced variants B56\(\gamma_1\), B56\(\gamma_2\) and B56\(\gamma_3\), which share the first 12 exons (Muneer et al. 2002). The full-length 61 kDa B56\(\gamma_3\) contains all 14 exons, whereas exon 13 is absent in the intermediate 57 kDa B56\(\gamma_2\). The B56\(\gamma_1\) variant terminates at an alternatively spliced exon 12a, resulting in a smaller protein of 52 kDa. Non-complexed B56\(\gamma\) consists exclusively of two anti-parallel helices similar to HEAT repeats, although they share no sequence homology (Magnusdottir et al. 2009). It is believed that B56\(\gamma\) initially interacts with PP2A A, which induces a conformational change in the scaffolding subunit that enables subsequent binding to PP2Ac. This interaction in turn, leads to the formation of a binding pocket for the invariant C-terminus of PP2Ac that functions as a barrel bolt lock for the holoenzyme (Figure 1.10B) (Magnusdottir et al. 2009).

1.5.1.3.3 The B” family
PR130 (B”\(\alpha_1\)) and PR72 (B”\(\alpha_2\)) are variants of the same gene (PPP3R3A) transcribed from different promoters (Hendrix et al. 1993). The difference in size arises from PR130 containing a specific stretch of 665 amino acids at the N-terminus that is functionally replaced by 44 amino acids in PR72. This results in specific subcellular distribution where PR130 is associated with the centrosome and golgi apparatus, whilst PR72 is found more generally within the cytosol and nucleus. PR72 contains two EF-hand domains that bind calcium and induce a conformational change that is required for binding to the PP2A AC core dimer (Janssens et al. 2003). A third member of the B” family, PR70 (B”\(\beta\); PPP2R3B) has recently been shown to interact with the tumour suppressor retinoblastoma and mediate its dephosphorylation (Magenta et al. 2008). The final member of the B” family, PR48, is a truncated form of PR70 that localises to the nucleus in mammalian cells (Yan et al. 2000, Stevens et al. 2003).
1.5.1.4 PP2Ac interacting proteins

In addition to the regulatory subunits, several PP2Ac interacting proteins have been identified. The phosphotyrosol phosphatase activator of PP2A (PTPA/PR53; PPP2R4) binds to PP2A A and exerts ATP-Mg\(^{2+}\)-stimulated peptidyl prolyl cis/trans isomerase activity that targets Pro190 of PP2Ac, which is essential for enzyme activation (Longin et al. 2004, Jordens et al. 2006, Leulliot et al. 2006). Striatin (PR110; STRN) and S/G(2) nuclear autoantigen (SG2NA/PR93; STRN3) are calmodulin-binding proteins that modulate PP2A by localising the AC dimer with components of Ca\(^{2+}\) dependent signalling pathways (Moreno et al. 2000, Goris & Merlevede 1988).

A distinct population (5-10%) of PP2Ac associates directly with the \(\alpha_4\) protein (Inui et al. 1998, Murata et al. 1997, Chen et al. 1998), which results in enhanced PP2A activity and altered substrate specificity (Inui et al. 1998). The distinguishing feature of \(\alpha_4\) is that it displaces both the structural and regulatory subunits (Murata et al. 1997, Prickett & Brautigan 2004). Based on these observations, it is believed that \(\alpha_4\) acts as a scaffolding protein, where the interaction of PP2Ac at its N-terminal helical domain promotes the dephosphorylation of PP2A substrates recruited to the C-terminal region (Kong et al. 2004). Because \(\alpha_4^{-/}\) mice are embryonically lethal, to determine the role of \(\alpha_4\) in cell survival, Kong et al., examined the phenotype of immortalised mouse embryonic fibroblasts from these mice compared to \(\alpha_4^{+/}\) littermates (Kong et al. 2004). Subsequent studies revealed that \(\alpha_4\) functions as an essential inhibitor of apoptosis via its ability to promote the dephosphorylation and hence destabilisation of the transcription factors, p53 and c-Jun (Kong et al. 2004).

1.5.2 Signalling pathways regulated by PP2A

In contrast to the plethora of kinases that activate signalling pathways, there exist a limited number of serine/threonine phosphatase catalytic subunits. Since PP2A is one of the most abundant cellular phosphatases, it is reasonable to expect that PP2A may exert phosphatase function on similar pathways at different levels. Recent work investigating the diverse function of PP2A indicates substrate specificity is mediated by distinct PP2A complexes.
1.5.2.1 PP2A and MAPK signalling

A major function of PP2A is regulation of the Ras-Raf-1-MEK1/2-ERK1/2 signalling pathway. Interestingly, PP2A can exert both inhibitory and activating effects in a context-dependent manner (Figure 1.12). For example, knockdown of the single *Drosophila melanogaster* B family subunit results in ERK1/2 activation (Silverstein et al. 2002), whereas the *Caenorhabditis elegans* B55α homolog (SUR-6) has been identified as a positive regulator of Raf-1 and MPK-1 (ERK homolog) (Kao et al. 2004). PP2A negatively regulates the MAPK pathway via the dephosphorylation of MEK (Heriche et al. 1997, Sontag et al. 1993) and ERK both in vitro and in mammalian cells (Alessi et al. 1995, Wang et al. 2003, Zhou et al. 2002). Specific knockdown of B56β and B56γ, but not B55 family subunits in NIH3T3 mouse fibroblasts increases basal ERK activation and prolongs ERK signal during stimulation in the absence of pMEK (Figure 1.12A) (Letourneux et al. 2006).

More recent evidence indicates that PP2A activates Ras-dependent MAPK signalling at the level of Raf-1 and its scaffolding protein Kinase Suppressor of Ras-1 (KSR1) (Abraham et al. 2000, Ory et al. 2003, Jaumot & Hancock 2001, Kubicek et al. 2002). Dephosphorylation of KSR1 (Ser329) and Raf-1 (Ser259) by B55α-containing PP2A complexes induces membrane translocation and increases the kinase activity of both proteins in several mammalian cell models, including NIH3T3, COS and HEK293 cells (Figure 1.12B) (Abraham et al. 2000, Ory et al. 2003, Adams et al. 2005, Dougherty et al. 2005). Taken together, these studies provide biochemical mechanisms for how PP2A functions as a negative and positive regulator of MAPK signalling, depending on the specific regulatory subunit and substrate involved.

1.5.2.2 PP2A and PI3K/Akt signalling

The normal function of Akt is tightly modulated by phosphorylation events on Thr308 or Ser473 (Vanhaesebroeck & Alessi 2000, Sarbassov et al. 2005), and PP2A is the major phosphatase targeting these residues in vitro (Borgatti et al. 2003, Ivaska et al. 2002, Resjo et al. 2002). Over-expression of B55α-containing PP2A holoenzymes in the pro-lymphoid FL5.12 cell line substantially dephosphorylates Akt at Thr308 and results in subsequent growth suppression (Kuo et al. 2008). Conversely, Aα downregulation impairs Akt phosphorylation in neuronal cells, implicating PP2A as a positive regulator of the PI3K/Akt survival signalling cascade (Strack et al. 2004). An intriguing study by
Figure 1.12 Schematic overview of MAPK signalling regulation by PP2A

A) PP2A holoenzymes containing B56 family members negatively regulate MAPK signalling by inactivating MEK and ERK. B) In the inactive state, Raf and KSR1 are phosphorylated on Ser259 and Ser329, respectively, and are located within the cytoplasm. Upon stimulation, B55α-containing PP2A complexes dephosphorylate these residues, which results in protein activation and translocation to the plasma membrane. This facilitates the Ras/Raf interaction and induces transcriptional activation.
Andrabi et al., demonstrated that Akt can act as a pro- or anti-apoptotic protein depending on environmental stimuli, and this is governed by PP2A (Andrabi et al. 2007). The specific PP2A regulatory subunits controlling this apparent switch remain undefined; however, this study reinforces the importance of understanding PP2A regulated cell signalling in a context dependent manner.

1.5.2.3 PP2A and Wnt/β-catenin signalling

The function of PP2A in Wnt/β-catenin signalling is similar to its role in the MAPK pathway, with individual PP2A subunits exerting either positive or negative effects (Figure 1.13). B56 family members associate with APC (Seeling et al. 1999, Yamamoto et al. 2001) and axin (Li et al. 2001, Hsu et al. 1999) to impair Wnt signalling; a function that is critical for normal dorsal/ventral axis formation in Xenopus development (Li et al. 2001). Further studies demonstrate that association of the PP2A PR72 subunit with Naked cuticle is critical for the inhibitory function of this protein on the Wnt pathway (Figure 1.13A) (Creyghton et al. 2005).

PP2A is also an important positive regulator of Wnt signalling (Bajpai et al. 2004, Gotz et al. 2000, Ratcliffe et al. 2000, Willert et al. 1999). Loss of function analysis suggests that B56ε is required for Wnt-mediated development in Xenopus embryogenesis (Yang et al. 2003). Purified B55α-containing PP2A holoenzymes directly dephosphorylate β-catenin in vitro. Accordingly, specific knockdown of B55α in SW480 colon cancer cells significantly elevates β-catenin phosphorylation, which induces protein degradation and inhibits the Wnt pathway (Zhang et al. 2009). Surprisingly, PR130 opposes the action of PR72 and modulates Wnt signal transduction by restricting the ability of Naked to function as a Wnt inhibitor (Figure 1.13B) (Creyghton et al. 2006). The identification of PR130 as a positive modulator of the Wnt cascade adds another level of complexity to this pathway. It illustrates an excellent example whereby specific PP2A regulatory subunits determine holoenzyme function and provide the fine control on important cellular processes.
A) In the absence of Wnt signal β-catenin is complexed with axin, APC and GSK-3β in the destruction complex. GSK-3β phosphorylates β-catenin, which undergoes ubiquitination and is targeted for proteasome degradation. The PP2A B56 subunits interact with axin and APC to result in decreased levels of β-catenin. PR72 is required for the inhibitory function of Naked. B) Upon Wnt binding, the destruction complex is degraded. Dishevelled (Dsh) antagonises GSK-3β through B55-containing PP2A complexes and B56ε interacts with axin at the plasma membrane. In addition, PP2A B55α directly dephosphorylates β-catenin and PR130 restricts the ability of Naked to function as a Wnt inhibitor. Consequently, β-catenin accumulates and translocates to the nucleus where it engages with LCF/TCF factors to induce transcription of numerous target genes.
1.5.2.4 PP2A and p53 regulation

The tumour suppressor, p53, plays a critical role in mediating cellular responses to various types of stress, such as DNA damage, by inducing growth arrest or programmed cell death. The stability and activity of p53 is regulated by phosphorylation which, under normal cellular growth conditions, targets the protein for proteasome-mediated degradation (Vogelstein et al. 2000). PP2A B56γ holoenzymes dephosphorylate p53 on Ser37 (Dohoney et al. 2004) and Thr55 (Li et al. 2007) following γ radiation; an event which stabilises p53 in response to DNA damage and contributes to apoptosis in mammalian cells (Figure 1.14A). Conversely, RNAi knockdown of B56γ reduces p53 stability and inhibits cell death (Li et al. 2007).

Other findings implicate an important role for B56α-containing PP2A complexes in p53 degradation (Figure 1.14B). One target of p53, cyclin G, recruits B56α into a quaternary complex with the E3 ubiquitin ligase, mouse double minute 2 (Mdm2) (Okamoto et al. 2002, Okamoto et al. 1996). The subsequent dephosphorylation and activation of Mdm2 leads to ubiquitination and degradation of p53 (Haupt et al. 1997), thus allowing the cell to proliferate. In this context, PP2A serves as a negative regulator.

1.5.2.5 PP2A and c-Myc regulation

PP2A also plays a prominent role in controlling the accumulation of the proto-oncoprotein, c-Myc (Yeh et al. 2004). Aberrant regulation of c-Myc has been linked to transformation in up to 70% of human tumours; therefore tight control of this protein is crucial for maintaining cellular homeostasis (Nesbit et al. 1999). c-Myc stability is regulated, in part, through phosphorylation at two residues, Ser62 and Thr58 (Sears et al. 2000). Whilst ERK-mediated phosphorylation at Ser62 stabilises c-Myc, specific B56α-containing PP2A complexes reverse these effects, leading to destabilisation and ubiquitin-mediated degradation (Arnold & Sears 2006).

Collectively, these results illustrate the dynamic interaction of the PP2A holoenzyme with signalling cascades involved in fundamental cellular processes such as proliferation, survival and development. The fact that PP2A is involved in both the negative and positive regulation of these pathways highlights the exquisite nature of
Figure 1.14 Schematic overview of p53 regulation by PP2A

A) PP2A-B56γ complexes dephosphorylate Ser37 and Thr55 residues of p53 (green circles), which stabilises the protein and inhibits proliferation. B) The PP2A B56α holoenzyme is recruited by cyclin G to dephosphorylate Mdm2 at Thr216 (green circle). The activation of Mdm2 results in p53 phosphorylation (red circles), which targets it for ubiquitination and degradation. The cell then continues to proliferate.
PP2A modulation and underscores the importance of investigating specific complexes when determining PP2A function. Furthermore, as PP2A regulation differs between species and even cell-types, one must take into account the specific model when characterising the individual role of these subunits. Elucidating the importance of these components in normal signalling will aid in the identification of critical subunits that are aberrantly regulated during transformation, and may ultimately lead to the development of novel treatments for cancer patients.

1.5.3 PP2A as a tumour suppressor

1.5.3.1 Okadaic acid and SV40 ST

The fundamental evidence that implicated PP2A as a tumour suppressor was the discovery that okadaic acid, a tumour promoter (Fujiki & Suganuma 2009, Suganuma et al. 1988), potently inhibits the phosphatase activity of PP2A (Bialojan & Takai 1988, Haystead et al. 1989). In addition, the oncogenic polyomavirus middle and small tumour (ST) antigens, along with the simian virus 40 (SV40) ST antigen, transforms mammalian cells by inhibiting PP2A (Pallas et al. 1990). A very elegant experimental model established by Hahn et al., demonstrated that transformation of the normal human fibroblast kidney epithelial cell line, HEK293, required several key genetic elements; human telomerase catalytic subunit, an oncogenic allele of H-Ras, and the SV40 large T (LT) and ST antigens (HEK-TER) (Hahn et al. 1999). Whilst expression of LT enables the cells to bypass senescence by simultaneously disabling the retinoblastoma and p53 pathways, complete tumour formation requires the addition of ST and thus inhibition of PP2A (Yu et al. 2001). Accordingly, ST mutants lacking the PP2A binding domain fail to induce tumourigenic transformation of HEK-TER cells (Hahn et al. 2002). Structural insights reveal that ST interacts with HEAT repeats 3-7 of Aα, which overlaps the binding site for the B56 subunit and results in its displacement from the core enzyme. In addition, the first zinc-binding motif of ST interacts directly with PP2Ac (Cho et al. 2007, Chen et al. 2007) to reduce its phosphatase activity towards downstream substrates (Rodriguez-Viciana et al. 2006). Functionally, expression of ST activates Akt signalling in immortalised human keratinocytes (Yuan et al. 2002, Rodriguez-Viciana et al. 2006) and mammary epithelial cells (Zhao et al. 2003). Taken together, these observations indicate that complete transformation of human cells requires the perturbation of PP2A, for example by ST.
1.5.3.2 Inhibition of PP2A by BCR/ABL

Functional inactivation of PP2A by BCR/ABL is essential for the development of CML-BC and Ph1 ALL, and is thought to result from upregulation of the SET (I2PP2A or TAF-1β) protein in CD34+ BC progenitors and CD34+CD19+ Ph1 ALL samples (Neviani et al. 2005, Neviani et al. 2007). SET is an established endogenous inhibitor of PP2A (Li et al. 1995), and although its physiological function remains incompletely understood, abnormal expression of SET mRNA has been documented in solid tumours and haematological disorders (Carlson et al. 1998, Fornerod et al. 1995, Li et al. 1996). Notably, SET was described as part of a fusion gene with the nucleopore complex protein CAN in a patient with t(6;9)(p23;q34) AML (Adachi et al. 1994, von Lindern et al. 1992), and it associates with the oncoprotein MLL in leukaemic cell lines (Adler et al. 1997). Forced expression of BCR/ABL in 32Dcl3 (32D) mouse myeloid precursor cells stimulates SET expression and correlates with a loss of PP2A activity (Neviani et al. 2005). Conversely, inhibition of BCR/ABL with imatinib treatment dramatically reduces SET expression, which results in the restoration of PP2A activity back to untransfected levels. Interestingly, BCR/ABL-induced overexpression of SET enhances its stability, as knockdown of SET leads to BCR/ABL proteolytic degradation (Neviani et al. 2005). Reactivation of PP2A by SET depletion, overexpression of PP2Ac or inhibition of BCR/ABL with imatinib, results in the dephosphorylation of several substrates which are shared by BCR/ABL and PP2A (Neviani et al. 2005). These include STAT5, ERK1/2, Akt, BAD and JAK2 (Calabretta & Perrotti 2004, Janssens & Goris 2001). A reduction in the stability and protein expression of c-Myc is also observed (Neviani et al. 2005). Importantly, restoration of PP2A activity reduces proliferation, impairs clonogenic potential, induces apoptosis and restores differentiation of patient derived CML-BC progenitors and imatinib-resistant BCR/ABL+ cell lines. Taken together, these results suggest that SET-dependent inhibition of PP2A is required for the transduction of aberrant mitogenic, survival and anti-differentiation signals that contribute to the development of CML from the chronic phase into blast crisis (Figure 1.15) (Neviani et al. 2005).
Figure 1.15 BCR/ABL-induced inhibition of PP2A in CML

A) The oncogenic tyrosine kinase BCR/ABL stimulates downstream signalling pathways (e.g. ERK1/2 and Akt) that induce transformation. Increased BCR/ABL activity also upregulates the endogenous PP2A inhibitor, SET, which inactivates PP2A via an unknown mechanism to result in increased signalling through downstream pathways.
1.5.3.3 Role of PP2A regulatory subunits in transformation

A somewhat confusing aspect of PP2A function in cancer arises because PP2A plays important roles in promoting cell cycle progression and cell survival (Li et al. 2002, Lin et al. 1998, Mayer-Jaekel et al. 1993), which are functions usually associated with tumour initiation and progression rather than suppression. Therefore, cellular transformation will most likely occur through the disruption of PP2A holoenzymes that normally exert negative regulation on oncogenic pathways.

Pivotal studies using the HEK-TER transformation model demonstrated that suppression of B56γ, but not B55α, functionally mimicked the introduction of ST and resulted in partial tumourigenic transformation (Chen et al. 2004b, Moreno et al. 2004). Moreover, depletion of B56γ containing complexes leads to activation of the anti–apoptotic Akt pathway (Chen et al. 2005). These observations were the first to demonstrate that PP2A complexes containing B56γ modulate the phosphorylation of substrates associated with transformation. In addition, expression of a dominant negative truncated protein, ΔB56γ1, contributes to the enhanced cellular motility and metastatic potential of the mouse melanoma cell line, BL6 (Ito et al. 2000, Ito et al. 2003, Koma et al. 2004).

Despite these observations, it remains unclear whether loss of B56γ occurs in human cancers. While one group reported higher expression levels of B56γ mRNA in human melanoma cell lines compared to normal melanocytes (Francia et al. 1999), a second group observed decreased expression in primary human melanoma samples compared to melanocytic nevi (Deichmann et al. 2001). In support of the latter observation, a number of lung cancer cell lines lack B56γ, and overexpression partially reverses the tumourigenic phenotype (Chen et al. 2004b). Furthermore, reduced transcript levels of B56γ have been documented in patients with aggressive B-CLL compared to those with stable disease (Falt et al. 2005). While these findings suggest that loss of B56γ contributes to cancer development, further work is necessary to determine whether it is a bona fide tumour suppressor gene.
It is well established that PP2A complexes containing B56α induce the destabilisation and ubiquitin-mediated degradation of c-Myc (Figure 1.16) (Arnold & Sears 2006). More recently, a novel PP2A-interacting protein displaying c-Myc stabilisation activity in human transformed fibrosarcoma cells was identified through an affinity purification approach (Junttila et al. 2007). This 90 kDa protein, designated cancerous inhibitor of PP2A (CIP2A), selectively targets the catalytic activity of PP2A-B56α associated with c-Myc, and protects c-Myc from Ser62 dephosphorylation. Accordingly, depletion of CIP2A results in significantly increased PP2A activity measured from c-Myc immunoprecipitates and correlates with c-Myc destabilisation (Figure 1.16) (Junttila et al. 2007). Consistent with these experiments, overexpression of CIP2A in the HEK-TER model can replace ST in inducing transformation (Junttila et al. 2007), and increased CIP2A has been detected in gastric and colon cancer samples (Soo Hoo et al. 2002, Li et al. 2008, Khanna et al. 2009).

1.5.3.4 Role of PP2A structural subunits in transformation

Whilst some contradiction exists as to the importance of PP2A scaffolding subunits in cancer development (Marsh et al. 2006, Yeh et al. 2007), several mutations have been identified in spontaneously arising human cancers. Notably, somatic alterations of the gene encoding Aβ (PPP2R1B) have been detected in up to 8-15% of colon, 15% of lung and 13% of breast cancers (Calin et al. 2000, Takagi et al. 2000, Tamaki et al. 2004, Wang et al. 1998). Mutations of the more abundant Aα subunit have been observed, albeit at a lower frequency (Calin et al. 2000). Biochemical investigations confirm that cancer-associated Aα and Aβ mutants exhibit differential defects in binding to the B and C subunits, which correlates with impaired PP2A activity (Chen et al. 2005, Ruediger et al. 2001a, Ruediger et al. 2001b, Sablina et al. 2007).

Analyses of tumour samples show that PP2A Aα mutations generally involve only one allele. Although overexpression of cancer-derived Aα mutants fails to induce cell transformation in the HEK-TER model, reduction of WT PP2A Aα by ~50% confers a tumourigenic phenotype (Chen et al. 2005). Rescue of expression with RNAi-resistant WT PP2A Aα reverses cell transformation, whereas introduction of PP2A Aα cancer mutants does not (Chen et al. 2005). These observations suggest that Aα mutations contribute to human cell transformation by creating a state of haploinsufficiency. Thus,
A) The oncogenic c-Myc protein is phosphorylated on Ser62 by ERK (green) and dephosphorylated by PP2A B56α (red). CIP2A directly interacts with c-Myc and inhibits PP2A-mediated Ser62 dephosphorylation to result in c-Myc stabilisation (green). In the absence of CIP2A, c-Myc becomes ubiquitinated (red) and is targeted for proteolytic degradation.

Figure 1.16 Regulation of c-Myc by PP2A and CIP2A
a mutation in one A\(\alpha\) allele effectively decreases by half the amount of A\(\alpha\) available for B subunit binding (Figure 1.17). At present, the signalling molecules affected by these changes are not fully defined, although preliminary studies reveal the PI3K/Akt and Wnt pathways, along with p53, are potential candidates (Westermarck & Hahn 2008).

Somatic alterations of PP2A A\(\beta\) are commonly accompanied by deletion or mutation of the second allele, implicating A\(\beta\) as a *bona fide* tumour suppressor gene (Sablina et al. 2007). Functionally, suppression of A\(\beta\) induces transformation of HEK-TER cells, and the introduction of WT PP2A A\(\beta\) into lung carcinoma cells expressing biallelic A\(\beta\) mutations partially reverses the tumourigenic phenotype (Sablina et al. 2007). Recent work has shown that A\(\beta\)-containing PP2A complexes dephosphorylate and downregulate the activity of the small GTPase RalA (Figure 1.18). Accordingly, lung cancer cell lines that harbour inactivating mutations of A\(\beta\) exhibit constitutive RalA phosphorylation (Sablina et al. 2007).

Even in the absence of mutations, reduced protein expression of A\(\alpha\) has been found in 25 out of 58 brain tumours (Colella et al. 2001). Decreased levels of A\(\beta\) have also been observed in 16 of 32 cancer cell lines derived from human lung, colon and breast cancer, as well as primary glioblastoma and B-CLL patient samples compared to normal tissue (Zhou et al. 2003a, Takagi et al. 2000, Suzuki & Takahashi 2003, Kalla et al. 2007).

While it is becoming increasingly clear that PP2A exerts its tumour suppressive function via a distinct subset of regulatory subunits, no study to date has investigated which PP2A subunits are altered in myeloid blast crisis. To significantly improve our understanding of PP2A function in BCR/ABL-induced leukaemogenesis, it is important to identify the role of specific PP2A holoenzymes in transformation. This will highlight potential downstream substrates and aberrant protein interactions that may provide new targets to develop improved therapies for CML patients.
Cancer-associated PP2A Aα mutations (X) result in Aα haploinsufficiency, which may induce human cell transformation by selectively eliminating PP2A B56γ-containing complexes. Loss of B56γ-containing complexes has been linked to constitutive AKT phosphorylation, accumulation of β-catenin, and p53 degradation.
Cancer-associated PP2A Aβ mutations usually involve both alleles and lead to complete loss-of-function of PP2A, which permits the accumulation of activated RalA.

Figure 1.18 Tumour suppressive properties of PP2A Aβ
1.5.4 PP2A activators

PP2A plays a central role in the regulation of cell growth, survival and differentiation, and its functional inactivation or downregulation has been demonstrated in a variety of human malignancies (Westermarck & Hahn 2008) including CML and Ph\(^1\) ALL (Neviani et al. 2007). In this scenario, the BCR/ABL example of kinase-driven cancers may serve as a paradigm for those cancers characterised by exacerbated oncogenic kinase activity and loss of PP2A tumour suppressive function. Within these cancers, PP2A appears to play the role of a gatekeeper by controlling the expression or activity of the oncogene itself (Neviani et al. 2005). Furthermore, inhibition of PP2A permits the activation of oncogenic pathways which promote disease progression by enhancing cellular proliferation and survival. Therefore, rescuing PP2A tumour suppressive activity is an attractive therapeutic strategy for these cancers (Perrotti & Neviani 2008).

Several studies have demonstrated the antiproliferative agents, forskolin and ceramide, both mediate cell death through the activation of PP2A (Dobrowsky et al. 1993, Feschenko et al. 2002, Hannun & Obeid 2002). In a recent example of innovative pharmacology, activation of PP2A was discovered as an underlying mechanism by which the small molecule immunomodulator, FTY720 (Fingolimod; Novartis, Basel, Switzerland) induces apoptosis (Matsuoka et al. 2003). This section provides an overview of the major PP2A activators and describes in detail the recent studies conducted with FTY720 in BCR/ABL\(^+\) CML and ALL.

1.5.4.1 Forskolin

Forskolin, a diterpene isolated from the roots of *Coleus forskohlii*, is primarily known to stimulate the adenylate cyclase system, which results in elevated levels of cyclic AMP (cAMP) and subsequent activation of protein kinase A (PKA) (Seamon & Daly 1981, Seamon et al. 1981). The anticancer properties of this compound were initially demonstrated through potent inhibition of growth and tumour colonisation of the highly metastatic BL6 melanoma cell line (Agarwal & Parks 1983). Further studies indicated its potential use against ALL (Gutzkow et al. 2002) and CML cell lines (Taetle & Li-en 1984). However, more recent findings demonstrate that forskolin also activates PP2A (Feschenko et al. 2002); a mechanism which contributes to induction of apoptosis in B-CLL and CML-BC patient samples (Moon & Lerner 2003, Neviani et al. 2005).
Treatment with 1,9-dideoxy-forskolin, which lacks adenylate cyclase activity, significantly impairs the clonogenic potential of 32D BCR/ABL\(^+\) cells to a similar degree as forskolin. These findings suggest that the anti-leukaemic effects of forskolin and its derivative depends on the induction of PP2A activity rather than cAMP, and was the first to highlight the therapeutic relevance of using PP2A-activators to specifically target leukaemia cells (Neviani et al. 2005).

1.5.4.2 Ceramide

Ceramide is a central component of the sphingolipid metabolic pathway and is produced by hydrolysis of the membrane-associated sphingomyelin (Okazaki et al. 1989). Within the cytoplasm, ceramide is converted to sphingosine via ceramidases (el Bawab et al. 2002), which in turn become phosphorylated by sphingosine kinases (SphK) to produce sphingosine-1-phosphate (S1P) (Figure 1.19A). Increased levels of ceramide induce apoptosis in response to a variety of stress-related stimuli including chemotherapeutic agents, ultraviolet light and \(\gamma\)-irradiation (Hannun & Obeid 2002). One mechanism by which ceramide regulates cell death is via the activation of heterotrimeric PP2A complexes (Dobrowsky et al. 1993, Galadari et al. 1998, Chalfant et al. 1999, Leoni et al. 1998). The structural requirements governing this interaction are mediated by a ceramide binding site within PP2Ac (Law & Rossie 1995). A high degree of specificity exists between the two molecules, with molecular studies showing that even slight modifications to the sphingoid backbone greatly reduce the association (Chalfant et al. 2004). Functionally, ceramide promotes the translocation of B56\(\alpha\)-containing PP2A complexes to the mitochondrial membrane. This leads to rapid dephosphorylation and inactivation of the anti-apoptotic protein, Bcl2, contributing to cell death (Ruvolo et al. 2002, Ruvolo et al. 1999). More recently in the human lung adenocarcinoma A549 cell line, ceramide has been shown to interact with the SET protein and restrict its inhibitory function on PP2A, resulting in PP2A activation. In addition, this association regulates the dephosphorylation and degradation of c-Myc, thus defining a novel mechanism for the antiproliferative role of PP2A-induced activation by ceramide (Mukhopadhyay et al. 2009).
Figure 1.19 Sphingolipid metabolic pathway and structure of FTY720

A) Sphingolipid metabolic pathway. Sphingosine kinase (SphK); Sphingosine-1-phosphate (S1P).

B) Structure of sphingosine

C) FTY720

D) FTY720-P.

S1P phosphatase

Sphingomyelin synthase

Ceramidases

SphK

Sphingosine-1-phosphate
1.5.4.3 FTY720

FTY720 was first synthesised by structural modifications of myriocin (ISP-1), a fungal metabolite isolated from *Isaria sinclairii* culture broth (Fujita et al. 1994), and is structurally similar to sphingosine (*Figure 1.19B and C*) (Albert et al. 2005, Kiuchi et al. 2005). It is effectively phosphorylated *in vivo* by SphK2 to yield the biologically active FTY720-phosphate (FTY720-P; *Figure 1.19D*) (Brinkmann et al. 2002, Zemann et al. 2006). Interestingly, the (S)-configured FTY720-P, but not the (R)-FTY720-P or parent FTY720, binds with high-affinity to four of the five known S1P receptors (S1PR), excluding S1PR₂ (Brinkmann et al. 2002, Albert et al. 2005). Interaction of FTY720-P with S1PR induces receptor internalisation and degradation (*Figure 1.20*) (Matloubian et al. 2004, Graler & Goetzl 2004). S1P signal is required for the migration of lymphocytes from secondary lymphoid tissues back into the efferent lymphatics and systemic circulation (Matloubian et al. 2004, Cyster 2005). Consequently, prolonged S1PR downregulation by FTY720-P effectively inhibits the immune response by sequestering functional lymphocytes within secondary lymphoid organs (Brinkmann et al. 2002, Mandala et al. 2002). The use of FTY720 as an immunomodulator is currently being evaluated in Phase III trials for multiple sclerosis (Takabe et al. 2008, Cohen et al. 2009).

In addition to the antagonism of S1PR signalling, a more recent mechanism of action identified for FTY720 is that it activates purified PP2A ABC trimers *in vitro* (Matsuoka et al. 2003). Loss of PP2A phosphatase activity contributes to the pathophysiology of BCR/ABL-driven leukaemias (Neviani et al. 2007); therefore, a logical prediction would be that restoration of PP2A levels reverses the leukaemic phenotype. Indeed, an extensive study has shown that pharmacological reactivation of PP2A with FTY720 or forskolin inhibits the proliferation, enhances apoptosis, restores differentiation and impairs colony formation of imatinib-sensitive and –resistant (T315I) myeloid 32D BCR/ABL⁺ cells and primary CML-BC progenitors. This effect is also observed with lymphoid BaF3 BCR/ABL⁺ cells and patient Ph¹ ALL progenitors (Neviani et al. 2007). FTY720 had no effect on parental 32D and BaF3 cells or normal bone marrow CD34⁺ control samples, indicating specificity for leukaemia cells (Neviani et al. 2005, Neviani et al. 2007). In addition, the reactivation of PP2A has been shown to play a role in IFN-α-2b induced apoptosis of K562 cells, confirming its potential as an important therapeutic target in BCR/ABL⁺ leukaemia (Saydam et al. 2003).
FTY720 is phosphorylated by sphingosine kinase 2 (SphK2) into FTY720-P, which binds to sphingosine-1-phosphate receptors (S1PR) on lymphocytes. This results in sustained S1PR internalisation and lymphocyte sequestration.
Notably, FTY720 promotes BCR/ABL tyrosine dephosphorylation and proteolytic degradation, together with reduced phosphorylation of the PP2A targets Akt, ERK1/2 and STAT5 (Neviani et al. 2007). Co-treatment with okadaic acid reverses the enhancement of PP2A activity and restores substrate phosphorylation, strongly indicating that FTY720 functions through a PP2A-dependent mechanism. Furthermore, inhibition of S1PRs did not counteract the effects of FTY720 on BCR/ABL expression and activity, suggesting that reactivation of PP2A is not mediated by S1PR-induced signalling cascades (Neviani et al. 2007). These results demonstrate that the therapeutic potential of PP2A reactivation in myeloid and lymphoid progenitors is based on its ability to abolish BCR/ABL kinase activity, whilst simultaneously inhibiting downstream signalling pathways that contribute to BCR/ABL leukaemogenesis (Figure 1.21).

Importantly, the in vitro efficacy of FTY720 translated into an in vivo model, with the administration of 10 mg/Kg/day markedly suppressing both imatinib-sensitive (WT) and –resistant (T315I) 32D BCR/ABL+ leukaemogenesis (Neviani et al. 2007). After 4 weeks of treatment, saline-treated mice contained a large number of undifferentiated myeloid cells within the peripheral circulation, representing an overt AML phenotype. These mice also developed massive splenomegaly, which correlated with extensive infiltration of blast cells into the spleen and other secondary organs including the bone marrow and liver. In contrast, FTY720-treated mice displayed undetectable levels of BCR/ABL+ cells in the systemic circulation and secondary organs. Accordingly, these effects were sustained long term with 80% and 50% of WT and T315I BCR/ABL+ FTY720-treated mice, respectively, still alive at 27 weeks and showing no signs of leukaemia. In contrast, all saline-treated mice were sacrificed 5 weeks post-tumour cell injection (Neviani et al. 2007).

In addition, FTY720 treatment significantly prolongs animal survival in a xenograft severe combined immunodeficient mouse model of disseminated B-cell lymphoma/leukaemia (Liu et al. 2008). In both studies no toxic side effects were observed with daily administration of FTY720, highlighting the safety and therapeutic relevance of utilising PP2A-activating drugs in leukaemia patients (Liu et al. 2008, Neviani et al. 2007). Further investigation into the use of FTY720, or other means of
Figure 1.21 Reactivation of PP2A inhibits BCR/ABL-mediated leukaemogenesis

The combined stimulation of downstream signalling pathways and inactivation of PP2A by BCR/ABL results in enhanced leukaemogenesis and the development of blast crisis CML. Reactivation of PP2A not only inhibits signalling pathways but also inhibits the oncogenic activity of BCR/ABL itself, leading to impaired leukaemia growth.
PP2A reactivation, may prove beneficial in the treatment of cancers in which transformation is characterised by the loss of PP2A tumour suppressive function.

1.6 Aims of this Thesis

Given that BCR/ABL and c-KIT induce malignancy via activation of similar signalling pathways, the overall objective of this thesis was to test the hypothesis that PP2A inhibition is essential for BCR/ABL and mutant c-KIT-induced tumourigenesis, and that reactivation of PP2A is a valid treatment strategy for these cancers. In testing this hypothesis I have investigated the molecular mechanisms by which oncogenic BCR/ABL and mutant c-KIT regulate PP2A activity. The major aims were to:

1. Identify the individual PP2A components that are altered by BCR/ABL expression.
2. Elucidate the specific PP2A holoenzyme complexes that are involved in BCR/ABL-mediated leukaemogenesis.
3. Investigate whether PP2A is functionally inactivated by mutant c-KIT, and determine if this is essential for c-KIT-induced tumourigenesis.
4. Demonstrate that reactivating PP2A is a potential therapeutic strategy for mutant c-KIT+ malignancies using an *in vitro* and *in vivo* model.

Together, this project has the unifying theme that perturbation of a tumour suppressor represents a critical step in the induction and maintenance of human malignancies characterised by the aberrant activation of oncogenic tyrosine kinases. Furthermore, it identifies the broad application of PP2A as a novel therapeutic target for the development of improved treatment strategies.
CHAPTER 2
MATERIALS AND METHODS

2.1 Buffers and Reagents
All reagents and chemicals were purchased from Sigma Chemical Co. (St Louis, MO) or Merck Pty Ltd. (Kilsyth, VIC) unless otherwise stated, and were of molecular biology or research grade. Buffers and stock solutions are listed in Appendix 1.

2.2 Recombinant DNA Techniques

2.2.1 Plasmid vectors

2.2.1.1 cDNA constructs
The 6.7 kb cDNA encoding p210 kDa WT BCR/ABL was obtained from Prof. Timothy Hughes (Institute of Medical and Veterinary Science (IMVS), Adelaide, SA) and cloned as a blunt ended fragment into the Hpa I site of the retroviral expression vector pRUFneo (Rayner & Gonda 1994). The p210 kDa Y253F BCR/ABL substitution was created using site-directed mutagenesis (QuikChange®; Stratagene, La Jolla, CA). The primers were designed to change nucleotide (nt) 4057 from A to T: 5'-GGGCGGGGGCCAGTTCGGGGAGGTG-3' and 5'-CACCTCCCCGAACTGGCCC CCGCCC-3' (Sigma Genosys, Sydney, NSW). This was performed by Dr. Michelle Frost (Ashman laboratory, IMVS).

pBluescript containing human WT c-KIT cDNA was obtained from Dr. D. Williams (Immunex; Seattle, WA) and subcloned into the Hpa I site of pRUFneo (Dr. Gina Caruana; Ashman laboratory, IMVS). The cDNAs encoding V560G and D816V c-KIT point mutations were isolated from the HMC-1.2 cell line and directionally cloned into WT c-KIT pRUFneo (Ferrao et al. 1997, Chian et al. 2001).

2.2.1.2 shRNA constructs
The shRNA retroviral vectors targeting the PP2A subunits B55α, B56α and B56δ are described in Table 2.1. The pMKO.1 vectors (Addgene Inc., Cambridge, MA) were deposited by Prof. William Hahn (Dana Faber Cancer Institute, Boston, MA) and have been described previously (Chen et al. 2004). The B56δ-specific shRNA (shB56δ)
<table>
<thead>
<tr>
<th>Vector</th>
<th>PP2A subunit</th>
<th>shRNA sequence 5’ → 3’</th>
<th>Nucleotides</th>
<th>Supplier</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMKO.1-GFP</td>
<td>Empty vector</td>
<td>N/A</td>
<td>N/A</td>
<td>Addgene Inc.</td>
<td>(Chen et al. 2004)</td>
</tr>
<tr>
<td></td>
<td>B55α</td>
<td>CTCCTCTATTTTCGGATGTA</td>
<td>1156-1175</td>
<td>Addgene Inc.</td>
<td>(Chen et al. 2004)</td>
</tr>
<tr>
<td></td>
<td>B56α</td>
<td>AATGATCAGTGCTAACATCTT</td>
<td>374-394</td>
<td>Addgene Inc.</td>
<td>(Chen et al. 2004)</td>
</tr>
<tr>
<td>pSUPER.retro.neo+GFP</td>
<td>Empty vector</td>
<td>N/A</td>
<td>N/A</td>
<td>A/Prof. Danilo Perrotti</td>
<td>(Neviani et al. 2005)</td>
</tr>
<tr>
<td>(pSR)</td>
<td>B56δ</td>
<td>AAGACCATTTTGCATCGATC</td>
<td>774-795</td>
<td>shB56δ supplied by Prof. Stefan Strack and cloned into pSR by Kathryn Roberts</td>
<td>(Neviani et al. 2005)</td>
</tr>
</tbody>
</table>
Chapter 2 – Materials and methods

construct in pSUPER.basic (obtained from Prof. Stefan Strack, University of Iowa, IA), was originally generated by cloning nucleotides AAGACCATTTTTCATCGCATC of B56δ in both the sense and antisense orientations separated by a 9 nt spacer (Oligoengine Inc., Seattle, WA). To subclone the shB56δ sequence into a retroviral vector for transduction into the FDC-P1 cells, pSUPER.basic was digested with HindIII/EcoR1 and ligated into the retroviral vector pSUPER.retro.neo+GFP (pSR; obtained from A/Prof. Danilo Perrotti, The Ohio State University, Columbus, OH).

2.2.2 Restriction digests
For all restriction digests 3 Units (U) of enzyme (Promega, Madison, WI) was added to 1 µg of plasmid DNA with 1x restriction enzyme buffer (supplied) diluted with water to a total volume of 10-50 µl. The reaction was incubated at 37°C for 1-3 hours and subsequently analysed on a 1.5% (w/v) agarose gel by electrophoresis (Section 2.2.3).

2.2.3 DNA electrophoresis
For analysis of plasmid DNA, fragments were separated according to size by agarose gel electrophoresis. DNA samples were mixed with loading buffer and loaded onto 1-1.5% (w/v) agarose gels (Progen, Darra, QLD) made in 1x TAE buffer with 1 µg/ml ethidium bromide. The samples were electrophoresed in a horizontal gel apparatus (Biorad, Hercules, CA) in 1x TAE at 100 V for 45-60 minutes. DNA fragments were visualised using a Typhoon™ 9410 Variable Mode Imager (GE Healthcare, Buckinghamshire, UK), and the relative band sizes were determined by comparison to 1 kb DNA molecular weight markers (Fermentas, Burlington, ON, Canada).

2.2.4 DNA purification from agarose gel
DNA fragments separated by agarose gel electrophoresis were purified using the Wizard® SV Gel Clean-Up System according to manufacturer’s instructions (Promega). Firstly, the agarose gel was visualised on a Mini Transilluminator (Biorad) and the DNA bands were excised using a scalpel blade. The agarose slices were weighed in eppendorf tubes, an equal volume of membrane binding solution (w/v) was added and the gel was dissolved by heating at 65°C for 10 minutes with periodic mixing. The solution was transferred to an SV Minicolumn assembly, incubated for 1 minute at room temperature to facilitate DNA binding and centrifuged at 16,000 x g for 1 minute.
The column was washed with 700 µl of membrane wash solution and centrifuged for 1 minute. This was repeated with 500 µl of wash solution and the column was spun for a further 5 minutes. To remove all traces of wash buffer, the column was centrifuged again for a further minute. DNA was eluted from the column with 25 µl of nuclease free water. Purified DNA was quantified on a spectrophotometer to determine concentration and purity (Section 2.2.5).

2.2.5 Nucleic acid quantification
DNA or RNA samples were measured at an absorbance of 260 nm using a spectrophotometer (DU640, Beckman Coulter, Fullerton, CA). The following equation was used to calculate DNA concentration:

\[O.D. @ 260\text{nm} \times \text{dilution factor (DF)} \times \text{conversion factor} = \mu g \text{ DNA or RNA} / ml \]

\(O.D. = \) optical density
Conversion factor for DNA = 50 (50 µg/ml of DNA is equivalent to O.D\(_{260}\) of 1)
Conversion factor for RNA = 40 (40 µg/ml of DNA is equivalent to O.D\(_{260}\) of 1)

For each sample the absorbance ratio O.D\(_{260}\)/O.D\(_{280}\) was determined to indicate purity. Values ranging from 1.6-1.8 were acceptable, and values less than 1.6 indicated protein contamination.

2.2.6 Ligation of insert into plasmid
Each ligation reaction contained 50 ng of vector DNA with a 3 fold excess of insert DNA in 1x ligation buffer (supplied) and 1 µl T4 DNA ligase (3 Weiss units/µl) (Promega). The reaction was left overnight at 4°C and subsequently transformed into competent Escherichia coli cells.

2.2.7 Expansion and purification of plasmid DNA
2.2.7.1 Preparation of competent bacteria
Competent cells (E. coli, DH5α strain) were streaked onto an LB agar plate (without ampicillin) and grown overnight at 37°C. A single colony was used to inoculate 5 ml of LB medium and incubated overnight with shaking at 37°C. 1 ml of this culture was
aliquoted into 50 ml of fresh LB medium and grown until the optical density at 600 nm was between 0.5 and 0.6. The culture was chilled on ice for 10 minutes and subsequently centrifuged at 3,220 x g for 10 minutes at 4°C. The pellet was resuspended in 20 ml of Inoue transformation buffer and centrifuged for 10 minutes at 4°C. The pellet was then resuspended in 4ml Inoue transformation buffer and 300 μl dimethyl sulphoxide (DMSO) was added drop-wise. Cells were aliquoted into sterile eppendorf tubes, snap frozen in liquid nitrogen and stored at -80°C.

2.2.7.2 Transformation of competent bacteria
Aliquots of chemically competent E. coli cells were thawed on ice for 10 minutes and 50-150 ng of plasmid DNA was added to 50 μl of cells. The suspension was incubated on ice for 30 minutes and cells were heat shocked at 42°C for 60 seconds, then placed immediately on ice for a further 3 minutes. 150 μl of pre-warmed LB medium was added and the tubes were incubated with shaking at 37°C for 1 hour. 100 μl of cell suspension was spread onto LB agar plates containing the selective antibiotic ampicillin (100 μg/ml). The plates were incubated overnight at 37°C and stored at 4°C until further use.

2.2.7.3 Purification of plasmid DNA from bacteria
Small scale purification of plasmid DNA was performed using the Fast Plasmid Mini Isolation kit according to manufacturer’s instructions (Eppendorf, Hamburg, Germany). A single colony was inoculated into 5 ml LB medium containing 100 μg/ml ampicillin and incubated overnight at 37°C on a shaking rotator. 2 ml of bacterial culture was then centrifuged at 16,000 x g for 1 minute. The bacterial pellet was resuspended in 400 μl of ice-cold lysis solution, vortexed to ensure thorough resuspension and incubated for 3 minutes at room temperature. The lysate was transferred to a spin column assembly and centrifuged for 1 minute. Columns were washed in 400 μl of wash buffer and centrifuged for a further minute. The flow through was discarded and the columns spun for another minute to dry. Purified plasmid DNA was eluted in 50 μl of water and quantified on a spectrophotometer (Section 2.2.5).

Large scale plasmid DNA isolations were performed using the PureYield™ Plasmid Midiprep System, as per manufacturer's instructions (Promega). A single colony was
inoculated into 5 ml LB medium with ampicillin (100 μg/ml) and incubated for 8 hours with shaking at 250 rpm. 200 μl of this starter culture was added to 100 ml fresh LB medium and incubated overnight with shaking. The bacterial culture was centrifuged at 3,220 x g for 10 minutes and the pellet was resuspended in 3 ml resuspension solution. 3 ml lysis buffer was then added and the mixture was incubated at room temperature for 3 minutes to facilitate efficient cell lysis. Following this, 5 ml neutralisation solution was added and the tube was incubated for another 3 minutes to ensure thorough lysate clearing. The lysate was then poured into a clearing column and the cell debris was allowed to rise to the top for complete lysate filtration. The column was centrifuged at 1,500 x g for 5 minutes and the filtrate transferred to a binding column. This was spun for 3 minutes and 5 ml of endotoxin removal wash was subsequently added. The column was spun for 3 minutes and the flow through discarded. 20 ml of column wash was added and the tube was centrifuged for 7 minutes until the membranes appeared dry. The plasmid DNA was eluted in 400 μl of water by centrifugation for 5 minutes and quantified on a spectrophotometer (Section 2.2.5).

2.2.8 DNA sequencing and analysis

Automated sequencing of plasmid DNA (800 ng) was performed by the Australian Genome Research Facility (AGRF, University of QLD, Brisbane, QLD). Sequencing primers directed against either side of the shB56δ insert were used at a concentration of 6.4 pM (Table 2.2). The chromatograms were visually inspected to ensure correct sequencing and the sequences were analysed using the ANGIS/BioManager service (www.angis.org.au).

<table>
<thead>
<tr>
<th>Primer</th>
<th>Gene Accession</th>
<th>Oligonucleotide Sequence 5’ → 3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCR</td>
<td>NM 004327</td>
<td>Fwd - CGGGAGCAGCAGAAGAAGTGTT</td>
</tr>
<tr>
<td>ABL</td>
<td>M14752</td>
<td>Rev - AAAGGTGGGGTCATTTTCAC</td>
</tr>
<tr>
<td>β-actin</td>
<td>NM 007393</td>
<td>Fwd - CAGCCTTCCTTCTTGGGTAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev - CTCAGGAGGCAATGTCTT</td>
</tr>
<tr>
<td>Sequencing</td>
<td>Directed to pSR</td>
<td>Fwd - GTCAAGCCCTTTGTACAC</td>
</tr>
<tr>
<td>pSR shRNA</td>
<td>vector sequence</td>
<td>Rev - GTGTTCCCGCCTAGTGAC</td>
</tr>
</tbody>
</table>
Chapter 2 – Materials and methods

2.3 Cell Culture

2.3.1 Media, solutions and cytokines

All cell culture reagents were supplied by Gibco (Grand Island, NY) unless otherwise specified. Dulbecco’s Modified Eagle’s Medium (DMEM) and Iscove’s Modified Dulbecco’s Medium (IMDM) was supplemented with 15 mM HEPES, 2 mM glutamine and 10% heat inactivated fetal calf serum (FCS) (JRH Biosciences Inc., Lenexa, KN). Phosphate buffered saline (PBS) was used to wash cells. A solution of 0.125% trypsin and 0.125 mM Ethylenediaminetetra-acetic acid (EDTA) in PBS was used to remove adherent cells from tissue culture dishes or flasks.

Cytokine units are defined such that 50 U results in 50% of the maximum number of colonies in soft agar cultures containing 5 x 10⁴ mouse bone marrow cells. Mouse granulocyte-macrophage colony stimulating factor (GM-CSF) was synthesized by yeast expressing a GM-CSF expression vector and was a gift from Dr T. Wilson and Dr. N. Gough (Walter and Eliza Hall Institute, Melbourne, VIC). Recombinant human stem cell factor (SCF) was purchased from Peprotech (Rocky Hill, NJ). Interleukin-3 (IL-3) was obtained from WEHI-3 conditioned medium. WEHI-3 is a myelomonocytic cell line that produces constitutively high levels of IL-3 (Lee et al. 1982).

2.3.2 Cell lines and maintenance

All cell lines were maintained in tissue culture flasks (Corning Inc. Life Sciences, Lowell, MA) and incubated at 37°C in a humidified atmosphere containing 5% CO₂ (v/v) in air. To determine cell density, a 50 μl aliquot of cells was diluted with an equal volume of 0.4% trypan blue in PBS and loaded onto a haemocytometer. Cell viability was measured using the following formula:

\[
\text{mean of 4 large haemocytometer squares x 2 (DF) x } 10^4/\text{ml = cells x } 10^6/\text{ml}
\]

The mouse factor-dependent myeloid progenitor cell line, FDC-P1 (Dexter et al. 1980), was cultured in DMEM/10% FCS supplemented with 20 U/ml mouse GM-CSF. The mouse IL3-dependent myeloid progenitor cell line, 32Dcl3 (Greenberger et al. 1983), expressing the pMIG empty vector or p210 kDa WT BCR/ABL were obtained from A/Prof. Danilo Perrotti (Perrotti et al. 2002). 32Dcl3 cells and the Ph¹ human suspension CML cell line, K562 (Lozzio & Lozzio 1975), were cultured in IMDM/10%
FCS and the 32Del3 empty vector cells were supplemented with 10% WEHI-3 conditioned medium. Cell densities were maintained in the log phase to preserve viability, with cultures seeded at 1-5 x 10⁴ cells/ml and grown to a maximum of 1 x 10⁶ cells/ml.

The adherent retroviral packaging cell lines Ψ2 (Mann et al. 1983) and Phoenix™ (Pear et al. 1993) were maintained in DMEM/10% FCS. Phoenix™ cells were originally created by introducing constructs capable of generating retroviral particles into human embryonic kidney 293T cells (Orbigen, San Diego, CA). Upon confluency, the cells were washed in PBS and incubated with trypsin for 2 minutes to facilitate removal from the tissue culture flask. The trypsin was inactivated by the addition of DMEM/10% FCS, after which the cells were centrifuged (220 x g) for 5 minutes, resuspended in fresh DMEM/10% FCS and re-seeded at 2-5 x 10⁵ cells/ml.

2.3.3 Reviving cell lines
Cryopreserved cells were retrieved from liquid nitrogen and thawed rapidly in a water bath at 37°C. The cells were transferred to a 10 ml tube and 6 ml of cell culture medium was added drop-wise with gentle swirling. The cell suspension was centrifuged at 220 x g for 5 minutes, resuspended in 12 ml cell culture medium and placed in the incubator at 37°C in 5% CO₂.

2.3.4 Cryopreservation
Cells were harvested during log phase, centrifuged at 220 x g for 5 minutes and resuspended in fresh culture medium to a density of 1 x 10⁷ cells/ml. An equal volume of freezing mix was added drop wise with mixing. 1ml of this cell suspension was aliquoted into cryotubes (Thermo Fisher Scientific, Roskilde, Denmark), which were wrapped in cotton wool and placed in a -80°C freezer. After 3 to 5 days, the cryotubes were transferred to liquid nitrogen for long term storage.
2.3.5 Retroviral infection of FDC-P1 cells

2.3.5.1 Generation of FDC-P1 cells expressing BCR/ABL and c-KIT

The generation of FDC-P1 cells expressing the pRUFneo empty vector, WT BCR/ABL and Y253F BCR/ABL were established by a previous member of the Ashman laboratory (Dr. Michelle Frost, unpublished data). FDC-P1 cells expressing WT c-KIT, V560G c-KIT and D816V c-KIT have been previously described (Frost et al. 2002). For all established cell lines, the stable Ψ2 retroviral packaging system was used. Briefly, Ψ2 cells were seeded 24 hours prior to transfection at a density of 3 x 10^5 cells/60mm dish in 4 ml DMEM/10% FCS without antibiotics, as the presence of antibiotics reduces transfection efficiency. 6 μl of FuGENE (Roche, Basel, Switzerland) was added to 94 μl of DMEM and incubated for 5 minutes at room temperature. This mixture was then added drop-wise to 2 μg of pRUFneo vector DNA and incubated for a further 30 minutes at room temperature. The FuGENE:DNA complex was added drop-wise to the Ψ2 cells, which were incubated for 48 hours at 37°C. To select for transfected Ψ2 packaging cells, the media was removed and cells were cultured in fresh DMEM/10% FCS containing Geneticin (G418, Gibco), at a concentration of 400 μg/ml. A control dish that contained Ψ2 parent cells was also cultured in 400 μg/ml of G418 and the selection process was concluded when all the control cells were dead.

FDC-P1 parent cells were infected with retroviral particles by co-cultivation with G418-selected Ψ2 transfectants. Firstly, Ψ2 cells were γ-irradiated by a linear accelerator at 30 Gray to inhibit proliferation. 2.8 x 10^6 cells were then seeded in a T_75 cm² tissue culture flask and 1.2 x 10^6 FDC-P1 parent cells were added. The co-culture was maintained in DMEM/10% FCS, supplemented with 20 U/ml GM-CSF and 8 μg/ml polybrene (Chemicon, Temecula, CA). After 48 hours of co-cultivation, FDC-P1 cells were harvested and selected in medium containing 20 U/ml GM-CSF and 1 mg/ml G418 until the parent control cells were dead. After selection, FDC-P1 pRUFneo empty vector cells were maintained in 20 U/ml GM-CSF. FDC-P1 WT c-KIT cells were maintained in 100 ng/ml SCF (Peprotech). FDC-P1 WT and Y253F BCR/ABL, V560G and D816V c-KIT cells were cultured in the absence of factor (Table 2.3).
<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Species</th>
<th>Media</th>
<th>Growth Factors</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDC-P1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pRUFneo EV</td>
<td>Mouse</td>
<td>DMEM / 10% FCS</td>
<td>20 U/ml GM-CSF</td>
<td>(Dexter et al. 1980)</td>
</tr>
<tr>
<td>WT BCR/ABL</td>
<td></td>
<td>Factor-independent</td>
<td></td>
<td>(Frost et al. 2002)</td>
</tr>
<tr>
<td>Y253F BCR/ABL</td>
<td></td>
<td>Factor-independent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT c-KIT</td>
<td></td>
<td>100 ng/ml human SCF</td>
<td></td>
<td>(Frost et al. 2002)</td>
</tr>
<tr>
<td>V560G c-KIT</td>
<td></td>
<td>Factor- independent</td>
<td></td>
<td>(Frost et al. 2002)</td>
</tr>
<tr>
<td>D816V c-KIT</td>
<td></td>
<td>Factor-independent</td>
<td></td>
<td>(Frost et al. 2002)</td>
</tr>
<tr>
<td>32Dcl3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pMIG EV</td>
<td>Mouse</td>
<td>IMDM / 10% FCS</td>
<td>10% WEHI-medium (IL-3)</td>
<td>(Greenberger et al. 1983)</td>
</tr>
<tr>
<td>WT BCR/ABL</td>
<td></td>
<td>Factor-independent</td>
<td></td>
<td>(Perrotti et al. 2002)</td>
</tr>
<tr>
<td>K562</td>
<td>Human</td>
<td>IMDM / 10% FCS</td>
<td>Factor-independent</td>
<td>(Lozzio & Lozzio 1975)</td>
</tr>
<tr>
<td>Ψ2</td>
<td>Mouse</td>
<td>DMEM / 10% FCS</td>
<td>Factor-independent</td>
<td>(Mann et al. 1983)</td>
</tr>
<tr>
<td>Phoenix™</td>
<td>Human</td>
<td>DMEM / 10% FCS</td>
<td>Factor-independent</td>
<td>(Pear et al. 1993)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Orbigen, San Diego, CA)</td>
</tr>
</tbody>
</table>
2.3.5.2 Generation of shRNA-expressing FDC-P1 WT BCR/ABL cells

The retroviral expression vectors pMKO.1-shB55α, pMKO.1-shB56α, pMKO.1-shB56γ, pSR-shB56δ and the corresponding control vectors pMKO.1-GFP-EV and pSR-EV were introduced into FDC-P1 WT BCR/ABL cells using the transient Phoenix™ retroviral packaging system and Profection Calcium Phosphate Transfection kit according to manufacturer’s instructions (Promega). Phoenix cells were seeded 24 hours prior to transfection at a density of 3.5 x 10^6 cells/T75 cm² in 20 ml DMEM/10% FCS. For each flask, 20 μg of plasmid DNA was diluted in 1 ml of 0.25 mM CaCl₂. This mixture was added drop-wise to hanks buffered solution (HBS) and incubated for 30 minutes at room temperature. The DNA solution was then added drop-wise to the flask of cells and incubated for 14 hours, after which time the media was replaced with fresh DMEM/10% FCS. The viral supernatant was collected 24 hours later and filtered through a 0.45 μm filter (Millipore, Billerica, MA).

For retroviral infection, 8 x 10^5 FDC-P1 WT BCR/ABL cells were resuspended in 4 ml viral supernatant with 8 μg/ml polybrene (Chemicon). The cell mixture was split into two wells of a 6 well plate, spun at 650 x g for 45 minutes then incubated at 32°C for 2 hours. The medium was replaced with 2 ml fresh viral supernatant, the plate spun again and incubated for 4 hours at 32°C. The cells were cultured in fresh DMEM/10% FCS overnight at 37°C and the viral supernatant was left at 4°C. A final spin followed by a 5 hour incubation with viral supernatant at 32°C was performed. The cells were left to recover for two days in fresh DMEM/10% FCS at 37°C and selected for GFP expression using a fluorescent-activated cell sorter (FACSAria) and FACSDiva software (BD Biosciences, San Jose, CA).

For cell sorting, 5 x 10^6 cells were resuspended in 5 ml ice-cold DMEM/10% FCS and the top 5-10% GFP-expressing cells were collected into 1 ml ice-cold DMEM/20% FCS. The cells were then transferred with an additional 4 ml medium into a T25 cm² flask and allowed to recover at 37°C. To monitor GFP expression, 5 x 10^5 cells were washed 3 x in PBA (define first time) and resuspended in 500 μl FACS fixative. Fluorescence (488 nm) was detected using a FACSCalibur flow cytometer (BD Biosciences) and the data was analysed with CellQuest software (BD Biosciences).
2.3.6 Drug treatments

Imatinib was resuspended in milli-Q water at 10 mM from capsules that were originally obtained from Novartis and provided by Prof. Bruce Lyons (IMVS). Where indicated, cells were treated with 0.1 μM for 24 hours, with a half dose (0.05 μM) added at 18 hours. For animal administration, imatinib was made up fresh each day in milli-Q water at 5 mg/ml. FTY720 (Cayman Chemicals, Ann Arbor, MI) and FTY720-P(S) (Echelon Biosciences Inc., Salt Lake City, UT) were dissolved in DMSO at a stock concentration of 50 mM. For animal treatments, FTY720 was made up fresh at 0.5 or 1 mg/ml in 0.9% saline (St John Ambulance, Sydney, NSW). Okadaic acid (Sigma) was dissolved in DMSO at a stock concentration of 1 mM. All drugs were stored at -20°C.

2.4 Polymerase Chain Reaction (PCR)

2.4.1 RNA extraction

Total RNA was extracted from FDC-P1 cells using an RNeasy Mini kit, as per manufacturer’s instructions (QIAGEN Pty Ltd., Valencia, CA). Briefly, 5 x 10⁶ cells were washed in PBS and lysed in 600 μl Buffer RLT. The lysate was homogenised by centrifugation at 16,000 x g for 2 minutes in a QIAshredder spin column and 600 μl of 70% ethanol (EtOH) was added to the lysate. The mixture was then transferred to an RNeasy spin column which was centrifuged for 15 seconds at 16,000 x g. The column was washed in 350 μl Buffer RW1 and the membrane incubated for 15 minutes in DNase I to remove contaminating DNA. The column was washed again in 350 μl Buffer RW1, then 2x with 500 μl Buffer RPE. The RNA was eluted in 50 μl RNase free water and quantified on a spectrophotometer (Section 2.2.5).

2.4.2 Reverse transcription PCR (RT-PCR)

To make cDNA, 10 μg of RNA in 20 μl DEPC-water was incubated with 0.5 μg/ml oligo dT (Sigma Genosys) at 65°C for 10 minutes to allow for primer annealing. For reverse transcription the RNA was divided into two tubes and incubated at 42°C for 1.5 hours with 10 μl master mix including 10 U RNase inhibitor, 0.5 mM dNTPs and either 1 U M-MLV reverse transcriptase (Promega) or 1 μl water for the negative control. The enzyme was inactivated at 70°C for 10 minutes, after which time the samples were diluted with 180 μl DEPC-water and stored at -20°C. Oligonucleotide primers (Sigma Genosys) are presented in Table 2.2. To detect the presence of BCR/ABL transcripts in
the FDC-P1 cells each PCR reaction contained 5 µl cDNA, 100 ng primer, 0.2 mM dNTPs, 2 mM MgCl₂, 1x reaction buffer (supplied) and 1 U GoTaq polymerase (Promega) made up to 50 µl in nuclease-free water. The denaturing stage was performed at 95°C for 2 minutes and amplification carried out with 35 cycles of 95°C for 40 seconds, 60°C for 30 seconds and an extension period of 72°C for 40 seconds. The final reaction was held at 72°C for 2 minutes to ensure complete extension of the PCR product. β-actin levels were monitored in a separate reaction as a control for equal cDNA loading.

2.4.3 Quantitative real-time PCR (qRT-PCR)
Total RNA was extracted from cells using an RNeasy Mini kit as per manufacturer’s instructions (Section 2.4.1). Reverse transcription was performed with 10 µg of RNA in 20 µl of master mix as described above (Section 2.4.2). Oligonucleotide primers that detect individual PP2A subunit isoforms (Sigma Genosys) are presented in Table 2.4. Each 12.5 µl qRT-PCR reaction was prepared using the Power SYBR® Green PCR Master Mix (Applied Biosystems, Foster City, CA) and contained 1µl cDNA with 4 pM primer. All qRT-PCR experiments were performed using the 7500 Real Time PCR System (Applied Biosystems). Triplicate reactions were performed for each run on four repeats from two RNA isolations. Thermal cycling conditions consisted of 50°C for 2 minutes, initial heating at 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. Ribosomal protein S18 (RPS18), a component of the 40S ribosome subunit, was chosen as the reference gene based on preliminary experiments which confirmed its expression remained constant between the FDC-P1 cell lines. In addition, a standard curve of 10-fold serial cDNA dilutions was routinely included to monitor the reaction efficiency between plates. For analysis of fold changes in PP2A gene expression compared to FDC-P1 empty vector cells, comparative quantification algorithms were used (Applied Biosystems). The first step was to subtract the average RPS18 cycle threshold (Ct) from the Ct of the specific gene of interest to give the normalised Avg ΔCT value for each cell line (1).The ΔΔCt for each gene of interest was calculated by subtracting the Avg ΔCt for the FDC-P1 empty vector cell line from the FDC-P1 test cell line (either WT or Y253F BCR/ABL) (2). To determine relative gene expression compared to the empty
Table 2.4 Quantitative real-time PCR Primers

<table>
<thead>
<tr>
<th>Primer</th>
<th>Gene Accession</th>
<th>Oligonucleotide Sequence 5’ → 3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPS18</td>
<td>NM 022331</td>
<td>Fwd - TAGCCTTTGCCATCAGTCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev - CATGAGCATATCTTCGGCCC</td>
</tr>
<tr>
<td>PPP2CA</td>
<td>NM 002715</td>
<td>Fwd - CTTGTAGCTTTAAGGTTCG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev - TCTGCTCTCATGATTCCTCCTC</td>
</tr>
<tr>
<td>PPP2CB</td>
<td>NM 004156</td>
<td>Fwd - TTCTGTAGCATAAAAGGTTCG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev - TCCCATACTTTTCGAGACAT</td>
</tr>
<tr>
<td>PPP2R1A</td>
<td>NM 014225</td>
<td>Fwd - GCTCTTCTGCAATCAATGTC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev - ATGCGCAAGAACCCTGGGTA</td>
</tr>
<tr>
<td>PPP2R1B</td>
<td>NM 002716</td>
<td>Fwd - ACTTTATCTGTACATTATGCACT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev - TGGGCAGCAGTTGCTTAGTA</td>
</tr>
<tr>
<td>PPP2R2A</td>
<td>NM 002717</td>
<td>Fwd - CGTGGAACATACCAGGTG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev - AACACTGTGTCAGATCCATTCC</td>
</tr>
<tr>
<td>PPP2R2D</td>
<td>NM 018461</td>
<td>Fwd - AACGGTTCCGATAGCGCCA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev - CGTGTCTCTATCAACACTC</td>
</tr>
<tr>
<td>PPP2R5A</td>
<td>NM 006243</td>
<td>Fwd - TTGTTTCATGCTCAGCTAGC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev - GGCTCTGTTAGTGTTGTATC</td>
</tr>
<tr>
<td>PPP2R5B</td>
<td>NM 006244</td>
<td>Fwd - ACTGTGACAGACACGTGAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev - GAAACATCACCTCCCTTTG</td>
</tr>
<tr>
<td>PPP2R5C</td>
<td>NM 002719</td>
<td>Fwd - TGCGCTCATCTACAGCTTGT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev - GTGCGGAATCTGGAGACACTCT</td>
</tr>
<tr>
<td>PPP2R5D</td>
<td>NM 006245</td>
<td>Fwd - ACTGAGGCTGTTCAGATGCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev - GCAGCAGCAGTTCTCTC</td>
</tr>
<tr>
<td>PPP2R5E</td>
<td>NM 006246</td>
<td>Fwd - TCAGATCGTCAGCGTGAGA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev - CCTTTAACTCCCTTCCTC</td>
</tr>
<tr>
<td>PPP2R3A</td>
<td>NM 002718</td>
<td>Fwd - TTGCGGTCCAGAAGGTATG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev - ACAAGCGTCATCATACACTCT</td>
</tr>
<tr>
<td>PPP2R4</td>
<td>NM 178001</td>
<td>Fwd - ATGTATAAGGCGAGTGCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rev - TCCCGAAGTCAAGTGCG</td>
</tr>
</tbody>
</table>
vector cell line, the number 2 was raised to the power of \((-\Delta\Delta Ct)\) (3). This is because one cycle difference indicates twice as much starting template.

1. \(C_{t_{\text{Gene of interest}}} - C_{t_{RPS18}} = \text{Avg } \Delta CT\)
2. \(\text{Avg } \Delta CT_{\text{test cell line}} - \text{Avg } \Delta CT_{\text{empty vector cell line}} = \Delta \Delta CT\)
3. Fold difference (relative to FDC-P1 empty vector cell line) = \(2^{-\Delta \Delta CT}\)

2.5 PP2A phosphatase activity assay

Cellular PP2A activity was determined using the PP2Ac immunoprecipitation phosphatase assay kit according to manufacturer’s instructions (Millipore). Briefly, cells were set up at \(2.5 \times 10^5/ml\) in 50 ml and treated with or without the final concentration of indicated drugs for 12 hours. Approximately \(2 \times 10^7\) cells were washed in HEPES and lysed in PP2A activity assay buffer for 1 hour on ice. Protein concentration was determined using a BCATM Protein Assay Kit (Pierce, Rockford, IL). Lysates (250 μg) were mixed with 4 μg anti-PP2Ac 1D6 (Millipore) and 40 μl protein-A Sepharose beads (GE Healthcare) in pNPP Ser/Thr assay buffer for 2 hours at 4°C. PP2Ac complexes were washed 3x in tris-buffered saline (TBS) and 1x in pNPP assay buffer. 20 μl of assay buffer and 60 μl of a PP2A specific phospho-threonine peptide (750 μM; K-R-pT-I-R-R) was added to the beads, which were then incubated at 30°C for 10 minutes. The amount of free phosphate (PO\textsubscript{4}) was measured colourimetrically with addition of malachite green (20 μl) at an absorbance of 620 nm. A standard PO\textsubscript{4} curve ranging from 200 pM to 2000 pM was included on each plate and the phosphate release per sample was determined by linear regression. The percentage of phosphatase activity was calculated by the following formula:

\[
\% \text{PP2A activity} = \frac{\text{free phosphate of the test cells}}{\text{untreated empty vector cells}} \times 100.
\]

2.6 Analytical Procedures for Proteins

2.6.1 Flow cytometry

Flow cytometric analysis was used to monitor c-KIT expression on the surface of FDC-P1 derived cell lines. \(1 \times 10^6\) cells were harvested and washed in PBA (PBS/0.1% BSA/0.1% sodium azide) then resuspended in 400 μl PBA containing 10% normal rabbit serum in PBA. Cells were incubated on ice for 10 minutes and 100 μl was
aliquoted into each tube. The primary antibody, mouse IgG\textsubscript{2A} mAb 1DC3, used to detect human c-KIT was produced in the Ashman lab (Aylett et al. 1995). An anti-Giardia antibody, IB5 (Prof. George Mayhofer, The University of Adelaide, Adelaide, SA), was incorporated as an isotype-matched negative control. For staining, 2 \(\mu l \) of either antibody was added to the cells and incubated on ice for 1 hour. The cell suspension was washed three times in PBA to remove unbound antibody and incubated in the dark on ice for 45 minutes with a 1/50 dilution of the secondary antibody; fluorescein isothiocyanate (FITC) conjugated sheep anti-mouse Ig (Chemicon). Cells were washed another three times in PBA, resuspended in 500 \(\mu l \) FACS fixative and left in the dark at 4°C overnight. Immunofluorescence (488 nM) was detected using a FACSCalibur flow cytometer (BD Biosciences) and the data was analysed with CellQuest software (BD Biosciences).

2.6.2 Immunoblotting

Cells (1 \(\times 10^7 \)) were washed in PBS and lysed for 30 minutes on ice in radioimmunoprecipitation assay (RIPA) buffer. Lysates were clarified by centrifugation (15,000 x g for 15 minutes at 4°C). Protein concentration was determined using a BCA Assay (Pierce). Whole cell lysates (50 \(\mu g \)) were mixed with 5x SDS loading buffer, boiled for 10 minutes, then separated by 12% SDS-polyacrylamide gel electrophoresis (PAGE) and transferred onto Hybond ECL nitrocellulose membranes (GE Healthcare).

The membranes were stained with Ponceau S in 0.1% acetic acid to determine successful transfer and equal loading before being blocked for 1 hour in either 5% skim milk powder (SMP) or 3% bovine serum albumin (BSA) in Tris-buffered saline/0.1% Tween-20 (TBST) (Table 2.5) and washed 3x 10 minutes in TBST before incubation with primary antibodies in either 0.5% SMP or 1% BSA in TBST for 1 hour at room temperature (Table 2.5). The membranes were washed again for 3x 10 minutes in TBST and incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies in TBST for 1 hour at room temperature (Table 2.6). Protein-antibody complexes were visualised by enhanced chemiluminescence (ECL; GE Healthcare). Images were captured on a TyphoonTM 9410 Variable Mode Imager (GE Healthcare) and protein bands were analysed by densitometric volume quantification using Image Quant v5.1 (GE Healthcare). To obtain relative protein expression, the volume for each
<table>
<thead>
<tr>
<th>Antibody</th>
<th>Immunogen</th>
<th>Supplier</th>
<th>Block</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit pAb anti-PP2A A</td>
<td>MAAADGDDSLY</td>
<td>Millipore, #07-250</td>
<td>5% SMP</td>
<td>1:250 in 0.5% SMP</td>
</tr>
<tr>
<td>Rabbit pAb anti-PP2A B55α</td>
<td>CFSQVKGAVIDDV</td>
<td>Peptide made by Auspep, Parkville, VIC</td>
<td>3 % BSA</td>
<td>1:500 in 1% BSA</td>
</tr>
<tr>
<td>Goat pAb anti-PP2A B56α</td>
<td>AYNMHSILSNNTSAE</td>
<td>Novus Biologicals, Littleton, CO, #NB100-847</td>
<td>5% SMP</td>
<td>1:500 in 0.5% SMP</td>
</tr>
<tr>
<td>Goat pAb anti-PP2A B56β</td>
<td>QRLTPQVAASGGQS</td>
<td>Novus Biologicals, #NB100-66290</td>
<td>5% SMP</td>
<td>1:500 in 0.5% SMP</td>
</tr>
<tr>
<td>Mouse mAb anti-PP2A B56γ3 clone TQ11-1G6</td>
<td>C-terminus</td>
<td>Novus Biologicals, #NB100-501</td>
<td>5% SMP</td>
<td>1:500 in 0.5% SMP</td>
</tr>
<tr>
<td>Goat pAb anti-PP2A B56δ</td>
<td>KRAEEFTASQEAL</td>
<td>Novus Biologicals, #NB100-66292</td>
<td>5% SMP</td>
<td>1:500 in 0.5% SMP</td>
</tr>
<tr>
<td>Goat pAb anti-PP2A B56ε</td>
<td>LKRLRRGDGIIP</td>
<td>Novus Biologicals, #NB100-66293</td>
<td>5% SMP</td>
<td>1:500 in 0.5% SMP</td>
</tr>
<tr>
<td>Rabbit pAb anti-PP2Ac</td>
<td>PHVTRRTPDYFL</td>
<td>Supplied by Alistair Sim (Sim et al. 1998)</td>
<td>5% SMP</td>
<td>1:5000 in 0.5% SMP</td>
</tr>
<tr>
<td>Rabbit mAb anti-PP2Ac- pY307</td>
<td>Phospho-peptide corresponding to residues surrounding Try307</td>
<td>Epitomics, Burlingame, CA</td>
<td>3% BSA</td>
<td>1:500 in 1% BSA</td>
</tr>
<tr>
<td>Antibody</td>
<td>Immunogen</td>
<td>Supplier</td>
<td>Block</td>
<td>Concentration</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Rabbit pAb anti-I2PP2A (SET) (H-120)</td>
<td>Amino acids 1-120 at N-terminus</td>
<td>Santa Cruz Biotechnology, Santa Cruz, CA; #sc-25564</td>
<td>5% SMP</td>
<td>1:500 in 0.5% SMP</td>
</tr>
<tr>
<td>Rabbit pAb anti-actin</td>
<td>SGPSIVHRKC</td>
<td>Sigma, #A2066</td>
<td>5% SMP</td>
<td>1:1000 in 0.5% SMP</td>
</tr>
<tr>
<td>Mouse mAb anti-phosphotyrosine clone 4G10</td>
<td>N/A</td>
<td>Millipore, #05-321</td>
<td>3% BSA</td>
<td>1:1000 in 1% BSA</td>
</tr>
<tr>
<td>Goat pAb anti-c-KIT (M-14)</td>
<td>C-terminus</td>
<td>Santa Cruz Biotechnology, #sc-1494</td>
<td>5% SMP</td>
<td>1:500 in 0.5% SMP</td>
</tr>
<tr>
<td>Mouse mAb Anti-c-Abl (Ab-3) clone 24-21</td>
<td>C-terminus</td>
<td>EMD Chemicals Inc., Gibbstown, NJ, #OP20</td>
<td>5% SMP</td>
<td>1:250 in 0.5% SMP</td>
</tr>
</tbody>
</table>
Table 2.6 Secondary antibody concentrations used for immunoblotting

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Company</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-rabbit IgG HRP-conjugated</td>
<td>GE Healthcare</td>
<td>1:5000 in TBST</td>
</tr>
<tr>
<td></td>
<td>#NA934</td>
<td></td>
</tr>
<tr>
<td>Anti-mouse IgG HRP-conjugated</td>
<td>GE Healthcare</td>
<td>1:5000 in TBST</td>
</tr>
<tr>
<td></td>
<td>#NXA931</td>
<td></td>
</tr>
<tr>
<td>Anti-goat IgG HRP-conjugated</td>
<td>Sigma</td>
<td>1:5000 in TBST</td>
</tr>
<tr>
<td></td>
<td>#A9452-1VL</td>
<td></td>
</tr>
<tr>
<td>Anti-rabbit IgG TruBlot™ HRP-conjugated</td>
<td>eBioscience</td>
<td>1:5000 in TBST</td>
</tr>
<tr>
<td></td>
<td>#18-8816</td>
<td></td>
</tr>
<tr>
<td>Anti-mouse IgG TruBlot™ HRP-conjugated</td>
<td>eBioscience</td>
<td>1:5000 in TBST</td>
</tr>
<tr>
<td></td>
<td>#18-8877</td>
<td></td>
</tr>
<tr>
<td>Anti-goat IgG TruBlot™ HRP-conjugated</td>
<td>eBioscience</td>
<td>1:5000 in TBST</td>
</tr>
<tr>
<td></td>
<td>#18-8814</td>
<td></td>
</tr>
</tbody>
</table>
protein of interest was divided by the corresponding volume for the actin band for each cell line. These values were then normalised to empty vector controls.

1. \[\frac{\text{volume protein of interest}}{\text{volume of actin}} = \text{relative protein to actin} \]
2. \[\frac{\text{relative actin value of test cell line}}{\text{relative actin value of empty vector}} = \text{relative protein expression} \]

2.6.3 Immunoprecipitation

For immunoprecipitation of PP2Ac or PP2A A, FDC-P1 cells (1 x 10^7) were lysed in IP buffer for 30 minutes on ice and clarified by centrifugation (15,000 x g for 15 min at 4°C). Total protein content was determined by a BCA Assay (Pierce). For immunoprecipitations, primary antibody was pre-incubated with 50 μl of beads for 2 hours at 4°C (Table 2.7). The antibody-coated beads or microcystin-conjugated sepharose beads (supplied by Greg Moorhead, University of Calgary, AB, Canada) (Moorhead et al. 2007) were washed and incubated with 1 mg lysate overnight at 4°C. Complexes were washed again 3x in IP lysis buffer, boiled and eluted in 2x SDS loading buffer then subjected to 12% SDS-PAGE before being transferred onto Hybond ECL nitrocellulose membranes (GE Healthcare). The membranes were probed as described above (Section 2.6.2); however, TrueBlot™ HRP-conjugated secondary reagents were used (eBioscience, San Diego, CA) (Table 2.5).

2.6.4 Phosphorylation assay

Immunoprecipitation of c-KIT has been described previously (Roberts et al. 2007). Briefly, FDC-P1 cells expressing BCR/ABL or c-KIT were set up at 2.5 x 10^5/ml in 300 ml with or without indicated concentration of drugs, and harvested at the designated time points. For FTY720 treatment, a half-dose (1.25 μM) was added every 12 hours. Cells were lysed in modified RIPA buffer for 30 minutes on ice. Lysates were clarified by centrifugation (15,000 x g for 15 minutes at 4°C) and total protein content was determined using a BCA Assay (Pierce). For immunoprecipitation, lysates (1mg) were incubated with 4 μg of primary antibody (Table 2.7) and 40 μl protein-A agarose beads (GE Healthcare) for 2 hours at 4°C. The immunoprecipitated complexes were washed 3x in lysis buffer, eluted in 2x SDS loading buffer then subjected to SDS-PAGE on 4-15% Tris HCl gradient gels (Biorad). Gels were transferred onto Hybond ECL nitrocellulose membranes (GE Healthcare), blocked in 1% BSA/TBST for 1 hour and
<table>
<thead>
<tr>
<th>Antibody</th>
<th>Immunogen</th>
<th>Supplier</th>
<th>Concentration</th>
<th>Beads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse mAb anti-PP2Ac clone 1D6</td>
<td>RGEPHVTRRTPDYFL</td>
<td>Millipore, #05-421</td>
<td>4 μg / IP</td>
<td>Trueblot™ anti-Mouse Ig beads (eBioscience)</td>
</tr>
<tr>
<td>Rat mAb anti-PP2A Aα (6F9)</td>
<td>MAAADGDDSLY</td>
<td>Covance, Berkeley, CA; #MRT-204R</td>
<td>10 ul / IP</td>
<td>rec-Protein G-Sepharose® 4B Conjugate (Zymed, San Francisco, CA)</td>
</tr>
<tr>
<td>Mouse mAb anti-c-Abl (Ab-3) clone 24-21</td>
<td>C-terminus of Abl</td>
<td>Calbiochem</td>
<td>4 μg / IP</td>
<td>Protein-A agarose (GE Healthcare)</td>
</tr>
<tr>
<td>Mouse mAb anti-c-KIT clone Kit4</td>
<td>C-terminus of c-KIT</td>
<td>Leonie Ashman (Aylett et al. 1995)</td>
<td>4 μg / IP</td>
<td>Protein-A agarose (GE Healthcare)</td>
</tr>
</tbody>
</table>
probed with anti-phosphotyrosine 4G10 (Millipore). After incubation with HRP-conjugated secondary antibody for 1 hour (Table 2.6), immunoblots were visualised with ECL (GE Healthcare) and captured on a Typhoon™ 9410 Variable Mode Imager (GE Healthcare). To detect total protein, the blots were incubated in stripping buffer at 55°C for 3x 20 minutes and re-probed with anti-c-ABL or anti-c-KIT (Table 2.5). After incubation with HRP-conjugated secondary antibody for 1 hour (Table 2.6), immunoblots were visualised with ECL (GE Healthcare) and captured on a Typhoon™ 9410 Variable Mode Imager (GE Healthcare). Protein bands were analysed by densitometric volume quantification using Image Quant v5.1 (GE Healthcare). To obtain relative pY / total c-KIT levels for each cell line, the volume for pY c-KIT was divided by the corresponding total c-KIT at each time point (1). These values were then normalised and data points are presented as a percentage of untreated controls for each time point (2).

\[
1. \quad \text{volume } \frac{pY}{\text{volume of total c-KIT}} = \text{relative ratio at any given time point}
\]
\[
2. \quad \text{relative ratio at any time point} / \text{relative ratio of untreated levels} \times 100 = \% \frac{pY}{\text{total c-KIT}} \text{for each time point}
\]

2.7 Cellular Growth and Survival Assays

2.7.1 Cellular proliferation

To evaluate the growth of shRNA-expressing FDC-P1 WT BCR/ABL cells, cells were seeded at 5 x 10⁴/ml and a trypan blue cell count (Section 2.3.2) was performed every 12 hours until confluency was reached. Three independent experiments were performed in duplicate.

The CellTiter-Blue™ Cell Viability Assay was used according to manufacturer’s instructions (Promega). Briefly, FDC-P1 cells were seeded at 4 x 10⁴/well (200 µl) in a 96-well plate in DMEM/10% FCS containing appropriate factors and the indicated concentrations of drugs. After 48 hours, 20 µL CellTiter-Blue™ Reagent was added to each well and the plates were incubated for an additional 5 hours. Fluorescence was measured at 560_{Ex} / 590_{Em} on a FLOUstar OPTIMA plate reader (BMG Labtechnologies, Offenburg, Germany). The concentration of drug that inhibits 50% of the cell population (ID₅₀) was analysed using fit-spline lowess regression (Verrills et al.)
The relative sensitivity was determined by dividing the ID$_{50}$ of the test cells by that of empty vector controls. Assays were plated in quadruplicate and repeated at least 4 times.

2.7.2 Analysis of cellular morphology

The cellular morphology of FDC-P1 derived cell lines was examined by May-Grunwald/Giemsa staining on cytospun cells. To prepare cytopsins, FDC-P1 WT BCR/ABL derived cell lines were harvested from culture and resuspended in ice-cold 5% FCS/PBS at 2.5 x 105 cells/ml. The cell suspension (100μl) was deposited onto microscope slides by centrifugation (500 rpm for 5 minutes) in a Cytospin centrifuge (Shandon Scientific Ltd., England). Slides were allowed to dry and fixed for 1 minute in 100% methanol before staining with May-Grunwald (Sigma) for 5 minutes. The slides were rinsed briefly in distilled water and placed in 1:20 dilution of Giemsa for 20 minutes. The slides were dipped in water again, allowed to dry and mounted in Vectamount (Vector Laboratories, Inc., Burlingame, CA). Cells were evaluated under 200x or 400x magnification on a light microscope (BH2, Olympus, Japan). Photographs were taken with a ColorView II camera and analySIS software (Olympus Soft Imaging Systems GmbH, Munster, Germany). To determine the percentage of cells with altered morphology, a total of 400 cells were examined for the presence of differentiation characteristics such as an enlarged vacuolated cytoplasm.

2.7.3 Apoptosis assay

The induction of apoptosis by FTY720 was measured using the annexin V-FITC apoptosis detection kit following manufacturer’s instructions (BD Biosciences). Briefly, untreated and 2.5 μM FTY720-treated cells were set up at 2.5 x 105/ml in 10 ml and 1.25 μM FTY720 was added at 12 hours. For analysis, 5 x 105 cells were harvested 24 hours post-treatment and resuspended in 500 μl binding buffer. The cells were stained with 4 μl annexin V-FITC and 200 ng/ml propidium iodide (PI) for 15 minutes at room temperature in the dark. Samples were run on a FACSCalibur flow cytometer (BD Biosciences), and the data was analysed using CellQuest software (BD Biosciences). Four independent assays were averaged to determine the percentage of annexin-V positive cells.
2.7.4 Cell cycle analysis

To determine the percentage of cells at each stage of the cell cycle, 1 x 10^6 cells were treated with or without 2.5 \(\mu \)M FTY720. A half dose (1.25 \(\mu \)M) was added every 12 hours until the 36 hour time point when the cells were washed in PBS containing 0.1% glucose and fixed with ice-cold 70% EtOH for 1 hour. Cells were washed again in PBS, resuspended in 200 \(\mu \)l 50 \(\mu \)g/mL PI (BD Biosciences) with 20 \(\mu \)l of 10mg/ml RNase (Fermentas) and incubated at 37°C for 30 minutes. 1 x 10^5 cells were analysed for DNA content on a FACSria flow cytometer (BD Biosciences). Histograms were fit for cell-cycle ratios using ModFit LT version 3.2 (Verity Software House, Topsham, ME). Four independent assays were averaged to determine the percent of cells in sub-G_0, G_0/G_1, S, and G_2/M phase at each time point.

2.7.5 Colony-forming assay

To assess the growth of myeloid progenitors, 5 x 10^2 FDC-P1 cells were diluted in IMDM/2% FCS and seeded in 1% methylcellulose medium (MethoCult®; Stem Cell Technologies, Vancouver, BC, Canada). Where indicated, cells were plated in the presence of appropriate factors and concentration of drugs. Colonies (>50 cells) were counted after 7 days and viewed under 100x with a CK40 microscope (Olympus). Photographs were taken with a ColorView II camera and analySIS software (Olympus Soft Imaging Systems GmbH).

2.8 Animal Procedures

2.8.1 Syngeneic mouse model

2.8.1.1 Establishing the FDC-P1 mutant c-KIT tumour model

To determine the optimal cell number and growth kinetics of tumours formed by FDC-P1 cells expressing V560G or D816V oncogenic c-KIT, a preliminary tumour growth study with 4 mice per group was conducted. On day 0, 8- to 10-week-old female DBA/2J mice (Animal Resources Centre, Canning Vale, WA) were subcutaneously (s.c.) injected on both flanks with either 2.5 or 5 x 10^6 FDC-P1 V560G or D816V c-KIT cells in 200 \(\mu \)l 1:1 PBS/Matrigel (Trevigen, Gaithersburg, MD). The mice were weighed every second day. Tumours were visibly inspected and palpated until day 18, when tumour volume was accurately measured with callipers based on the formula:

\[
\text{tumour volume} = 0.5 \times \text{length (mm)} \times \text{width}^2 \text{(mm)}
\]
Mice were culled when the combined tumour volumes reached 10% of the body weight (~2100 mm3).

2.8.1.2 Evaluating the safety of FTY720 in DBA/2J mice
There were no previous studies which had reported the administration of FTY720 to DBA/2J mice. Therefore, a preliminary toxicity study with 4 mice per group was conducted to determine the maximal tolerable dose. The mice received daily 200 μl intraperitoneal (i.p.) injections of either 0.9% saline as an untreated control (St John Ambulance), or 5 or 10 mg/Kg FTY720 made up daily in 0.9% saline. The mice were weighed every day to monitor toxic side effects and culled at day 23. Peripheral blood was harvested via heart puncture into an EDTA collection tube (BD Biosciences) and used to evaluate red blood cell (RBC) and white blood cell (WBC) numbers. The organs were weighed and snap-frozen in liquid nitrogen. To count the RBC, 5 μl of whole blood was added to 4995 μl of PBS and mixed by inversion. 10 μl of this mixture was placed on a haemocytometer and the number of RBC was determined by the following formula:

$$\text{Average count per small square} \times 16 \times 1000 \text{ (dilution factor)} = RBC \times 10^{12}/dL \text{ blood}$$

For WBC, 10 μl of whole blood was added to 190 μl room temperature RBC lysis buffer and mixed by inversion. 10 μl was placed on a haemocytometer and the number of WBC was determined by the following formula:

$$\text{Average count per large square} \times 0.2 = WBC \times 10^8/dL \text{ blood}$$

2.8.1.3 FTY720 treatment of FDC-P1 mutant c-KIT tumours
Eight- to 10-week-old female DBA/2J mice (Animal Resources Centre) were s.c. injected on both flanks with either 5×10^6 FDC-P1 V560G or D816V c-KIT cells in 200 μl 1:1 PBS/Matrigel (Trevigen). Relative tumour volume (RTV) was calculated by:

$$RTV = \frac{\text{tumour volume on any given day}}{\text{tumour volume at start of treatment (day 5)}}$$

Once the tumours reached a volume of ~200 mm3 (day 5), mice were randomised into groups that received daily treatments of either 0.9% saline (i.p. or p.o.), 50 mg/Kg imatinib p.o. or 10 mg/Kg FTY720 (i.p. or p.o.). The mice were weighed daily to
monitor toxic side effects and tumour volume was measured with callipers every second
day. On day 14, three mice from FDC-P1 V560G c-KIT and six mice from FDC-P1
D816V c-KIT tumour groups were sacrificed. The remaining mice were used for
survival studies and culled when tumour volumes reached ~2100 mm³ (Figure 2.1).

The tumours and organs were weighed and fixed immediately in 10% neutral buffered
formalin (NBF) solution for 48 hours, then transferred into 70% EtOH and stored at 4°C
until processing. Bone marrow samples obtained from the femur were subjected to an
extra decalcification step in 10% formic acid/NBF for 48 hours prior to storage in 70%
EtOH at 4°C. Peripheral blood was harvested via heart puncture and used to evaluate
RBC and WBC numbers as described previously (Section 2.8.1.2). All tissue samples
were taken through a series of dehydration steps and paraffin-embedded in a Lynx II
tissue processor (Advanced Biotechnologies Inc., Columbia, MD). This involved 1x
70% EtOH for 20 minutes, 3x 95% EtOH for 20 minutes, 3x 100% EtOH for 20
minutes, 1x xylene for 20 minutes, 1x xylene for 60 minutes, 1x paraffin at 65°C for 60
minutes and 1x paraffin at 65°C for 20 minutes. The paraffin molds were cooled on ice
for 30 minutes and tissue blocks were stored at room temperature. Animal studies were
performed with approval of The University of Newcastle Animal Care and Ethics
Committee (#A-2008-117).

2.8.1.4 Immunohistochemistry

Immunohistochemical staining was carried out on 4 μm tissue sections from formalin-
fixed, paraffin-embedded specimens. To section the tissue, blocks were placed face
down on ice for 10 minutes and inserted into the microtome. The sliced sections were
placed onto clean glass slides and subsequently incubated at 65°C for 20 minutes to
melt the wax and bond the tissue to the glass. Prior to staining, slides were heated at
55°C for 2 minutes then deparaffinised in 2x xylene for 5 minutes before being
rehydrated through a series of gradually decreasing concentrations of EtOH including
1x 100% EtOH for 5 minutes and 1x 80% EtOH for 5 minutes. Slides were washed 2x
in PBS for 5 minutes and endogenous peroxidase activity was blocked by incubation in
PBS containing 1% H₂O₂ for 5 minutes at room temperature. For antigen retrieval,
slides were treated in a microwave with 10 mM citrate buffer, pH 6.0, for 2 minutes on
high and 10 minutes on medium power.
Chapter 2 – Materials and methods

All antibody dilutions and solutions were made up in PBS containing 1% BSA and 0.1% Tween-20 (PBT). Non-specific binding was blocked by 30 minutes incubation in normal goat serum provided in the Vectastain Elite ABC kit (ABC; Avidin Biotinylated Complex; Vector Laboratories, Inc.). The sections were incubated for 1 hour with a 1:400 dilution of either rabbit polyclonal anti-human c-KIT (CD117; Dako, Glostrup, Denmark), or normal rabbit serum (Sigma), followed by a 1 hour incubation in biotinylated goat anti-rabbit IgG (Vector Laboratories, Inc.). Tissue obtained from age-matched non-tumour bearing mice served as a negative control for antibody cross-reactivity. Positive staining was detected using the ABC solution, with diaminobenzidine (DAB) as the chromogen (Vector Laboratories, Inc.). The sections were then counterstained with Gills double strength haematoxylin (Pro Sci Tech, Thuringowa, QLD) for 30 seconds and washed in tap water until clear. Slides were gradually dehydrated by placing in 1x 80% EtOH for 5 minutes and 1x 100% EtOH for 5 minutes and 2x xylene for 5 minutes prior to mounting in Vectamount (Vector Laboratories, Inc.). Positive staining was evaluated under 100x or 400x magnification on an inverted light microscope (BH2, Olympus). Pictures were taken with a ColorView II camera and analySIS software (Olympus).

2.8.1.5 TUNEL staining

Apoptotic death within the tumour tissue of saline and FTY720-treated mice expressing V560G and D816V c-KIT tumours was assessed by terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) staining using an In Situ Cell Death Detection Kit, according to manufacturer’s instructions (Roche Diagnostics). Slides were deparaffinised and rehydrated as described above (Section 2.8.1.4), then permeabilised by treatment with 20 μg/ml Proteinase K (10 mM Tris-HCl, pH7.4-7.8) at 37°C for 15 minutes. The sections were incubated in TUNEL reaction mixture for 60 minutes at 37°C in the dark and counterstained for 5 minutes with a 1:2000 dilution of DAPI in PBS. The slides were washed briefly in PBS before being dehydrated as previously described (Section 2.8.1.4) A coverslip was mounted using the anti-fade Vectashield (Vector Laboratories Inc.), and sealed with toluene free nail-polish. For the negative control, a slide was incubated in Label Solution only. For the positive control, another slide was treated with 0.5 mg/ml DNase (Promega) for 10 minutes at room temperature prior to labelling procedures. Images were acquired
1. Culture FDC-P1 V560G and D816V c-KIT cells

2. Inject cells into flanks of DBA/2J mice

3. Begin treatment
 - Measure tumour volume daily

4. Day 14: Cull 6 mice / group
 - Record tumour and organ mass
 - Harvest spleen, liver, kidneys bone marrow and tumour

5. Rest for survival study: Cull when tumours reach 2100 mm³

Figure 2.1 Schematic model for the growth of FDC-P1 tumours and FTY720 treatment
100x or 400x on DAPI and FITC channels with an Axioplan 2 imaging system and merged with Axio Vision v4.7 software (Carl Zeiss, Oberkochen, Germany).

2.9 Statistical Analysis
Statistical significance between different cell lines or comparing untreated and drug treated samples was assessed using an unpaired two-tailed Student’s t-test. Survival probabilities between animal groups were determined by the Kaplan-Meier method and differences in survival distributions were evaluated by the log-rank test. All values shown are the mean ± standard error of the mean (SEM) and statistical analysis was performed using GraphPad Prism v4.02 (GraphPad Software Inc., La Jolla, CA).
3.1 Introduction

CML is a clonal proliferative disorder that arises from the neoplastic transformation of a HSC and is clinically characterised by three distinct stages: chronic phase (CP), accelerated phase and blast crisis (BC). It accounts for ~15% of adult leukaemia, with approximately 490 newly diagnosed cases recorded every year in Australia1. The hallmark genetic abnormality associated with CML is a t(9;22)(q34;q11) translocation which results in the shortened Philadelphia chromosome (Ph1) (Nowell & Hungerford 1960). This generates the BCR/ABL fusion gene that is translated into the p210 kDa BCR/ABL oncoprotein in over 90% of CML patients (Ben-Neriah et al. 1986). The unrestrained tyrosine kinase activity of BCR/ABL facilitates the assembly of components essential for the activation of oncogenic cascades that promote factor-independent growth, reduced differentiation and inhibition of apoptosis (Cortez et al. 1995). These include the MAPK, PI3K/Akt and JAK/STAT pathways (Calabretta & Perrotti 2004).

The small molecule tyrosine kinase inhibitor, imatinib, has demonstrated remarkable therapeutic success in CML-CP patients (Deininger et al. 2005). While most patients initially achieve clinical remission with imatinib therapy, a small proportion will develop resistance (Gorre et al. 2001). This is due to the acquisition of mutations within BCR/ABL that impair drug binding (e.g. T315I, Y253F/H) (Shah & Sawyers 2003). Furthermore, leukaemia stem cells are insensitive to imatinib (Graham et al. 2002, Roeder et al. 2006), and as such, a majority of CML-BC patients do not respond to treatment (Silver et al. 2004, Druker et al. 2001a). Second generation inhibitors, such as nilotinib and dasatinib, have recently been approved for the treatment of imatinib-resistant disease (Kantarjian et al. 2007). However, neither compound is effective in a) treating CML-BC patients (le Coutre et al. 2008, Cortes et al. 2007, Talpaz et al. 2006) or b) inducing apoptosis of cells expressing the common imatinib-resistant T315I BCR/ABL mutation (O’Hare et al. 2005, Soverini et al. 2007). In addition, neither

1 Australian Institute of Health and Welfare (2007)
inhibitor eliminates the most primitive CML stem cell fraction (Copland et al. 2006, Jorgensen et al. 2007).

Thus, understanding the precise molecular circuitry directing the transition of CML from the chronic phase into blast crisis is required for generating new therapies that simultaneously target BCR/ABL and its downstream oncogenic pathways. Recent work in 32Dcl3 myeloid precursors and CD34+ CML patient samples has shown that functional inactivation of PP2A by BCR/ABL contributes to the development of CML-BC (Neviani et al. 2005). Restoration of PP2A activity via PP2Ac overexpression, or pharmacological activation (e.g. FTY720), inhibits the proliferation and restores the differentiation of imatinib-resistant BCR/ABL+ cell lines and patient-derived blast crisis progenitors (Neviani et al. 2005, Neviani et al. 2007, Hu et al. 2009). Notably, treatment of BCR/ABL+ leukaemic mice with FTY720 remarkably prolongs the lifespan and decreases the leukaemia burden compared to saline-treated controls (Neviani et al. 2007). These findings identify PP2A as a potential candidate which can be targeted for novel therapeutic strategies in CML.

PP2A is a heterotrimeric enzyme composed of a structural subunit (Aα and Aβ) (Hemmings et al. 1990), a catalytic subunit (Cα and Cβ) (Arino et al. 1988), and a variable regulatory B subunit categorised under three unrelated families: B55 (α, β, γ, δ) (Strack et al. 1999, Zolnierowicz et al. 1994, Mayer et al. 1991), B56 (α, β, γ, δ, ε) (McCright et al. 1996, McCright & Virshup 1995) and B” (PR72/130 / PR70/48) (Yan et al. 2000, Stevens et al. 2003, Hendrix et al. 1993). Regulatory subunits bind to the AC dimer in a mutually exclusive manner to form individual PP2A holoenzymes that exert substrate specificity and direct the enzyme to distinct subcellular localisations. Consequently, the wide array of physiological functions attributed to PP2A is governed by the association of a particular PP2A B subunit to the core enzyme (Janssens et al. 2008).

Although increased levels of the endogenous inhibitor, SET, have been shown to contribute to PP2A inactivation in CML-BC (Neviani et al. 2005), the direct effect of BCR/ABL on PP2A subunit expression has not been determined. To improve the understanding of PP2A function in the development of CML-BC, the aim of this
chapter was to investigate the expression of individual PP2A subunits in BCR/ABL+ myeloid progenitors.

3.2 Results

3.2.1 Expression of p210 kDa BCR/ABL oncoprotein in FDC-P1 cells

The factor-dependent myeloid progenitor cell line, FDC-P1, was originally derived from long-term normal mouse bone marrow cultures maintained in WEHI-3B-conditioned medium (Dexter et al. 1980). These cells have a normal diploid karyotype, are nontumorigenic and grow only in the presence of IL-3 or GM-CSF (Hapel et al. 1984). FDC-P1 cells represent a powerful in vitro model for studying the regulation of cell growth and transformation by various oncogenic tyrosine kinases. The FDC-P1 BCR/ABL+ cell model used in this study was established by a previous member of the Ashman laboratory (Dr. Michelle Frost, unpublished data). Briefly, the pRUFneo retroviral vector containing no cDNA (pRUFneo empty vector; EV), or cDNA encoding the imatinib-sensitive WT BCR/ABL or -resistant Y253F BCR/ABL mutant (Roumiantsev et al. 2002) were introduced into the FDC-P1 cell line by retroviral infection using the Ψ2 stable packaging system (Mann et al. 1983). Successfully infected cells were initially selected in G418. Expression of the p210 kDa BCR/ABL oncoprotein induces factor-independence (Hariharan et al. 1988), and accordingly, the FDC-P1 WT and Y253F BCR/ABL cells grow in the absence of factor at a similar rate to empty vector control cells cultured in GM-CSF.

Expression of BCR/ABL in the FDC-P1 cells was confirmed by performing qualitative PCR on cDNA using a forward primer that recognises the terminal portion of the human BCR gene, and a reverse primer that detects human ABL (Figure 3.1). The absence of a band in the FDC-P1 EV control cells indicates primer specificity for the human BCR/ABL transcript and confirms the absence of BCR/ABL in these cells (Figure 3.1). Two previously established BCR/ABL+ myeloid cell lines were also used in this study. These included the mouse IL3-dependent myeloid precursor, 32Dcl3 (Greenberger et al. 1983), expressing either the pMIG empty vector (EV) or the p210 kDa WT BCR/ABL oncoprotein (32D-BCR/ABL) (Perrotti et al. 2002), and the K562 human Ph1 CML cell line (Lozzio & Lozzio 1975). Similar to FDC-P1 cells, the expression of BCR/ABL in 32Dcl3 cells confers factor-independent growth (Perrotti et al. 2002). Qualitative
Figure 3.1 Expression of BCR/ABL in myeloid progenitors

Total RNA was extracted from **A** FDC-P1 cells expressing either the pRUFneo empty vector (EV) or **B** WT and Y253F BCR/ABL; 32Dcl3 cells expressing the pMIG empty vector (EV) or WT BCR/ABL and Ph1 K562 cells. cDNA was generated by reverse transcription with reverse transcriptase (+RT), or water as a control for genomic DNA contamination (-RT). PCR was performed using primers that amplify the human BCR and ABL genes (Table 2.2). β-actin was used as a loading control in a separate reaction.
RT-PCR performed on these cell lines confirmed the expression of BCR/ABL in 32D-BCR/ABL and K562 cells, while it was absent in the empty vector 32Dcl3 cells (Figure 3.1).

3.2.2 Sensitivity of WT and Y253F BCR/ABL to imatinib

Imatinib is an effective therapeutic option for CML-CP patients expressing WT BCR/ABL (Druker et al. 2001b); however, patients harbouring Y253F BCR/ABL do not respond to treatment (Roumiantsev et al. 2002). The inclusion of FDC-P1 cells expressing either imatinib-sensitive (WT) or –resistant (Y253F) BCR/ABL provides an important control which can highlight and compare the direct effect of BCR/ABL on downstream molecules. Specifically, if BCR/ABL regulates certain signalling pathways, these effects should be reversed with imatinib treatment in the presence of WT BCR/ABL but not the Y253F mutant.

To confirm the differential effects of imatinib in the FDC-P1 BCR/ABL cell model, the proliferation of cells was evaluated using a cell viability assay (Figure 3.2). Importantly, FDC-P1 EV cells cultured in mouse GM-CSF were insensitive to imatinib treatment, confirming the absence of non-specific effects (Figure 3.2). As expected, FDC-P1 cells expressing WT BCR/ABL were sensitive to imatinib inhibition and displayed an ID$_{50}$ of 53 nM (Table 3.1). Conversely, FDC-P1 Y253F BCR/ABL cells were 8-fold resistant to imatinib with an ID$_{50}$ of 412 nM (Table 3.1). K562 cells displayed an intermediate response with an ID$_{50}$ of 192 nM (Table 3.1).

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>ID$_{50}$ (nM) 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDC-P1</td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>> 1000</td>
</tr>
<tr>
<td>WT BCR/ABL</td>
<td>52.6 ± 4.5</td>
</tr>
<tr>
<td>Y253F BCR/ABL</td>
<td>412 ± 29.8**</td>
</tr>
<tr>
<td>K562</td>
<td>192.2 ± 18.1**</td>
</tr>
</tbody>
</table>

1ID$_{50}$ is the concentration of drug (nM) that kills 50% of the cell population and was calculated using fit-spline lowess regression (Verrills et al. 2006). Data is presented as the mean of three independent experiments ± SEM. **p<0.01, Student’s t-test compared to WT BCR/ABL.
Figure 3.2 Inhibition of BCR/ABL+ myeloid progenitors with imatinib
FDC-P1 and K562 cell lines were incubated in increasing concentrations of imatinib (0-1 μM) for 48 hours. Proliferation was measured using a CellTiter-Blue™ Cell Viability Assay and is expressed as a percentage of untreated controls. Points, mean of four independent experiments performed in quadruplicate; bars, standard error of the mean (SEM).
Accordingly, imatinib treatment (0.1 μM; 24 hours) inhibited the activity of WT BCR/ABL in FDC-P1 cells, as indicated by reduced tyrosine phosphorylation of immunoprecipitated BCR/ABL (Figure 3.3). The presence of imatinib at the same concentration had no effect on Y253F BCR/ABL phosphorylation (Figure 3.3). The ID₅₀ for imatinib in 32D-BCR/ABL cells is reportedly 250 nM (Druker et al. 1996), and accordingly, inhibition of WT BCR/ABL in 32Dcl3 and K562 cells was confirmed (1 μM; 24 hours) (Figure 3.3). These results demonstrate that WT BCR/ABL expressed in three different myeloid cell lines (FDC-P1, 32Dcl3 and K562) is sensitive to imatinib, whereas Y253F BCR/ABL is resistant.

3.2.3 BCR/ABL impairs the activity of PP2A

Previous studies have demonstrated that BCR/ABL expression in mouse 32Dcl3 and human K562 cells impairs PP2A activity (Neviani et al. 2005, Neviani et al. 2007). Indeed, the phosphatase activity of PP2A was significantly reduced to 53% and 69% in FDC-P1 cells expressing WT and Y253F BCR/ABL, respectively, compared to empty vector controls (Figure 3.4). Inhibition of BCR/ABL with imatinib (0.1 μM; 24 hours) in FDC-P1 WT BCR/ABL cells augmented PP2A activity slightly higher than empty vector untreated control levels (Figure 3.4). By contrast, imatinib treatment had little effect on the activation of PP2A in FDC-P1 cells expressing the Y253F BCR/ABL mutant (Figure 3.4). Importantly, the presence of imatinib did not affect PP2A activity in FDC-P1 EV cells grown in mouse GM-CSF (Figure 3.4). This data confirms that PP2A is a specific target of BCR/ABL in the FDC-P1 cell model, and that restoration of its activity is a direct consequence of BCR/ABL inhibition.

3.2.4 BCR/ABL upregulates the PP2A scaffolding subunit

3.2.4.1. SET expression

To define the underlying mechanisms that lead to PP2A inhibition in BCR/ABL+ myeloid progenitors, a number of candidates were examined by immunoblotting. In all experiments, the cells were treated with or without imatinib to compare the direct effect of BCR/ABL activity on protein expression. As functional inactivation of PP2A in 32D-BCR/ABL and K562 cells has been shown to be associated with increased expression of SET (Neviani et al. 2005), it was important to investigate whether this protein was also regulated by BCR/ABL in the FDC-P1 cell lines. Two splice variants of the SET protein
Figure 3.3 Inhibition of BCR/ABL phosphorylation with imatinib

A) FDC-P1 cells were treated without or with imatinib (0.1 μM, 24 hours) and BCR/ABL was immunoprecipitated from whole cell lysates. The complexes were subjected to SDS-PAGE and probed by Western blotting with a phosphotyrosine (pY) or c-ABL antibody. B) 32Dcl3 and K562 cells were treated without or with imatinib (1 μM, 24 hours). Whole cell lysates were subjected to SDS-PAGE and probed with a pY antibody. Actin was used a loading control. Blots are representative of two independent experiments.
Figure 3.4 BCR/ABL inhibits PP2A activity in FDC-P1 myeloid progenitors
FDC-P1 cells were treated without (red) or with imatinib (0.1 μM, 24 hours; black) and PP2Ac was immunoprecipitated from whole cell lysates. PP2A activity was determined by incubating the complex with a PP2A-specific phospho-peptide and measuring free phosphate (PO$_4$) release at an absorbance of 620 nm. Columns, mean PO$_4$ release (pm/min) from four independent experiments performed in duplicate; bars, SEM. ** p<0.01, Student’s t-test.
were detected in all cell lines. It is believed the additional band above the 41 kDa isoform in the FDC-P1 cells is a phosphorylated version of the protein. As previously reported, enhanced levels of SET correlated with BCR/ABL expression in the 32D-BCR/ABL cells (Figure 3.5) (Neviani et al. 2005). Inhibition of BCR/ABL kinase activity with imatinib (1 μM, 24 hours) reduced SET expression in the 32Dc13 cells back to control levels, and also resulted in the appearance of a lower molecular weight band (Figure 3.5). While total SET expression was not reduced in the K562 cells, there was a shift to expression of the lower molecular weight isoform with imatinib treatment (Figure 3.5). Surprisingly, the presence of BCR/ABL did not effect SET levels in the FDC-P1 cells (Figure 3.5), suggesting that additional molecular alterations are responsible for reducing PP2A activity in this cell line.

3.2.4.2 PP2A catalytic subunit expression

Next, a systematic analysis of PP2A subunit expression was conducted. In all four BCR/ABL+ myeloid progenitor cell lines, there was no change in the total expression of the catalytic subunit (PP2Ac) compared to their respective controls (Figure 3.6 and 3.7). PP2Ac is subject to post-translational modifications that can influence holoenzyme composition and activity. For example, phosphorylation at amino acid Tyr307 (pY307) can induce transient deactivation (Chen et al. 1992). To evaluate whether this is a mechanism contributing to impaired PP2A activity in BCR/ABL+ myeloid progenitors, the levels of PP2Ac-pY307 were investigated. No significant differences were observed with BCR/ABL expression in the FDC-P1 or 32Dc13 cell lines (Figure 3.6 and 3.7). Similarly, imatinib treatment had no effect on PP2Ac-pY307 in the K562 cell line.

3.2.4.3 PP2A scaffolding subunit expression

Reduced expression of the PP2A structural subunit (PP2A A) has been observed in primary brain tumours compared to normal tissue (Colella et al. 2001), and is also associated with PP2A inhibition in B-CLL patient samples (Kalla et al. 2007). Unexpectedly, compared to empty vector controls, the levels of PP2A A were significantly enhanced 2-fold in FDC-P1 cells expressing both the WT and Y253F BCR/ABL oncoprotein (Figure 3.6 and 3.7). Inhibition of WT BCR/ABL with imatinib reduced this back to normal levels, whilst PP2A A expression remained elevated in the FDC-P1 Y253F BCR/ABL cells (Figure 3.6 and 3.7). Similarly, the structural subunit
Figure 3.5 Expression of SET in BCR/ABL⁺ myeloid progenitors
A) FDC-P1 or B) 32Dcl3 and K562 cells were incubated without (red) or with imatinib (0.1 μM or 1 μM, 24 hours; black). Lysates were subjected to SDS-PAGE and probed for SET. Actin was used as a loading control. C) Quantitation of SET protein bands normalised to actin and relative to EV for FDC-P1 or D) 32Dcl3 and K562 cells. Columns, mean densitometry; bars, SEM; n=3.
Figure 3.6 Expression of PP2Ac and PP2A A in BCR/ABL+ myeloid progenitors
A) FDC-P1 or B) 32Dcl3 and K562 cells were incubated with or without imatinib (0.1 μM or 1μM, 24 hours). Lysates were subjected to SDS-PAGE and probed for PP2Ac, PP2Ac-\text{p}^{Y307} and PP2A A. Actin was used as a loading control. Blots are a representative of four independent experiments.
Figure 3.7 Quantitation of PP2Ac and PP2A A in BCR/ABL⁺ myeloid progenitors

Quantitation of PP2Ac, PP2Ac-pY307 and PP2A A protein bands in FDC-P1 cells (A, C, E) or 32Dcl3 and K562 cells (B, D, F) treated without (red) or with imatinib (0.1 μM or 1 μM, 24 hours; black). Columns, mean densitometry normalised to actin, relative to EV; bars, SEM, n=4. *p<0.05, **p<0.01, Student’s t-test.
was dramatically increased in 32D-BCR/ABL cells compared to the empty vector control; however, imatinib treatment did not appear to reduce PP2A A expression in this cell line or the K562 cells (Figure 3.6 and 3.7). In summary, these results demonstrate that BCR/ABL activity upregulates the PP2A scaffolding subunit in myeloid precursors, but its regulation by BCR/ABL inhibition is dependent on the cell line studied.

3.2.5 BCR/ABL alters the expression of PP2A regulatory subunits

It is widely accepted that PP2A substrate specificity and cellular distribution is determined by the binding of regulatory subunits (B) to the core AC dimer. As such, it is logical to predict that tumour suppressive function will be achieved through a distinct subset of PP2A complexes. To identify the specific components important for BCR/ABL-mediated inactivation of PP2A, the expression of individual B subunits was examined by immunoblotting.

3.2.5.1 PP2A B55 subunit family expression

Depending on the cell-type and signalling pathway involved, the B55α subunit can exert either a positive or negative effect on cellular proliferation and survival (Ory et al. 2003, Kuo et al. 2008, Zhang et al. 2009). Interestingly, BCR/ABL significantly enhanced the expression of B55α nearly 2-fold in FDC-P1 and 32Dcl3 cells (Figure 3.8, 3.9 and 3.10). Treatment of all three WT BCR/ABL+ cell lines (FDC-P1, 32Dcl3 and K562) with imatinib resulted in a marked reduction of B55α, highlighting a direct effect of BCR/ABL expression (Figure 3.8, 3.9 and 3.10). The B55β and B55γ isoforms are neuronal specific and were not detected in the FDC-P1, 32Dcl3 or K562 cell lines (data not shown) (Mayer et al. 1991, Zolnierowicz et al. 1994). The levels of B55δ were not investigated by immunoblotting due to the lack of a suitable antibody.

3.2.5.2 PP2A B56 subunit family expression

The B56 family members have recently received much attention as key players in the tumour suppressive function of PP2A. In a similar observation to B55α, the oncogenic kinase activity of BCR/ABL increased the expression of B56α and B56δ in FDC-P1 cells compared to empty vector controls (Figure 3.8 and 3.9). Imatinib treatment of FDC-P1 WT BCR/ABL cells reduced this back to normal levels, whilst Y253F BCR/ABL cells showed enhanced expression that was unaffected by imatinib (Figure
Imatinib 0.1 μM

PP2A B55α
PP2A B56α
PP2A B56β
PP2A B56γ
PP2A B56δ
PP2A B56ε
Actin

32Dcl3

Imatinib 1 μM

PP2A B55α
PP2A B56δ
Actin
Figure 3.8 Expression of PP2A regulatory subunits in BCR/ABL+ myeloid progenitors
A) FDC-P1 or B) 32Dcl3 and K562 cells were incubated with or without imatinib (0.1 μM or 1 μM, 24 hours). Lysates were subjected to SDS-PAGE and probed for PP2A B55α, B56α, B56β, B56γ, B56δ and B56ε Actin was used as a loading control. Blots are a representative of three independent experiments.
Figure 3.9 Quantitation of PP2A regulatory subunits in BCR/ABL+ FDC-P1 cells

Quantitation of A) PP2A B55α B) B56α C) B56β D) B56γ E) B56δ F) B56ε protein bands in FDC-P1 cells treated without (red) or with imatinib (0.1 μM, 24 hours; black). Columns, mean densitometry normalised to actin, relative to EV; bars, SEM, n=3. * p<0.05, ** p<0.01, Student’s t-test.
Figure 3.10 Quantitation of PP2A regulatory subunits in 32Dcl3 and K562 cells

Quantitation of A) PP2A B55α and B) B56δ protein bands in 32Dcl3 and K562 cells treated without (red) or with (1 μM, 24 hours; black). * p<0.05, ** p<0.01, Student’s t-test.
3.8 and 3.9). These observations were confirmed for the B56δ subunit in the 32Dcl3 and K562 cell lines (Figure 3.8 and 3.10). PP2A B56β also showed a trend toward increased protein expression in FDC-P1 cells expressing BCR/ABL (Figure 3.8 and 3.9).

The B56γ subunit contains at least 4 transcript variants with B56γ1, B56γ2 and B56γ3 being the most studied (Muneer et al. 2002, Martens et al. 2004). Based on the peptide sequence, the antibody used in this study is directed against the full-length 61 kDa isoform, B56γ3, and the slightly smaller B56γ2. According to the molecular weight (~61 kDa), the band detected in the FDC-P1 cells corresponds to B56γ3. Compared to empty vector controls, a decrease in B56γ3 expression was observed with active BCR/ABL, which reached significance in the Y253F mutant cells (Figure 3.8 and 3.9). Treatment with imatinib increased this back to normal levels in the WT BCR/ABL cells but had no effect on Y253F BCR/ABL, indicating that BCR/ABL kinase activity may also regulate B56γ3 (Figure 3.8 and 3.9). The final subunit evaluated in the FDC-P1 cell lines was B56ε, which did not change with active BCR/ABL (Figure 3.8 and 3.9). In summary, these results highlight a common mechanism for PP2A regulation whereby the expression of B subunits is modulated by the BCR/ABL oncoprotein in myeloid progenitors.

3.2.6 PP2A mRNA levels in BCR/ABL+ FDC-P1 cells

The persistent expression of BCR/ABL in CML-CP promotes genetic instability and the accumulation of chromosomal abnormalities that contribute to the development of blast crisis (Calabretta & Perrotti 2004). As such, it is reasonable to predict that the aberrant expression of PP2A in BCR/ABL+ myeloid precursors may arise from altered gene transcription. To investigate this possibility, the mRNA levels of all PP2A subunits in the FDC-P1 cells were measured by quantitative real-time PCR (qRT-PCR), using primers that specifically detect each individual isoform (Table 2.4). The FDC-P1 empty vector controls were used as a calibrator to compare the expression of PP2A subunits in untreated FDC-P1 cells expressing WT and Y253F BCR/ABL.

Consistent with the western blotting data (Figure 3.6 and 3.7), BCR/ABL had no effect on the levels of either PP2A Cα (PPP2CA) or PP2A Cβ (PPP2CB) in the FDC-P1 cells (Figure 3.11). Enhanced protein expression of PP2A A in BCR/ABL+ FDC-P1 cells was
not associated with a change in either PP2A Aα (PPP2R1A) or PP2A Aβ (PPP2R1B) mRNA levels (Figure 3.11). No appreciable difference was observed with PP2A B55α, B55δ, B56β, B56γ, B56δ or B56ε (Figure 3.12 and 3.13). The only significant difference in gene expression was observed with PP2A B56α (PPP2R5A), with transcripts in FDC-P1 cell lines expressing WT and Y253F BCR/ABL reduced to ~70% of empty vector control cells (Figure 3.13). Interestingly, this is opposite to the increased expression observed at the protein level. As with the immunoblotting, levels of the neuronal specific B55β and B55γ isoforms were undetectable (data not shown) (Mayer et al. 1991, Zolnierowicz et al. 1994). Furthermore, no difference was observed with imatinib treatment (data not shown). Thus, post-transcriptional aberrations most likely contribute to the enhanced protein expression of PP2A scaffolding and regulatory subunits observed in BCR/ABL+ myeloid progenitors.

In addition to the B55 and B56 family of PP2A subunits, the transcript of a third family member, PR72/PR130 (PPP2R3A), was investigated by qRT-PCR. Interestingly, mRNA levels of this gene were much less abundant in FDC-P1 cells expressing WT and Y253F BCR/ABL compared to negative controls (Figure 3.14). This observation highlights another potentially interesting subunit which may contribute to BCR/ABL-induced leukaemogenesis. A specific antibody was not available at the time to assess the corresponding protein levels. Lastly, examination of the PP2Ac binding partner, PTPA (PPP2R4), revealed no significant changes in the FDC-P1 WT and Y253F BCR/ABL cells compared to the empty vector (Figure 3.14).
Figure 3.11 mRNA levels of PP2Ac and PP2A A in BCR/ABL\(^+\) FDC-P1 cells
Total RNA was extracted from untreated FDC-P1 cells and cDNA was generated by reverse transcription. Quantitative real-time PCR analysis detecting A) PP2A C\(\alpha\) (PPP2CA) and C\(\beta\) (PPP2CB) or B) PP2A A\(\alpha\) (PPP2R1A) and A\(\beta\) (PPP2R1B) was performed. Gene expression is relative to EV controls. Columns, mean of four independent experiments performed in triplicate; bars, SEM.
Figure 3.12 mRNA levels of PP2A B55 in BCR/ABL+ FDC-P1 cells
Total RNA was extracted from untreated FDC-P1 cells and cDNA was generated by reverse transcription. Quantitative real-time PCR analysis detecting A) PP2A B55α (PPP2R2A) or B) B55δ (PPP2R2D). Gene expression is relative to EV controls. Columns, mean of four independent experiments performed in triplicate; bars, SEM.
Figure 3.13 mRNA levels of PP2A B56 in BCR/ABL+ FDC-P1 cells

Total RNA was extracted from untreated FDC-P1 cells and cDNA was generated by reverse transcription. Quantitative real-time PCR analysis detecting A) PP2A B56α (PPP2R5A) B) B56β (PPP2R5B) C) B56γ (PPP2R5C) D) B56δ (PPP2R5D) or E) B56ε (PPP2R5E). Gene expression is relative to EV controls. Columns, mean of four independent experiments performed in triplicate; bars, SEM. *p<0.05, **p<0.01, Student’s t-test compared to EV.
Figure 3.14 mRNA levels of PPP2R3A and PPP2R4 in BCR/ABL⁺ FDC-P1 cells
Total RNA was extracted from untreated FDC-P1 cells and cDNA was generated by reverse transcription. Quantitative real-time PCR analysis detecting A) PP2A PR72/130 (PPP2R3A) or B) PTPA (PPP2R4). Gene expression is relative to EV controls. Columns, mean of four independent experiments performed in triplicate; bars, SEM. ** p<0.01, Student’s t-test compared to EV.
3.2.7 BCR/ABL disrupts PP2A assembly in FDC-P1 cells

The results obtained thus far demonstrate that BCR/ABL modulates PP2A activity by upregulating specific enzyme components. This may appear counter-intuitive, but a likely scenario is that an abundance of certain subunits could disrupt normal binding dynamics and switch the global PP2A holoenzyme composition towards complexes which facilitate oncogenic signals. To address this issue, PP2A complexes were isolated from FDC-P1 cell extracts by immunoprecipitation with an anti-PP2Ac antibody. The complexes were separated by SDS-PAGE and immunoblotting was performed to detect the individual PP2A subunits bound to PP2Ac. The location of the heavy immunoglobulin chains at 55 kDa makes it difficult to identify the PP2A regulatory subunits B55\(\alpha\), B56\(\alpha\) and B56\(\gamma\), which are approximately this size. To improve the visualisation of these subunits, the TrueBlotTM detection system was included in the experimental protocol. This unique secondary antibody preferentially binds to the non-reduced form of IgG over the reduced, SDS-denatured form, thus enabling detection of immunoblotted target bands without interference by the immunoprecipitating heavy chains.

In all experiments performed, the levels of isolated PP2Ac were similar between the FDC-P1 cell lines, serving as a normalisation control for protein recovery and gel loading. As PP2A A levels were increased in whole cell lysates (Figure 3.6), it was important to determine whether the enhanced availability of this subunit altered PP2A binding dynamics in the BCR/ABL\(^+\) FDC-P1 cells. As shown in Figure 3.15A, the affinity of PP2A A for PP2Ac remained unchanged in the BCR/ABL\(^+\) FDC-P1 cells compared to the empty vector controls. Next, the PP2A holoenzyme composition was determined by probing for the individual regulatory subunits. Despite the use of the TrueBlotTM reagent, the PP2A B55\(\alpha\) subunit was not detected in PP2Ac complexes isolated from the FDC-P1 cell lines (data not shown). This may also be a result of the experimental conditions used as the antibody does not detect methylated PP2Ac, which is required for PP2A B55 binding (Longin \textit{et al.} 2007). However, increased association of the B56\(\alpha\) subunit to PP2Ac was observed with WT BCR/ABL expression (Figure 3.15A). The abundance of B56\(\beta\)-containing holoenzymes remained the same for FDC-P1 cell lines expressing either the empty vector or WT BCR/ABL (data not shown).
Strikingly, the binding of B56γ was depleted in FDC-P1 cells expressing BCR/ABL compared to the empty vector controls (Figure 3.15A). This is a very interesting result, as suppression of B56γ has been shown to enhance tumourigenesis in other model systems (Chen et al. 2004). For an unknown technical reason, the 72 kDa B56δ subunit was not detected in PP2Ac complexes isolated from all FDC-P1 cell lines (data not shown). To enable its evaluation, immunoprecipitation with an anti-PP2A A antibody was performed. Equal levels of the A subunit were isolated from all cell lines, with no appreciable differences observed in B56δ subunit binding between FDC-P1 BCR/ABL⁺ and empty vector control cells (Figure 3.15B).

To improve the detection of PP2A B55α, protein extracts from FDC-P1 cells were subjected to microcystin-affinity purification (Moorhead et al. 2007). Microcystin binds with nanomolar affinity to a specific pocket located above the active site in the catalytic subunit (Xing et al. 2006) and inhibits PP2A (MacKintosh et al. 1990). This strong interaction was exploited in the present study to isolate PP2Ac complexes from protein lysates by incubating them with microcystin-conjugated sepharose beads. A major advantage of this technique is the lack of interfering immunoglobulin heavy chains, which normally preclude protein visualisation at 50-55 kDa.

The levels of PP2Ac were similar between all FDC-P1 cell lines, indicating consistent pull down of PP2A complexes and gel loading (Figure 3.15C). As seen with the PP2Ac antibody immunoprecipitations (Figure 3.15A), no significant differences were noted in the affinity of PP2A A to PP2Ac in the BCR/ABL⁺ FDC-P1 cells compared to the empty vector controls (Figure 3.15C). Interestingly, FDC-P1 cells expressing either WT or Y253F BCR/ABL showed enhanced binding of the B55α subunit to the core PP2A AC dimer, suggesting that an abundance of this subunit alters the exchange dynamics of PP2A complexes in BCR/ABL⁺ myeloid progenitors (Figure 3.15C). Based on the biochemical requirements for B55α binding (Longin et al. 2007), it is predicted that the PP2Ac present in these immunoprecipitated complexes is associated with higher levels of methylation; however, this was not investigated due to the lack of a specific antibody. Taken together, these novel findings suggest that the BCR/ABL oncoprotein may regulate PP2A in FDC-P1 cells by inducing aberrant B subunit exchange and altering the normal holoenzyme composition. Specifically, an increase in B55α and B56α subunits appears to be associated with a decrease in B56γ complexes.
Figure 3.15 PP2A holoenzyme composition in BCR/ABL+ FDC-P1 cells

A) The PP2Ac subunit was immunoprecipitated from untreated FDC-P1 cell lysates. Complexes were separated by SDS-PAGE and probed for PP2Ac, PP2A A, and B56α or B56γ. B) The PP2A A subunit was immunoprecipitated from untreated FDC-P1 cell lysates. Complexes were separated by SDS-PAGE and probed for PP2Ac, PP2A A and B56δ. C) PP2Ac complexes were isolated by microcystin-affinity purification. Complexes were separated by SDS-PAGE and probed for PP2Ac, PP2A A and B55α.
3.3 Discussion

Although the mechanisms responsible for CML disease progression remain largely undefined, it is accepted that the unrestrained activity of BCR/ABL induces secondary alterations which contribute to the blast crisis phenotype (Calabretta & Perrotti 2004). Previous studies show that BCR/ABL functionally inactivates the tumour suppressor, PP2A (Neviani et al. 2005, Neviani et al. 2007). The major aim of this project was to identify the PP2A-associated mechanisms by which expression of BCR/ABL induces leukaemogenesis. Utilising mouse myeloid cell lines (FDC-P1 and 32Dcl3) and the human Ph1 CML cell line, K562, this study confirms that constitutive activation of BCR/ABL inhibits the activity of PP2A. A detailed analysis at the mRNA and protein levels indicate that BCR/ABL augments the protein expression of several PP2A components, which alters the subunit binding dynamics and results in the formation of different PP2A holoenzymes.

Initial experiments confirmed that expression of WT or Y253F mutant BCR/ABL attenuates the activity of PP2A in FDC-P1 myeloid cells (Figure 3.4). The ability of the BCR/ABL kinase inhibitor imatinib to restore PP2A activity in FDC-P1 WT BCR/ABL cells indicates that BCR/ABL induces alterations which lead to functional inactivation of PP2A. This observation was previously found to be associated with increased expression of the endogenous PP2A inhibitor, SET, in 32D-BCR/ABL cells and CD34+ blast crisis progenitors (Neviani et al. 2005). The current study confirms the increased expression of SET in the 32D-BCR/ABL and K562 cell lines; however, this protein was unaffected by BCR/ABL in the FDC-P1 myeloid progenitors (Figure 3.5). The reason for this discrepancy remains unclear. Interestingly, a lower molecular weight SET band was detected in imatinib-treated 32D-BCR/ABL and K562 cells. The mechanisms underlying this observation are also not known. However, one possibility is that inactivation of BCR/ABL could result in reduced phosphorylation of SET and the subsequent removal of its inhibitory effect on PP2A.

Given that the PP2A heterotrimer is composed of multiple components, it was important to investigate the effect that BCR/ABL exerts on each individual subunit. No change was observed in the total expression of PP2Ac in WT or Y253F BCR/ABL FDC-P1 cells at the protein (Figure 3.6) or mRNA level (Figure 3.11). This result was not
surprising considering the levels of PP2Ac are tightly regulated at the transcriptional level (Baharians & Schonthal 1998), and minor fluctuations have a drastic effect on cell survival (Gotz et al. 1998). Post-translational modifications such as phosphorylation of PP2Ac are known to alter B subunit binding and reduce enzyme activity (Chen et al. 1992, Longin et al. 2007). The levels of PP2Ac phosphorylation were comparable between BCR/ABL$^+$ FDC-P1 and 32Dcl3 cell lines and the empty vector controls, suggesting that alternate mechanisms are responsible for the reduction in PP2A activity (Figure 3.6).

While previous reports have shown that reduced PP2A activity and/or cell transformation is associated with mutated or decreased PP2A A subunit expression (Colella et al. 2001, Zhou et al. 2003, Wang et al. 1998), the results presented in this study clearly indicate that the levels of PP2A A are significantly increased in all four BCR/ABL$^+$ myeloid cell lines compared to respective controls (Figure 3.6). Importantly, treatment with imatinib restored this expression back to normal in the imatinib-sensitive WT BCR/ABL cells, but had no effect on the imatinib-resistant Y253F BCR/ABL mutant. This identifies a molecular event which is unique to the transforming ability of the p210 kDa BCR/ABL oncoprotein. The mechanisms underlying this observation are currently unknown. However, no changes in mRNA expression were observed in the BCR/ABL$^+$ FDC-P1 cells, suggesting regulation is most likely exerted at the post-transcriptional level (Figure 3.11). Furthermore, immunoprecipitation experiments showed no change in the levels of PP2A A associated with PP2Ac in FDC-P1 cells expressing BCR/ABL (Figure 3.15).

Mammalian cells utilise distinct translational mechanisms that tightly monitor the expression of PP2Ac (Baharians & Schonthal 1998). One important aspect of translational control that regulates PP2A A expression is mediated by the 5’ UTR, which acts as a translational repressor due to an upstream AUG and stable stem-loop structure. Release of this translational inhibition leads to overexpression of PP2A A in COS-1 cells (Wera et al. 1995). In BCR/ABL$^+$ myeloid progenitors, autoregulatory machinery may relieve this translational repression on PP2A A in an attempt to compensate for reduced PP2A activity. Alternatively, genomic instability induced by BCR/ABL itself may contribute to enhanced PP2A A levels. Investigating the activity of PP2A and expression of PP2A A in an inducible BCR/ABL model may aid in
determining the specific order of events. It is also possible that PP2A A interacts with substrates independently of PP2Ac; however, no studies to date have reported cellular functions for non-complexed PP2A A. Immunoprecipitating the PP2A A subunit and identifying additional binding partners in the BCR/ABL+ cells compared to the empty vector controls will provide insight into the functional role of increased PP2A A.

A detailed analysis of PP2A regulatory subunit expression also revealed several changes that were associated with BCR/ABL kinase activity. Specifically, active BCR/ABL augments the levels of PP2A B55α, B56α and B56δ (Figure 3.8). Although a BCR/ABL− control is not available for the K562 cell line, imatinib-treated cells showed reduced B55α and B56δ expression compared to untreated K562 cells. All together, this data indicates for the first time that constitutive activation of BCR/ABL in myeloid cells directly affects the expression of several PP2A components. It should be noted that the use of cell lines does not accurately represent the clinical setting. Therefore, the investigation of PP2A activity and subunit expression in patient samples would confirm the relevance of these findings.

In addition to altering the translational machinery, BCR/ABL kinase activity may also prevent the ubiquitination of PP2A subunits to result in enhanced protein stability. Proteasome-dependent degradation of the nucleocytoplasmic shuttling protein, FUS, is blocked in 32D-BCR/ABL cells and contributes to the leukaemic phenotype (Perrotti et al. 2000). Aberrant regulation of the ubiquitination process results in PP2Ac accumulation in Opitz G/BBB Syndrome (OS) (Schweiger & Schneider 2003). In this disease, patients express a mutated form of the E3 ubiquitin ligase, MID-1, which under normal circumstances interacts with α4 to facilitate the ubiquitin-mediated degradation of PP2Ac. The non-functional MID-1 present in OS patients is unable to bind with α4 and results in defective PP2Ac ubiquitination. An abundance of PP2Ac causes hypophosphorylation of microtubule associated proteins and contributes to the pathogenesis of OS (Trockenbacher et al. 2001). Whether BCR/ABL induces PP2A scaffolding and regulatory subunit expression by effectively blocking their ubiquitin-mediated degradation is unknown. However, it is an attractive theory considering enhanced expression of PP2A proteins, without a concomitant increase in mRNA expression, is a common observation in this study.
An obvious question arising from these results is how does the overexpression of certain PP2A components contribute to BCR/ABL-mediated leukaemogenesis? A possible explanation is that enhanced subunit levels alter the stoichiometry of PP2A assembly and disrupt an important complex that exerts tumour suppressive function. Indeed, loss of PP2A holoenzyme integrity is the mechanism by which ST induces tumourigenesis in mammalian cells (Chen et al. 2007). Subunit exchange in vivo most likely requires recruitable pools and the existence of mechanisms that regulate the stability and synthesis of appropriate subunits, which can be readily adapted according to demand. The aberrant expression of certain PP2A subunits by BCR/ABL could augment the formation of complexes which exert positive regulation on oncogenic pathways, thereby switching the cellular equilibrium towards pro-survival signals and enhancing transformation. In a study by Guo et al., dissociation of B55α from the PP2A AC dimer was observed in response to cellular stress and leads to activation of important cell cycle checkpoints in the Jurkat human T-cell lymphoma cell line (Guo et al. 2002). Although not proven, it is believed that the core dimer forms new complexes which direct PP2A activity towards substrates that exert negative regulation on cell cycle progression. This study demonstrates the importance of B subunit exchange in controlling normal cellular function.

To determine the effect of enhanced regulatory subunit availability on PP2A binding dynamics in BCR/ABL FDC-P1 cells, PP2A complexes were isolated and the individual holoenzyme compositions were assessed. In the FDC-P1 cell model, the association of B55α and B56α with PP2Ac was augmented by the expression of BCR/ABL (Figure 3.15). Several reports implicate B55α as a positive regulator of the MAPK (Abraham et al. 2000, Ory et al. 2003, Adams et al. 2005, Dougherty et al. 2005) and Wnt/β-catenin pathways (Zhang et al. 2009), whilst B56α induces the ubiquitination and subsequent degradation of p53 (Okamoto et al. 2002). Extensive studies have shown the aberrant activation of these pathways is essential for BCR/ABL-mediated transformation (Steelman et al. 2004, Zhao et al. 2007, Wendel et al. 2006). Therefore, the enhanced recruitment of B55α and B56α-containing PP2A complexes may contribute to the leukaemic phenotype by facilitating the transmission of signals that confer proliferative and survival advantages.
A likely consequence of increased B55α and B56α binding to PP2Ac is the simultaneous dissociation of alternate subunits which are involved in the negative regulation of oncogenic pathways. In the current study, slightly reduced levels of B56γ were observed in both BCR/ABL+ FDC-P1 cell lines (Figure 3.8), whilst mRNA expression remained unchanged (Figure 3.13). Interestingly, immunoprecipitation of PP2Ac showed decreased association of B56γ in complexes isolated from BCR/ABL+ FDC-P1 cells compared to empty vector controls (Figure 3.15B). These observations suggest that depletion of B56γ-containing PP2A holoenzymes in BCR/ABL+ myeloid progenitors may contribute to the leukaemic phenotype. In support of these findings, recent evidence implicates B56γ as an important component directing the tumour suppressive function of PP2A. Specific suppression of B56γ can substitute for ST in inducing tumourigenic transformation in the HEK-TER model (Chen et al. 2004, Moreno et al. 2004), and reduced B56γ transcript levels have been reported in patients with aggressive B-CLL (Falt et al. 2005). Several lung cancer cell lines have undetectable B56γ, and its overexpression partially reverses the tumourigenic phenotype (Chen et al. 2004). Furthermore, expression of a truncated B56γ protein, ΔB56γ1, is associated with enhanced metastatic potential of the melanoma cell line, BL6 (Ito et al. 2000, Ito et al. 2003).

At present the specific substrates of PP2A B56γ are unknown, with possible targets including p53 and the PI3K/Akt or Wnt/β-catenin pathways (Westermarck & Hahn 2008). For example, B56γ reportedly interacts with APC and axin to facilitate the formation of the β-catenin destruction complex, leading to destabilisation of β-catenin and inhibition of Wnt signalling in Xenopus embryos (Li et al. 2001). PP2A B56γ holoenzymes have also been implicated in the stabilisation of p53 in response to DNA damage (Shouse et al. 2008). Depletion of B56γ leads to activation of the anti-apoptotic Akt pathway in HEK-TER cells (Chen et al. 2005). In addition, expression of the ΔB56γ1 isoform results in impaired cell cycle checkpoint integrity and the acquisition of chromosomal aberrations, indicating that B56γ also plays an important role in guarding genome integrity (Ito et al. 2003). As the constitutive activation of these pathways has been implicated in the development of CML (Coluccia et al. 2007, Honda et al. 2000, Skorski et al. 1995), the removal of negative regulation normally displayed by PP2A B56γ is a possible contributing factor to BCR/ABL+ leukaemia growth.
The most striking difference arising from the gene expression analysis was the marked depletion of PPP2R3A (PR72/130) transcripts in FDC-P1 WT and Y253F BCR/ABL cells compared to empty vector controls (Figure 3.14). This finding is consistent with a recent study that reported depletion of PPP2R3A in several leukaemia cell lines and childhood ALL primary samples compared to normal blood or bone marrow (Dunwell et al. 2009). Interestingly, gene suppression was associated with hypermethylation of 5’ CpG islands within the promoter region (Dunwell et al. 2009). An interesting follow on from the current project would be to investigate the methylation status of PPP2R3A in BCR/ABL+ FDC-P1 cells and CD34+ blast crisis progenitors. Further examination is also required to determine if the changes in PPP2R3A are reflected at the protein level, and to evaluate the functional consequences of this effect.

In this study, a systematic investigation of PP2A subunits was performed to elucidate the PP2A-associated mechanisms underlying BCR/ABL-driven transformation of myeloid progenitors. A unifying, and somewhat surprising, theme emerging from this body of work indicates that BCR/ABL upregulates the expression of several PP2A holoenzyme components. The functional consequence may be disruption of B subunit exchange which could facilitate the leukaemic phenotype by:

1) augmenting the formation of PP2A complexes that direct positive regulation of oncogenic pathways (e.g. B55α and B56α) (Figure 3.16A) and
2) displacing PP2A subunits which provide negative regulation on these signalling cascades (e.g. B56γ) (Figure 3.16B).

Taken together, these findings provide new insight into the regulation of PP2A and begin to dissect the precise mechanisms by which BCR/ABL induces transformation via PP2A in CML. Importantly, the perturbed PP2A subunits, and their downstream substrates, may provide useful targets for the development of improved therapies for CML patients.
Figure 3.16 Proposed model for PP2A regulation by BCR/ABL in FDC-P1 cells

A) Enhanced formation of PP2A complexes containing B55α by BCR/ABL may activate certain pathways such as MAPK and Wnt/β-catenin. An abundance of PP2A complexes containing B56α in BCR/ABL+ cells could also inhibit p53.

B) Simultaneous displacement of B56γ in BCR/ABL+ cells may result in aberrant regulation of Akt, β-catenin and p53.
4.1 Introduction

The development of CML from the indolent chronic phase to the aggressively fatal blast crisis is associated with inhibition of the tumour suppressor, PP2A (Neviani et al. 2005, Neviani et al. 2007). Recent evidence indicates the tumour suppressive function of PP2A is dependent on regulatory subunit binding and the formation of distinct holoenzymes that govern substrate specificity (Westermarck & Hahn 2008). Prior to this study, no investigations had been undertaken to determine which particular PP2A subunits are involved in BCR/ABL-mediated leukaemogenesis.

The results presented in Chapter 3 identify a mechanism whereby overexpression, or increased association, of PP2A B55α, B56α and B56δ may contribute to BCR/ABL-induced transformation of mouse myeloid progenitors (FDC-P1 and 32Dcl3) and the Ph1 human K562 cell line. Immunoprecipitation findings suggest that an abundance of B55α and B56α may disrupt normal B subunit binding dynamics and facilitate the formation of PP2A holoenzymes that could contribute to increased proliferation and survival. Understanding the relative functional importance of these complexes in CML progression will provide critical insight into the biology of PP2A.

The major aim of this Chapter was to investigate the functional role of PP2A holoenzymes in BCR/ABL+ leukaemia growth. To address this issue, the individual PP2A subunits B55α, B56α and B56δ were targeted with specific shRNA in FDC-P1 WT BCR/ABL cell lines. In this procedure, the shRNA sequences were cloned into a retroviral vector and delivered into the cell via retroviral infection. An RNA polymerase III promoter upstream of the shRNA is utilised to express the specific sequence within the nucleus (Figure 4.1). The shRNA is then actively exported to the cytoplasm, where it is recognised and cleaved by the RNase III enzyme Dicer to produce a double-stranded short interfering RNA (siRNA). One strand of each siRNA molecule is incorporated into a cytoplasmic, multi-protein RNA-Induced Silencing Complex (RISC) and serves as a guide for locating complementary target mRNAs.
Figure 4.1 shRNA-mediated gene silencing in mammalian cells
Within the nucleus, shRNA sequences are transcribed by RNA polymerase III (Pol III). These are exported to the cytoplasm and cleaved by Dicer to produce a double-stranded siRNA. Each strand is then incorporated into RISC, which locates and cleaves complementary target mRNAs to result in gene suppression.
Upon recognition and binding, a RISC-associated nuclease cleaves the target RNA which is then degraded by cytoplasmic exonucleases (McManus & Sharp 2002). The expression of shRNA enables prolonged gene silencing and is a powerful tool which permits the analysis of loss-of-function phenotypes.

4.2 Results

4.2.1 Subcloning of shRNA B56δ into pSR

The pMKO.1-GFP retroviral vector containing either no shRNA sequence (pMKO-EV), or sequences targeting PP2A B55α (shB55α) or B56α (shB56α) were obtained from Addgene Inc. (deposited by Prof. William Hahn), and have been previously verified (Table 2.1) (Chen et al. 2004). It was necessary to subclone the shRNA sequence for B56δ from pSUPER.basic (provided by Prof. Stefan Strack) into the retroviral vector pSUPER.retro.neo+GFP (pSR) (provided by A/Prof. Danilo Perrotti). Both constructs were digested with HindIII/EcoRI and the shRNA insert from pSUPER.basic was ligated into the empty vector backbone of pSR to generate pSR-shB56δ. Several clones were isolated and successful ligation was confirmed by sequencing. A correct clone was expanded and the purified plasmid was obtained for transfection into the Phoenix retroviral packaging cell line.

4.2.2 Stable knockdown of PP2A regulatory subunits in FDC-P1 WT BCR/ABL cells

To investigate the specific role of PP2A B55α, B56α and B56δ enzyme complexes in BCR/ABL-induced leukaemogenesis, shRNA constructs directed against these subunits were introduced into the FDC-P1 WT BCR/ABL cell line. The bicistronic retroviral vectors pMKO and pSR direct simultaneous expression of the shRNA sequences and GFP. Following retroviral infection, the top 10% of GFP+ FDC-P1 cells were isolated from a heterogeneous population by fluorescence-activated cell sorting (FACS) (Figure 4.2). All cell lines were monitored for GFP expression on a routine basis, and were not passaged for longer than 3 weeks. Notably, the degree of GFP intensity differed between each cell line. After one sort, the percentage of GFP+ cells increased dramatically in the FDC-P1 WT BCR/ABL pMKO empty vector population, whilst this level of expression was achieved in the shB56α population after two enrichments (Figure 4.2A and C). The GFP intensity in FDC-P1 WT BCR/ABL
Figure 4.2 Expression of GFP in shRNA-WT BCR/ABL FDC-P1 cell lines

FDC-P1 WT BCR/ABL cells expressing either A) pMKO or D) pSR empty vectors, or shRNA directed against B) B55α C) B56α and E) B56δ were sorted from a heterogeneous population based on GFP intensity (FL1-H). Flow cytometry plots were obtained from a FACSCalibur. Untransfected FDC-P1 WT BCR/ABL cells were used as a negative control for GFP expression (black line).
shB55α cells was one log less than pMKO-EV, and further sorting did not improve this (Figure 4.2B). FDC-P1 WT BCR/ABL pSR empty vector and shB56δ cells displayed similar levels of GFP expression (Figure 4.2D and E).

Downregulation of the individual PP2A B subunits was determined at the gene level by qRT-PCR, and at the protein level by immunoblotting. Compared to FDC-P1 WT BCR/ABL cells transfected with pMKO-EV, the shB55α and shB56α sequences resulted in sufficient protein knockdown to 50% and 20% of the corresponding PP2A subunits (Figure 4.3A and B). At the mRNA level, these effects were only observed for the gene of interest, confirming the specificity of target knockdown (Figure 4.4A and B). Suppression of B56δ protein to ~60% of empty vector levels (Figure 4.3C) was associated with a similar decrease in mRNA expression (Figure 4.4C).

4.2.3 Functional effects of PP2A regulatory subunit knockdown

4.2.3.1 shB56α restores PP2A activity in FDC-P1 WT BCR/ABL cells

After the shRNA-expressing FDC-P1 WT BCR/ABL cell lines were established, the impact on PP2A phosphatase activity was examined. As expected, FDC-P1 WT BCR/ABL cells expressing the pMKO or pSR control vectors had significantly attenuated PP2A activity compared to FDC-P1 BCR/ABL- cells (Figure 4.5). Interestingly, suppression of PP2A B55α partly restored this inhibition back to ~80% of normal levels (Figure 4.5). Even more dramatic, the activity of PP2A in FDC-P1 WT BCR/ABL shB56α cells was indistinguishable from BCR/ABL- controls (Figure 4.5). Notably, downregulation of B56δ in FDC-P1 WT BCR/ABL cells had no effect on restoring PP2A activity (Figure 4.5). These novel findings indicate that targeting individual PP2A regulatory subunits in BCR/ABL+ myeloid progenitors has a differential effect on enzyme activation.

4.2.3.2 shB56α impairs the proliferation of FDC-P1 WT BCR/ABL cells

Previous studies have shown that restoring PP2A activity by pharmacological activation or overexpression of PP2Ac inhibits the proliferation and survival of BCR/ABL+ myeloid progenitors (Neviani et al. 2005, Neviani et al. 2007). To assess the functional consequences of PP2A reactivation in the shRNA-expressing FDC-P1 WT BCR/ABL cells, a short-term growth assay was performed. Compared to FDC-P1 WT
Figure 4.3 Knockdown of PP2A regulatory subunits in WT BCR/ABL FDC-P1 cells

The expression of A) B55α B) B56α or C) B56δ was assessed in the shRNA-WT BCR/ABL FDC-P1 cell lines. Lysates were subjected to SDS-PAGE and probed for either PP2A B55α, B56α or B56δ. Actin was used as a loading control. Blots are a representative of two independent experiments.
Figure 4.4 mRNA levels of PP2A regulatory subunits in shRNA-WT BCR/ABL FDC-P1 cells
The downregulation of PP2A B55α, B56α or B56δ was confirmed in the shRNA-FDC-P1 WT BCR/ABL cell lines. Total RNA was extracted and qRT-PCR analysis detecting A) B55α (PPP2R2A) B) B56α (PPP2R5A) and C) B56δ (PPP2R5D) was performed. Gene expression is relative to FDC-P1 WT BCR/ABL pMKO empty vector. Columns, mean of two independent experiments performed in triplicate; bars, SEM.
Figure 4.5 PP2A activity in shRNA-WT BCR/ABL FDC-P1 cells
To determine PP2A activity in FDC-P1 cells, the catalytic subunit was immunoprecipitated from whole cell lysates and incubated with a PP2A-specific phospho-peptide. Free phosphate (PO₄) release was measured at an absorbance of 620 nm. Data is presented as the activity of PP2A relative to FDC-P1 BCR/ABL– control cells. Columns, mean PO₄ release (pm/min) of three independent experiments performed in duplicate; bars, SEM. *p<0.05, **p<0.01, Student’s t-test.
BCR/ABL pMKO controls, differences in the growth of FDC-P1 WT BCR/ABL shB55α cells were not evident until 66 hours, at which time a moderate reduction was noted for the shB55α population (Figure 4.6). In accordance with a dramatic increase in PP2A activity (Figure 4.5), FDC-P1 WT BCR/ABL shB56α cells grew at a consistently slower rate compared to pMKO-EV cells (Figure 4.6). An increase in non-viable cells determined by trypan blue exclusion was not observed (data not shown), suggesting that B56α suppression mainly affects cellular proliferation rather than survival. The growth rate of FDC-P1 WT BCR/ABL cells was not affected by the knockdown of B56δ (Figure 4.6).

Next, a clonogenic assay was performed. The formation of discrete colonies from individual myeloid progenitors in a semi-solid medium is an excellent indicator of long-term proliferation potential. For this study, 500 cells were plated in methylcellulose and the colonies scored after 7 days (Figure 4.7). FDC-P1 WT BCR/ABL pMKO and pSR controls displayed a cloning efficiency of ~90% and the colonies formed by these cell lines were large and compact, characteristic of an undifferentiated myeloid progenitor phenotype (Figure 4.8 and 4.9) (Piazza et al. 2000). The most striking difference in clonogenic potential was observed with B56α suppression, which resulted in approximately half the number of colonies compared to FDC-P1 WT BCR/ABL pMKO-EV cells (Figure 4.7). In addition, the colonies formed by these cells were dramatically reduced in size (Figure 4.8 and 4.9). No effect on colony number was observed with the other shRNA-expressing FDC-P1 WT BCR/ABL cell lines (shB55α and shB56δ) (Figure 4.7). Whilst the cloning efficiency of FDC-P1 WT BCR/ABL shB55α was similar to pMKO controls, these cells displayed smaller colonies (Figure 4.8 and 4.9); a result which correlates with partially restored PP2A activity and slightly decreased cellular proliferation (Figure 4.5). Interestingly, FDC-P1 WT BCR/ABL shB56δ cells formed slightly larger colonies compared to FDC-P1 WT BCR/ABL pSR controls (Figure 4.8 and 4.9). Taken together, these findings correlate with the PP2A activity assay data and highlight a general mechanism whereby global activation of PP2A, as seen with shB56α cells, attenuates BCR/ABL+ leukaemogenesis.
Figure 4.6 Growth rate of shRNA-WT BCR/ABL FDC-P1 cells

FDC-P1 WT BCR/ABL cells expressing either pMKO or pSR empty vectors, or shRNA directed against A) B55α B) B56α or C) B56δ were seeded at 0.5 x 10⁵/ml and counted every 12 hours using trypan blue to determine viability. Columns, mean of three independent experiments performed in duplicate; bars, SEM. *p<0.05, **p<0.01, Student’s t-test compared to pMKO.
Figure 4.7 Clonogenic potential of shRNA-WT BCR/ABL FDC-P1 cells

For each clonogenic assay, 500 FDC-P1 WT BCR/ABL cells expressing either pMKO or pSR empty vectors, or shRNA directed against B55α, B56α and B56δ were plated in methylcellulose. Colonies were counted after 7 days. Columns, mean of three independent experiments performed in triplicate; bars, SEM. **p<0.01, Student’s t-test compared to pMKO.
Figure 4.8 Colonies formed by shRNA-WT BCR/ABL FDC-P1 cells

FDC-P1 WT BCR/ABL cells expressing A) pMKO B) shB55α C) shB56α D) pSR or E) shB56δ were plated in methylcellulose and colonies were inspected (40x magnification) after 7 days using an Olympus microscope (CK40). Photographs were taken with a ColourView II camera and analySIS software.
Figure 4.9 Colonies formed by shRNA-WT BCR/ABL FDC-P1 cells at a higher magnification

FDC-P1 WT BCR/ABL cells expressing A) pMKO B) shB55α C) shB56α D) pSR or E) shB56δ were plated in methylcellulose and colonies were inspected (100x magnification) after 7 days using an Olympus microscope (CK40). Photographs were taken with a ColourView II camera and analySIS software.
4.2.3.3 Suppression of B56α and B56δ alters the cellular morphology of FDC-P1 WT BCR/ABL cells

The mouse FDC-P1 cell line represents a self-renewing population of myeloid progenitors that are ancestral to monocytes/macrophages and granulocytes (Dexter et al. 1980). Under certain experimental conditions FDC-P1 cells can undergo differentiation, which is characterised by changes in morphology such as a large cytoplasm containing vacuoles (Kubota et al. 1998, Rohrschneider & Metcalf 1989, Li & Bernard 1992, Piazza et al. 2000). To determine whether impaired cell growth of FDC-P1 WT BCR/ABL shB56α cells was associated with enhanced differentiation, May-Grunwald/Giemsa staining of cytospins was performed (Figure 4.10). FDC-P1 WT BCR/ABL pMKO and pSR control cells, and those expressing shB55α, displayed typical myeloid progenitor features including a generous nucleus and thin cytoplasm (Figure 4.10 and 4.11). In contrast, a significant proportion of FDC-P1 WT BCR/ABL shB56α cells contained an enlarged vacuolated cytoplasm (Figure 4.10 and 4.11), which is reportedly a distinguishing feature of partial differentiation towards either the granulocyte or monocyte/macrophage lineage (Piazza et al. 2000, Li & Bernard 1992).

Interestingly, morphological differences were also observed in the FDC-P1 WT BCR/ABL cells lacking B56δ. Unique to this population were the presence of cells displaying a prophase appearance and monopolar spindles. These were identified by breakdown of the nuclear envelope and condensed chromosomes that appeared centrally arranged in a cartwheel-like configuration (Figure 4.10 and 4.11) (Horn et al. 2007). Even more striking was the detection of extremely large and irregular shaped cells with multiple nuclei (Figure 4.10 and 4.11). These findings suggest that downregulation of B56δ in FDC-P1 WT BCR/ABL cells may have a dramatic effect on cell cycle regulation to result in defective cytokinesis. All together, the unique morphological changes induced by B56α and B56δ suppression in FDC-P1 WT BCR/ABL cells highlights these subunits as potentially important mediators of BCR/ABL⁺ leukaemogenesis.
Figure 4.10 Cellular morphology of shRNA-WT BCR/ABL FDC-P1 cells

FDC-P1 WT BCR/ABL cells expressing A) pMKO B) shB55α C) shB56α D) pSR or E) shB56δ were deposited onto microscope slides by centrifugation and stained with May-Grunwald/Giemsa. Cells were evaluated under 400x magnification on an inverted light microscope (Olympus). Photographs were taken with a ColourView II camera and analySIS software. Normal cells were characterised by a large nucleus to cytoplasm ratio. Arrows indicate cells with an enlarged vacuolated cytoplasm (green); monopolar spindles (black); or multiple nuclei (red). Scale bar, 50 μm.
A B

C D

E

- Normal
- Monopolar spindles
- Partial differentiation
- Multinucleated

% Total cells

pMKO shB55α shB56α pSR shB56δ

* *
Figure 4.11 Quantitative analysis of the morphological characteristics displayed by shRNA-WT BCR/ABL FDC-P1 cells

FDC-P1 WT BCR/ABL cell lines were scored for characteristics indicative of
A) normal progenitors (blue) B) differentiation (green) C) monopolar spindles (black) or D) multiple nuclei (red). Representative pictures for each feature are shown. E) Two independent experiments were performed. 10 pictures were taken at 200x magnification from randomly selected areas of the cytospin, with a total of ~400 cells scored. Columns, mean percentage of cells showing each characteristic / total number of cells per view; bars, SEM. *p<0.05 for monopolar spindles, ** p<0.01 for partial differentiation. Student’s t-test compared to pMKO. Scale bar, 25 μm.
4.3 Discussion

The results presented in Chapter 3 indicate that the oncogenic kinase activity of BCR/ABL disrupts B subunit binding exchange in myeloid progenitors. Using an shRNA approach, this Chapter investigated the functional importance of specific PP2A complexes and suggests that the increased expression and association of B56α observed in BCR/ABL⁺ cells (Chapter 3) could contribute to BCR/ABL-mediated leukaemogenesis.

The most evident and consistent finding arising from this body of work is the functional consequence of PP2A B56α knockdown in FDC-P1 WT BCR/ABL cells. Suppression of this subunit restored PP2A activity back to BCR/ABL⁻ control levels (Figure 4.5), and was associated with significantly reduced proliferation (Figure 4.6), impaired clonogenic potential (Figure 4.7) and altered cellular morphology resembling partial differentiation (Figure 4.10 and 4.11). This data indicates that increased formation of PP2A holoenzymes containing the specific B56α regulatory subunit is important for BCR/ABL⁺ growth of myeloid progenitors. In agreement with these findings, B56α has been implicated in the negative regulation of p53, where it forms a complex with Cyclin G and Mdm2 to induce p53 ubiquitination and degradation (Okamoto et al. 2002). In this context, PP2A serves as a cellular monitor that maintains p53 in a latent state and prevents apoptosis under normal cellular conditions (Haupt et al. 1997). Interestingly, TP53 is mutated in 25-30% of myeloid CML-BC patients (Feinstein et al. 1991), and its loss-of-function contributes to enhanced tumourigenicity (Honda et al. 2000) and imatinib-resistance in myeloid precursors (Wendel et al. 2006). Therefore, an excess of PP2A-B56α complexes may deplete functional levels of p53 and augment the development of CML-BC. Conversely, removal of p53-associated B56α complexes in FDC-P1 WT BCR/ABL shB56α cells could lead to enhanced p53 function and reduced transformation.

Although the degradation of p53 may explain how B56α suppression inhibits cell growth, it does not explain how reduced B56α results in enhanced PP2A activity. As discussed previously (Section 3.3), an abundance of PP2A-B56α complexes in BCR/ABL⁺ cells may not only potentiate cascades which confer oncogenic signals, but could also deplete the pool of PP2A holoenzymes that normally exert traditional tumour
suppressive function (e.g. B56γ). As a result, the global increase of PP2A activity observed in the FDC-P1 WT BCR/ABL shB56α cells may be a reflection of enhanced B56γ binding to the core PP2A dimer. The differences in PP2A composition between the shRNA-transfected FDC-P1 WT BCR/ABL cell lines and empty vector controls remain undefined and require further investigation. The fact that downregulation of individual PP2A subunits has such a differential effect on restoring PP2A activity in FDC-P1 WT BCR/ABL cells confirms that specific enzyme function is attributable to B subunit abundance and binding (Figure 4.5). This is a novel finding for a myeloid progenitor cell line and suggests that targeting specific PP2A subunits may be an alternate therapeutic strategy for CML patients.

Several reports demonstrate that FDC-P1 cells have the capacity to reversibly differentiate under certain experimental conditions (Kubota et al. 1998, Li & Bernard 1992, Piazza et al. 2000, Rohrschneider & Metcalf 1989). Of note, they do not undergo terminal differentiation but rather progress towards a specific lineage. Expression of the type III RTKs PDGFR or macrophage colony stimulating factor-1 receptor (CSF-1), and subsequent growth in their corresponding ligands, directs differentiation along the monocyte/macrophage pathway (Kubota et al. 1998, Rohrschneider & Metcalf 1989). Furthermore, the introduction of fibroblast growth factor receptor into FDC-P1 cells induces an intermediate stage of granulocytic differentiation (Li & Bernard 1992). In agreement with these reports, the stable knockdown of B56α appears to result in morphological features that resemble partial differentiation (Piazza et al. 2000, Li & Bernard 1992). Whilst this is an interesting observation, it remains possible that these changes indicate cells which are undergoing apoptosis. However, there was no increase in the uptake of trypan blue, or the detection of necrotic cells on the cytospin, suggesting that the FDC-P1 WT BCR/ABL shB56α cells are viable. Further investigations determining the expression of lineage-specific markers such as Gr-1 and myeloperoxidase for granulocytes, or Mac-1 for monocytes/macrophages, are required to confirm these cells are indeed undergoing differentiation.

In support of the current findings (Figure 4.10), reduced expression of SET has been shown to inhibit the proliferation and induce the in vitro differentiation of the poorly differentiated TSU-Pr1 prostate carcinoma cell line (Brody et al. 2004). Whilst the activity of PP2A was not determined in this study, it is likely that depletion of SET
Chapter 4 – PP2A complexes in BCR/ABL+ leukaemogenesis

enhances enzyme activation and may contribute to the differentiated phenotype observed in these cells. Although speculative at the moment, enhanced differentiation may be the underlying mechanism contributing to the reduced proliferation and impaired clonogenic potential of the FDC-P1 WT BCR/ABL shB56α cell line. A distinguishing feature of CML-BC is the clonal expansion of differentiation-arrested blast cells that are insensitive to the tyrosine kinase inhibition (Copland et al. 2006, Graham et al. 2002, Jorgensen et al. 2007). Thus, the accumulation of myeloid precursors that lack the ability to form mature granulocytes is a major factor which contributes to the more aggressive and drug-resistant blast crisis phenotype. The ability to partially reverse this phenotype via PP2A manipulation in myeloid progenitors represents an exciting and novel finding.

Taken together, these results identify PP2A B56α as a positive regulator of BCR/ABL+ transformation and contradict several studies which reveal a critical role for B56α in the negative regulation of certain oncoproteins, including c-Myc and Bcl-2 (Arnold & Sears 2006, Ruvolo et al. 2002). In these reports, B56α functions as a traditional tumour suppressor. Due to the complex regulation and promiscuous nature of the PP2A enzyme, the discovery of opposing roles for B56α function is not surprising. In the context of c-Myc regulation, PP2A holoenzymes containing the B56α subunit interact with and induce the ubiquitin-mediated degradation of this potent oncoprotein in human cells. Accordingly, shRNA-mediated knockdown of B56α results in enhanced c-Myc stabilisation and increased oncogenic potential (Arnold & Sears 2006). The apparent discrepancy between the current study and previous investigations are most likely related to the cellular model studied, as well as differences in the substrates and pathways that are targeted by B56α in each situation.

The expression of B56δ is increased in BCR/ABL+ myeloid progenitors compared to untransfected cells (Section 3.2.5.2). FDC-P1 WT BCR/ABL cells lacking B56δ showed no appreciable differences in PP2A activity (Figure 4.5) or proliferation (Figure 4.6 and 4.7); however, a rather interesting finding in regards to cell cycle regulation was observed. Although it is difficult to determine from cytopsin pictures only, the increased frequency of FDC-P1 WT BCR/ABL cells which appear to be in the process of mitosis indicates that knockdown of B56δ may induce mitotic delay (Figure 4.10 and 4.11). Mitosis is an extremely complex biological process by which a complete copy of the
duplicated genome and cytoplasm is precisely segregated into two daughter cells. To ensure faithful transfer of genomic material, multiple fidelity monitoring checkpoint systems have evolved to prevent cells from dividing in the presence of DNA damage (Figure 4.12). A role for PP2A in cell cycle regulation has long been suspected, with extensive studies in *Saccharomyces cerevisiae* (budding yeast) (Jiang 2006), *Drosophila* (Mayer-Jaekel et al. 1993) and Xenopus extracts (Margolis et al. 2006, Mochida *et al.* 2009) demonstrating its involvement at virtually every stage (De Wulf *et al.* 2009).

Recent evidence supports a unique role for B56δ in controlling both the entry into and exit from mitosis (Figure 4.12) (Forester *et al.* 2007, Margolis *et al.* 2006). In agreement with the current findings, knockdown of B56δ in mammalian cells prevents Cyclin B degradation and results in a delayed mitotic exit (Forester *et al.* 2007). Presumably, a transient block in cell cycle progression or defective cytokinesis is responsible for the generation of giant, multinucleated cells (Figure 4.10 and 4.11) (Glotzer 2005). This phenotype is similar to that observed for the Aurora kinase inhibitors, such as ZM447439 (Ditchfield *et al.* 2003) and MK-0457 (VX-680) (Harrington *et al.* 2004). The mechanism by which these inhibitors induce apoptosis is fairly unique and contrasts the classic antimitotic agents (e.g. paclitaxel) in that they do not induce mitotic arrest. Rather, MK-0457 disrupts spindle formation, which causes a slight delay in cell cycle progression (Girdler *et al.* 2006, Tyler *et al.* 2007). Despite the presence of misaligned chromosomes, the drug-treated cells undergo anaphase and exit mitosis prematurely, indicating a compromised spindle assembly checkpoint (Girdler *et al.* 2006). After a period of time, the unsegregated DNA decondenses and the nuclear envelope encloses around an enlarged, multilobed nucleus (Girdler *et al.* 2006). Thus, continued DNA replication in the absence of cell division results in polyploidy (Harrington *et al.* 2004). The increase in colony size observed in the FDC-P1 WT BCR/ABL shB56δ population (Figure 4.9) is most likely attributable to the presence of large, polyploid cells (Figure 4.10 and 4.11).

Precisely how the suppression of B56δ could result in mitotic delay and/or defective cytokinesis is unclear. Recent reports implicate a role for PP2A in the regulation of both Aurora A and B function (Horn *et al.* 2007, Sun *et al.* 2008); however, the particular
Figure 4.12 Involvement of PP2A B56δ in cell cycle regulation

Schematic overview of the cell cycle which comprises G1 (blue), S phase (purple), G2 (yellow), mitosis (prophase, pro-metaphase, metaphase, anaphase and telophase; green), and cytokinesis (red). Key events are indicated by arrows and text, which is coloured according to the cell cycle stage that they occur in. Horizontal ellipses depict the appearance of mitotic spindles (dark grey) and condensed chromosomes (light grey). PP2A B56δ (pink) has been implicated in regulating the entry into and exit from mitosis. Further investigation is required to determine whether it also controls the spindle assembly checkpoint (SAC). Adapted from (De Wulf et al. 2009).
PP2A regulatory subunits governing this have not been described. Given that knockdown of B56δ in FDC-P1 WT BCR/ABL cells resembles aberrant Aurora function (Marumoto et al. 2005, Meraldi et al. 2002), it is likely that B56δ is involved in the PP2A-mediated regulation of Aurora kinases during cell cycle progression. Another potential substrate of B56δ is the Cdc25C phosphatase. At the end of mitosis, B56δ binds to and inactivates Cdc25C by dephosphorylation of sites critical for its mitotic function. This induces a series of molecular events that results in the proteasome-dependent degradation of Cyclin B (Forester et al. 2007), which is required for a timely mitotic exit and proper cell division (Clute & Pines 1999, Glotzer et al. 1991).

Myeloid progenitors expressing BCR/ABL have a marked increase in B55α-containing PP2A complexes (Figure 3.15C). Based on this observation, it was predicted that enhanced binding of B55α would aberrantly direct the PP2A enzyme to substrates that potentiate the signalling of oncogenic cascades. In support of this, B55α has been implicated in the positive regulation of numerous pathways that contribute to BCR/ABL+ transformation. For example, PP2A B55α complexes stimulate the MAPK pathway by dephosphorylating KSR-1 and Raf-1 in several mammalian cell models including NIH3T3, COS-1 and HEK293 (Abraham et al. 2000, Ory et al. 2003, Adams et al. 2005, Dougherty et al. 2005). Recent investigations demonstrate that B55α complexes directly dephosphorylate and stabilise the transcription factor, β-catenin (Zhang et al. 2009). Loss of β-catenin is associated with reduced self-renewal of the CML stem cell population and importantly, impairs the ability of mice to develop a CML phenotype (Zhao et al. 2007, Coluccia et al. 2007). Thus, enhanced recruitment of B55α-containing PP2A complexes, as observed in FDC-P1 WT BCR/ABL cells, could activate MAPK signalling or stabilise β-catenin.

The suppression of PP2A B55α to approximately 50% of control levels was associated with partial restoration of PP2A activity (Figure 4.5), which resulted in a slight inhibition of cell growth (Figure 4.6) and colony size (Figure 4.9). Given the potential to facilitate BCR/ABL-mediated leukaemogenesis, loss of B55α in FDC-P1 WT BCR/ABL cells was expected to produce a more profound phenotype. The present analysis was conducted on a polyclonal population, which represents a broad spectrum of cells with various degrees of B55α expression. If complete knockdown of B55α
significantly impairs proliferation, these cells may have been outgrown, in which case the loss-of-function phenotype would be masked. The isolation and analysis of individual clones with substantial downregulation of B55α may prove more effective in determining the role of this subunit in BCR/ABL⁺ leukaemia growth. **It should also be noted that WT BCR/ABL cells with knockdown of B56γ showed no difference in PP2A activity, cell proliferation or clonogenic potential compared to pMKO EV controls (data not shown).**

In summary, the novel findings presented in this Chapter identify B56α and B56δ as key PP2A subunits important for BCR/ABL-mediated leukaemogenesis (Figure 4.13). This is demonstrated by the fact that removal of B56α not only enhances the activity of PP2A, but significantly impairs cellular growth, reduces the clonogenic potential and may induce partial differentiation of BCR/ABL⁺ myeloid progenitors. In addition, knockdown of B56δ appears to perturb cell cycle regulation. This data greatly enhances our knowledge of the biology of PP2A, which can be applicable not only to malignant cells but also to normal cellular function.
Figure 4.13 Proposed model of PP2A regulation by BCR/ABL in FDC-P1 cells
BCR/ABL may regulate PP2A in myeloid progenitors through two mechanisms. Functional studies from shRNA-expressing WT BCR/ABL FDC-P1 cells indicate that
A) Enhanced formation of PP2A B56α complexes may potentiate oncogenic signals through unknown pathways to facilitate proliferation and impair differentiation.
B) Aberrant regulation of the cell cycle by B56δ may also contribute to the leukaemic phenotype.
CHAPTER 5
INHIBITION OF PP2A BY ONCOGENIC c-KIT MUTATIONS

5.1 Introduction
c-KIT is a type 3 RTK that is characterised by 5 extracellular immunoglobulin–like domains and an intracellular split tyrosine kinase domain (Lennartsson et al. 2005). Binding of SCF to c-KIT activates multiple signalling pathways that are important for cellular proliferation, differentiation and survival. These include MAPK (Hong et al. 2004, Lennartsson et al. 1999), PI3K/Akt (Lev et al. 1992, Blume-Jensen et al. 1998), JAK/STATs (Brizzi et al. 1999, Weiler et al. 1996) and SFKs (Linnekin et al. 1997, Broudy et al. 1999, Voytyuk et al. 2003). c-KIT is expressed in HSCs, mast cells, germ cells, melanocytes and interstitial cells of Cajal (Ashman 1999). Consistent with this, gain-of-function c-KIT mutations have been documented in CBF-AML (Mrozek et al. 2008), systemic mastocytosis (Worobec et al. 1998), GIST (Hirota et al. 1998), testicular seminoma (Kemmer et al. 2004) and a subset of melanoma patients (Smalley et al. 2009). In GIST samples ~85% of c-KIT aberrations are located in the juxtamembrane domain (JMD; e.g V560G) (Hirota et al. 1998), whereas the majority of CBF-AML and systemic mastocytosis patients express kinase domain mutations (e.g. D816V). In most cases, the presence of an activating c-KIT mutation is associated with a higher relapse rate and reduced overall survival compared to patients expressing the WT receptor (Mrozek et al. 2008).

The c-KIT kinase inhibitor imatinib has shown remarkable success in treating patients with metastatic GIST that harbour JMD c-KIT mutations (Demetri et al. 2002). In contrast, mutations involving the kinase domain are completely resistant to imatinib inhibition, and as such, c-KIT CBF-AML and systemic mastocytosis patients are unresponsive to imatinib therapy (Pardanani et al. 2003, Piccaluga et al. 2007). Recent clinical trials with the second generation tyrosine kinase inhibitor, dasatinib, have also reported disappointing results. In a phase II study, only 2 of 33 patients with systemic mastocytosis showed complete responses to dasatinib treatment, and both tested negative for the D816V c-KIT mutation (Verstovsek et al. 2008). To improve treatment outcomes for patients with c-KIT malignancies, a greater understanding of the
signalling cascades activated downstream of c-KIT is required to identify novel therapeutic targets.

BCR/ABL and mutant c-KIT activate similar oncogenic pathways. As BCR/ABL was shown to inhibit PP2A (Neviani et al. 2007, Neviani et al. 2005) (Chapter 3), it was hypothesised that mutant c-KIT may also inactivate PP2A. Thus the major aims of this Chapter were to determine whether functional inhibition of PP2A is important for c-KIT-driven tumourigenesis, and to investigate whether enhancing the activity of PP2A impairs the *in vitro* growth of myeloid precursors expressing oncogenic c-KIT.

5.2 Results

5.2.1 Mutant c-KIT impairs the activity of PP2A

The FDC-P1 c-KIT\(^+\) cell model used in this study have been described previously (Frost et al. 2002). Briefly, the pRUFneo retroviral vector containing no cDNA (EV), or cDNA encoding the imatinib-sensitive WT c-KIT, the constitutively active imatinib-sensitive JMD V560G c-KIT mutant, or the oncogenic imatinib-resistant kinase domain D816V c-KIT mutant were introduced into the FDC-P1 cell line by retroviral infection using the \(\Psi \)2 stable packaging system (Mann et al. 1983). Successfully infected cells were initially selected in G418. FDC-P1 cells expressing WT c-KIT were maintained in SCF, whilst the FDC-P1 V560G and D816V c-KIT cells were grown in the absence of factor. The extracellular expression of the c-KIT receptor was routinely monitored by flow cytometry (Figure 5.1) (Frost et al. 2002, Roberts et al. 2007).

To determine whether oncogenic c-KIT regulates PP2A, the activity associated with PP2Ac immunoprecipitates extracted from FDC-P1 cells was measured. FDC-P1 cells expressing V560G and D816V mutant c-KIT displayed significantly reduced PP2A activity to \(~70\%\) of EV control cells (Table 5.1). In contrast, there was no significant difference between EV cells and those expressing the WT c-KIT receptor (Table 5.1). Thus, activating mutations of c-KIT inhibit PP2A activity in myeloid progenitors.
Figure 5.1 Surface expression of c-KIT on FDC-P1 cells
The relative surface expression levels of c-KIT on FDC-P1 cells was determined by immunofluorescent staining and flow cytometric analysis using mAb anti-human c-KIT 1DC3 (red line). An isotype matched negative control mAb IB5 was used to determine background immunofluorescence (black line). A) EV B) WT c-KIT C) V560G c-KIT and D) D816V c-KIT.
Table 5.1 Mutant c-KIT impairs PP2A activity

<table>
<thead>
<tr>
<th>FDC-P1 Cell Line</th>
<th>PO₄ (pm/min)¹</th>
<th>% EV²</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV</td>
<td>810 ± 83</td>
<td>100</td>
</tr>
<tr>
<td>WT c-KIT</td>
<td>695 ± 67</td>
<td>88.8</td>
</tr>
<tr>
<td>V560G c-KIT</td>
<td>594 ± 98</td>
<td>72.4*</td>
</tr>
<tr>
<td>D816V c-KIT</td>
<td>510 ± 62</td>
<td>67.0*</td>
</tr>
</tbody>
</table>

¹PP2Ac was immunoprecipitated from untreated FDC-P1 cells. PP2A activity was determined by incubating the complex with a PP2A-specific phosphopeptide and measuring free phosphate release (PO₄ (pm/min) ± SEM) at an absorbance of 620 nm. ²%EV was calculated by dividing the activity of c-KIT cells by the EV cells. *p<0.05, n=5, Student’s t-test compared to EV.

5.2.2 Mutant c-KIT alters the expression of PP2A subunits

To investigate the mechanisms by which constitutive c-KIT activation inhibits PP2A, levels of the PP2A subunits in all FDC-P1 cell lines were examined by immunoblotting. There was no change in the expression of total or Tyr307-phosphorylated PP2Ac (PP2Ac-pY³⁰⁷) in FDC-P1 cells expressing WT or mutant c-KIT compared to EV controls (Figure 5.2 and 5.3). Therefore, c-KIT-induced PP2A inhibition is not mediated by reduced expression or phosphorylation of PP2Ac. In contrast, protein expression of the scaffolding subunit (PP2A A) was significantly decreased in FDC-P1 cells expressing both mutant c-KIT receptors, with barely detectable levels present in the FDC-P1 D816V c-KIT cells (Figure 5.2 and 5.3). This identifies a novel mechanism which may contribute to impaired PP2A activity and oncogenic c-KIT-mediated transformation.

Recent evidence demonstrates that aberrant expression of PP2A regulatory subunits in human cells alters the regulation of downstream signalling cascades to potentiate growth and survival signals (Chen et al. 2004). In comparison to FDC-P1 EV control cells and those expressing WT c-KIT, the levels of several PP2A B subunits including B55α, B56α, B56γ and B56δ were substantially reduced in the FDC-P1 V560G and D816V mutant c-KIT cells (Figure 5.2 and 5.3). Expression of the B56ε subunit was not affected by c-KIT kinase activity (Figure 5.2 and 5.3). FDC-P1 WT c-KIT cells appeared to express a lower molecular weight isoform of B56γ compared to the EV controls (Figure 5.2 and 5.3). Several splice variants of the B56γ subunit are already
Figure 5.2 Expression of PP2A regulatory subunits in c-KIT+ FDC-P1 cells
Untreated FDC-P1 cell lysates were subjected to SDS-PAGE and probed for
PP2A A, PP2Ac, PP2Ac pY307, B55α, B56α, B56γ, B56δ or B56ε Actin was used as
a loading control. Blots are a representative of three independent experiments.
Figure 5.3 Quantitation of PP2A subunits in c-KIT+ FDC-P1 cells
Quantitation of A) PP2A A B) PP2Ac C) PP2Ac pY307 D) B55α E) B56α, F) B56γ G) B56δ and H) B56ε protein bands in FDC-P1 c-KIT cells. Columns, mean densitometry normalised to actin and relative to EV; bars, SEM, n=3. *p<0.05, **p<0.01, Student’s t-test compared to EV.
known to exist and this may represent an isoform specifically regulated by WT c-KIT expression (Muneer et al. 2002, Martens et al. 2004). However, the mechanisms underlying this observation were not investigated further.

5.2.3 Reactivation of PP2A in mutant c-KIT FDC-P1 cells

To determine the biological relevance and potential therapeutic implications of PP2A loss-of-function in mutant c-KIT malignancies, the PP2A pharmacological activator, FTY720, was used (Matsuoka et al. 2003, Neviani et al. 2007). PP2A activity was enhanced by FTY720 treatment (2.5 μM; 6 hours) in FDC-P1 cells expressing V560G c-KIT by 1.5-fold, and increased by over 2-fold in FDC-P1 D816V c-KIT cells compared to untreated controls (Figure 5.4). By contrast, minimal effect on PP2A activity was observed in FDC-P1 WT c-KIT cells or EV controls treated with FTY720 (Figure 5.4).

FTY720 is phosphorylated in vivo by sphingosine kinase 2 (SphK2) to yield FTY720-P, a structural analogue of sphingosine-1-phosphate (S1P) (Brinkmann et al. 2002). FTY720-P binds to S1P-specific G protein-coupled receptors (S1PR) and induces signalling that regulates a variety of cellular processes (Brinkmann & Lynch 2002). To determine whether the enhanced activity of PP2A is dependent on S1PR-mediated signalling, the FDC-P1 cells were incubated with FTY720-P (2.5 μM; 6 hours). In all cell lines PP2A activity was not increased, providing evidence that the non-phosphorylated version of FTY720 is responsible for PP2A activation (Figure 5.4).

5.2.4 Reactivation of PP2A inhibits the proliferation of mutant c-KIT FDC-P1 cells

The effect of FTY720 on cellular proliferation was examined using a cytotoxicity assay. FDC-P1 cells were treated with increasing concentrations of FTY720 or FTY720-P (0.5–4 μM) for 48 hours and the ID50 for each cell line was determined. Striking differences in the response to FTY720 were observed between cells expressing activating c-KIT mutants and the WT c-KIT receptor. Specifically, FDC-P1 cells expressing V560G and D816V c-KIT displayed average ID50 values of 2.8 μM and 2.4 μM, respectively, whereas SCF-dependent FDC-P1 WT c-KIT cells showed an ID50 of 4.4 μM (Table 5.2). Furthermore, FDC-P1 cells transformed with EV alone and
Figure 5.4 Reactivation of PP2A in mutant c-KIT FDC-P1 cells
FDC-P1 cells were treated without or with FTY720 or FTY720-P (2.5 μM, 6 hours) and PP2Ac was immunoprecipitated from whole cell lysates. PP2A activity was determined by incubating the complex with a PP2A-specific phosphopeptide and measuring free phosphate release at an absorbance of 620 nm. PP2A activity was normalised to untreated FDC-P1 EV controls. Columns, mean of PP2A activity (%EV) from three independent experiments performed in duplicate; bars, SEM. *p<0.05, ** p<0.01, Student’s t-test compared to untreated controls for each cell line.
Table 5.2 Cytotoxicity of PP2A activators in mutant c-KIT FDC-P1 cells

<table>
<thead>
<tr>
<th>FDC-P1 Cell Line</th>
<th>FTY720 (μM)</th>
<th>Forskolin (μM)</th>
<th>FTY720-P (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I_{50}^1</td>
<td>Sensitivity2</td>
<td>I_{50}</td>
</tr>
<tr>
<td>EV</td>
<td>5.5 + 0.4</td>
<td>1</td>
<td>40.8 + 7.1</td>
</tr>
<tr>
<td>WT c-KIT</td>
<td>4.4 + 0.4</td>
<td>1.25</td>
<td>37.5 + 12.9</td>
</tr>
<tr>
<td>V560G c-KIT</td>
<td>2.8 + 0.3</td>
<td>1.96**</td>
<td>19.4 + 6.7</td>
</tr>
<tr>
<td>D816V c-KIT</td>
<td>2.4 + 0.2</td>
<td>2.20**</td>
<td>10.6 + 6.2</td>
</tr>
</tbody>
</table>

1I$_{50}$ is the concentration (μM) of drug required to kill 50% of cells and was calculated using fit-spline lowess regression of the data shown in Figure 5.5. Data is presented as the mean of at least three independent experiments performed in quadruplicate ± SEM. 2Sensitivity was determined by dividing the I$_{50}$ of the FDC-P1 EV cells by the I$_{50}$ of the FDC-P1 c-KIT cell lines. **p<0.01 compared to EV, Student’s t-test. N/A, not available.
grown in GM-CSF were considerably more resistant to FTY720 with an ID$_{50}$ of 5.5 μM (Table 5.2). In this assay, the efficacy of another chemically distinct PP2A activator, forskolin (Neviani et al. 2005, Feschenko et al. 2002), was also examined. Consistent with FTY720, FDC-P1 cells expressing V560G and D816V mutant c-KIT were significantly more sensitive to forskolin compared with EV controls (Table 5.2). In addition, incubation with FTY720-P up to 20 μM had no effect on the growth of any of the FDC-P1 cell lines (Table 5.2). That FTY720 and forskolin have distinct mechanisms of action, yet both activate PP2A, strongly suggests that the cytotoxicity observed in mutant c-KIT FDC-P1 cells is due to enhanced activation of PP2A. Furthermore, this effect is not mediated via S1PR signalling.

5.2.5 Reactivation of PP2A induces apoptosis of mutant c-KIT FDC-P1 cells

The ability of FTY720 to induce apoptosis in c-KIT-expressing myeloid precursors was investigated by staining with the early apoptotic marker, annexin-V. Consistent with the ability to inhibit proliferation, FTY720 (2.5 μM; 24 hours) markedly increased the percentage of annexin-V positive cells compared to untreated cells in the FDC-P1 V560G c-KIT population (Figure 5.5). FDC-P1 D816V c-KIT cells displayed a heightened response to FTY720 treatment, with ~60% of cells undergoing apoptosis by 24 hours (Figure 5.5). FDC-P1 cells expressing the EV alone or the WT c-KIT receptor showed no increase in annexin-V positive cells at the same concentration of FTY720 at 24 hours (Figure 5.5), or up to 48 hours (data not shown).

Cell cycle analysis of FTY720-treated (2.5 μM; 36 hours) FDC-P1 V560G c-KIT cells revealed a moderate shift into the sub-G$_0$ phase, which represents non-viable cells (Figure 5.6). Consistent with the annexin-V data (Figure 5.5), FDC-P1 D816V c-KIT cells were more sensitive to FTY720 treatment with ~60% moving into the sub-G$_0$ phase at 36 hours (Figure 5.6). By contrast, FDC-P1 EV or WT c-KIT cells remained unaffected by the presence of FTY720 (Figure 5.6). These results demonstrate that myeloid precursors expressing activating c-KIT mutations are highly sensitive to PP2A reactivation. Importantly, FTY720 concentrations which have minimal impact on WT c-KIT-dependent proliferation can effectively induce apoptosis in cells expressing constitutively activated c-KIT receptors.
Figure 5.5 Reactivation of PP2A induces apoptosis of mutant c-KIT FDC-P1 cells

A) FDC-P1 cells were incubated in the absence or presence of FTY720 (2.5 μM, 24 hours). Annexin-V binding was assessed as an early indicator of apoptosis. Propidium iodide (PI) staining indicates necrotic cells. Flow cytometry plots are a representative of four independent experiments. B) Columns, mean percentage of annexin-V+ cells; bars, SEM. **p<0.01, Student’s t-test compared to untreated controls.
Figure 5.6 Reactivation of PP2A increases the sub-G₀ population of mutant c-KIT FDC-P1 cells

FDC-P1 cells were treated without or with FTY720 (2.5 μM; 36 hours). DNA content was determined by PI staining measured on a FACSCalibur flow cytometer. A) Cell cycle distribution was assessed using MODFit software. The sub-G₀ population resides before the first red peak. Plots are a representative of three independent experiments. B) Columns, mean percentage of sub-G₀ population; bars, SEM. **p<0.01, Student's t-test compared to untreated controls.
5.2.6 Reactivation of PP2A inhibits the clonogenic potential of mutant c-KIT cells

The effect of FTY720 on the long-term survival of mutant c-KIT-expressing myeloid progenitors was evaluated using a methylcellulose colony formation assay. Importantly, the clonogenic potential of FDC-P1 cells expressing V560G or D816V c-KIT was significantly inhibited to ~50% by 2.5 μM FTY720 (Figure 5.7). This observation is consistent with the ID₅₀ for these cell lines being approximately 2.5 μM (Table 5.2). Furthermore, the presence of FTY720 had a dramatic effect on the size of colonies that were formed, with the two mutant c-KIT cell lines displaying markedly smaller colonies than the EV or WT c-KIT cells (Figure 5.8). By contrast, FTY720 treatment only marginally affected the colony forming capability of FDC-P1 WT c-KIT cells and no difference was observed between untreated and FTY720-treated EV controls grown in GM-CSF (Figure 5.7).

To confirm the observed cytotoxic effects were a consequence of PP2A reactivation by FTY720, FDC-P1 D816V c-KIT cells were co-treated with the serine-threonine phosphatase inhibitor, okadaic acid (0.25 nM), at a concentration that specifically inhibits the activity of PP2A only (Cohen et al. 1989). Notably, the addition of okadaic acid rescued the colony formation of FTY720-treated cells (Figure 5.9A). Furthermore, the clonogenic potential of FDC-P1 V560G and D816V mutant c-KIT cells treated with FTY720-P (2.5 μM) resembled that of untreated controls (Figure 5.9B). Together this data further confirms that FTY720 mediates its in vitro effects on FDC-P1 mutant c-KIT cells by specifically enhancing PP2A activity, and not via S1PR-mediated signalling.
Figure 5.7 Reactivation of PP2A impairs the clonogenic potential of mutant c-KIT FDC-P1 cells
For each assay, 200 FDC-P1 cells were plated without or with FTY720 (1.5 or 2.5 μM) in methylcellulose and colonies were counted after 7 days. Columns, mean of three independent experiments performed in triplicate; bars, SEM. *p<0.05, **p<0.01, Student’s t-test compared to untreated controls for each cell line.
Figure 5.8 Colony formation of FTY720-treated FDC-P1 cells
Untreated and FTY720-treated (2.5 μM) FDC-P1 colonies were viewed at 100x magnification on a CK40 Olympus microscope. Photographs were taken with a ColourView II camera and analySIS software.
Figure 5.9 Cytotoxic effect of FTY720 on mutant c-KIT FDC-P1 cells requires PP2A reactivation

A) FDC-P1 D816V c-KIT cells were plated in FTY720 (2.5 μM), okadaic acid (0.25 nM) or FTY720 (2.5 μM) plus okadaic acid (0.25 nM). B) FDC-P1 V560G and D816V c-KIT cells were plated in methylcellulose without or with FTY720 or FTY720-P (2.5 μM) Colonies were counted after 7 days. Data is presented as percentage of untreated controls for each cell line. Columns, mean of three independent experiments performed in triplicate; bars, SEM. *p<0.05, **p<0.01, Student’s t-test compared to FTY720-treated for each cell line.
5.2.7 Reactivation of PP2A dephosphorylates c-KIT in FDC-P1 cells

c-KIT activity is regulated by tyrosine phosphorylation (Ashman 1999). Inhibition of c-KIT phosphorylation inactivates the receptor, and hence attenuates the activation of downstream signalling pathways (Linnekin 1999). To determine if PP2A reactivation affects c-KIT phosphorylation, c-KIT was immunoprecipitated from FDC-P1 cells treated without or with FTY720 (2.5 μM; 6, 12 and 24 hours). Total c-KIT was present as two bands with an apparent molecular weight of 145 and 160 kDa, corresponding to non-glycosylated and glycosylated forms, respectively (Koshimizu et al. 1994).

FTY720-induced reactivation of PP2A in both FDC-P1 mutant c-KIT cell lines caused a significant reduction of c-KIT tyrosine phosphorylation at 6 hours (Figure 5.10). In contrast, phosphorylation of the WT c-KIT receptor remained stable at 24 hours, consistent with these cells being less responsive to FTY720 (Figure 5.10). These results suggest that PP2A inhibition is required for sustained c-KIT phosphorylation, and that enhanced activation of PP2A results in c-KIT dephosphorylation.

5.3 Discussion

These findings show for the first time that inhibition of PP2A is required for c-KIT-mediated tumourigenesis. Constitutive activation of c-KIT via the JMD mutation (V560G) or the kinase domain mutation (D816V) inhibits the activity of the tumour suppressor PP2A (Table 5.1). The mechanism of PP2A inhibition is associated with decreased expression of the PP2A structural and regulatory subunits (Figure 5.2). Furthermore, the data indicates that reactivation of PP2A specifically reduces the growth and survival of both imatinib sensitive and -resistant oncogenic c-KIT cells. Thus specific activation of PP2A could provide a unique target for therapeutic intervention in both haematological and solid malignancies expressing mutant c-KIT such as CBF-AML, systemic mastocytosis, GIST, testicular seminoma and melanoma. PP2A inhibition is also crucial for BCR/ABL-mediated leukaemogenesis (Neviani et al. 2005) (Chapter 3). Taken together, these results suggest that inactivation of PP2A may be a general mechanism employed by oncogenic tyrosine kinases to induce a tumourigenic phenotype.
Figure 5.10 Reactivation of PP2A dephosphorylates c-KIT
A) c-KIT was immunoprecipitated from FDC-P1 cells treated without or with FTY720 (2.5 μM; 6, 12 and 24 hours). Levels of tyrosine phosphorylated (pY) and total c-KIT were determined by immunoblotting with a pY and human c-KIT antibody. Blot is a representative of three independent experiments. B) Quantitation of pY c-KIT / total c-KIT levels at each time point relative to untreated controls for each cell line. Points, mean of three independent experiments; bars, SEM. NB. Both the V560G and D816V c-KIT cells are significantly reduced (p<0.05, Student’s t-test) compared to WT c-KIT cells at the 6 hour and 12 hour time points, and the D816V cells are significantly reduced (p<0.05) compared to WT c-KIT at the 24 hour point.
Chapter 5 – PP2A is regulated by oncogenic c-KIT

Using the pharmacological agent, FTY720, impaired PP2A activity can be restored in myeloid cells expressing mutant c-KIT receptors (Figure 5.4). Importantly, this induces c-KIT dephosphorylation on both imatinib sensitive (V560G) and –resistant (D816V) activating c-KIT mutants (Figure 5.10). The mechanisms underlying this are unclear. As PP2A is a serine/threonine phosphatase, dephosphorylation of c-KIT most likely involves the recruitment of additional proteins that act directly on the receptor. One particular candidate is the tyrosine phosphatase SHP-1, a known negative regulator of c-KIT (Kozlowski et al. 1998, Paulson et al. 1996). The ubiquitin-dependent degradation of SHP-1 contributes to the transforming potential of the mouse D814Y c-KIT mutant (human homolog of D816) in mast cells (Piao et al. 1996). Furthermore, PP2A has been shown to associate with, and activate SHP-1 in FTY720-treated BCR/ABL+ myeloid cells, which leads to dephosphorylation and degradation of the oncoprotein (Neviani et al. 2005). Thus, restoration of PP2A function by FTY720 may impair the oncogenic potential of mutant c-KIT cells through the activation of SHP-1 and subsequent dephosphorylation of the c-KIT receptor.

Consistent with the inhibition of oncogenic c-KIT, reactivation of PP2A significantly reduced the proliferation (Table 5.2), induced apoptosis (Figure 5.5 and 5.6) and suppressed the clonogenic potential of cells expressing V560G or D816V mutant c-KIT (Figure 5.7 and 5.8). Importantly, at the same concentration of FTY720, these effects were not observed in GM-CSF dependent FDC-P1 EV cells or WT c-KIT cells grown in SCF. This highlights that the growth inhibition observed with FTY720 treatment is dependent on the functional status of PP2A, whereby cells expressing activating c-KIT mutations are more sensitive due to impaired PP2A activity. The increased sensitivity of c-KIT mutants compared to WT c-KIT suggests that FTY720 could target malignant cells at low doses without disrupting normal SCF/c-KIT signalling.

FTY720 is a water-soluble, non-toxic drug with high oral bioavailability that is structurally similar to sphingosine and is currently being evaluated as an immunomodulator in phase III trials for multiple sclerosis patients (Brown et al. 2007, Takabe et al. 2008). FTY720 is phosphorylated by SphK2 and FTY720-P binds to S1PR, which induces internalisation and downregulation of the receptor (Matloubian et al. 2004). This traps lymphocytes within secondary lymphoid tissues and is important for its immunomodulatory role (Brinkmann et al. 2002). In addition, FTY720 directly
activates purified PP2A dimers and heterotrimeres in vitro (Matsuoka et al. 2003), and is effective against preclinical models of Ph1 CML/ALL (Neviani et al. 2007) and B-CLL (Liu et al. 2008).

The precise mechanism by which FTY720 enhances PP2A activity remains undefined. It is possible that at high doses FTY720 acts as an intracellular second messenger similar to sphingosine and ceramide, which both induce apoptosis independent of S1PR signalling (Ogretmen & Hannun 2004, Suzuki et al. 2004). Recent evidence has shown that direct binding of ceramide to SET restrains the inhibitory effect on PP2A to result in increased PP2A activity (Mukhopadhyay et al. 2009). A likely scenario is that FTY720 mimics the actions of ceramide and activates PP2A by removing the endogenous inhibition normally exerted by the SET protein. In addition, ceramide promotes the translocation of PP2A B56α to the mitochondrial membrane where it dephosphorylates the anti-apoptotic protein, Bcl-2, and enhances cell death (Ruvolo et al. 2002, Ruvolo et al. 1999). Interestingly, oncogenic c-KIT cells showed reduced levels of B56α (Figure 5.2). Therefore, it is possible that FTY720 may induce apoptosis by enhancing the expression and formation of PP2A-B56α complexes which direct the enzyme towards Bcl-2.

In agreement with the mechanism whereby FTY720 induces apoptosis of BCR/ABL+ cells independently of S1PR signalling (Neviani et al. 2007), the present data also demonstrates that PP2A reactivation does not require FTY720 phosphorylation (Figure 5.4). Furthermore, the cytotoxic effects exerted by FTY720 are specifically mediated by the reactivation of PP2A, as inhibition of FTY720-induced PP2A activation by okadaic acid restores the clonogenic potential of FDC-P1 D816V mutant c-KIT cells (Figure 5.9A). Similar results were observed with FTY720-P, which had no effect on the proliferation (Table 5.2) or survival of myeloid cells expressing oncogenic c-KIT (Figure 5.9B), indicating that PP2A activation is not mediated via S1PR signalling. Consistent with these observations, two chiral analogues of FTY720, AAL151 and AAL149, both induce apoptosis in vitro at the same micromolar concentration, but only AAL151 targets and inactivates S1PR at low nanomolar concentrations in vivo (Brinkmann et al. 2002, Brinkmann et al. 2001).
Incubation with a chemically distinct PP2A activator, forskolin, also impaired mutant c-KIT growth (Table 5.2). Forskolin has traditionally been used as a tool to assess the effects of adenylate cyclase activation; however it was more recently found to activate PP2A (Feschenko et al. 2002). PP2A activation by forskolin is independent of cAMP induction, as 1,9-dideoxyforskolin, an analogue that does not affect cAMP levels, also activates PP2A (Neviani et al. 2005). The hypersensitivity of mutant c-KIT FDC-P1 cells to two distinct PP2A activators strongly indicates that reactivation of PP2A is the essential mechanism of action underlying the observed cytotoxic effects.

Interestingly, the ability of FTY720 to inhibit oncogenic c-KIT cell growth may be influenced by the particular type of c-KIT mutation that is expressed. Overall, cells expressing the aggressive D816V c-KIT mutant displayed heightened sensitivity to FTY720. The mechanisms underlying this increased sensitivity are unclear; however, differences in activation of signalling pathways downstream of the JMD and kinase domain c-KIT mutants are a likely factor. For example, the 85 kDa regulatory subunit of PI3K is constitutively phosphorylated and associated with D816V c-KIT, which is important for its transforming potential (Table 1.3) (Chian et al. 2001). PP2A negatively regulates multiple components of important oncogenic pathways including PI3K (Yamada et al. 2001), and FTY720 inhibits these pathways through activation of PP2A (Liu et al. 2008, Neviani et al. 2007). Therefore, FTY720-induced PP2A activation in D816V c-KIT cells would simultaneously dephosphorylate c-KIT and inhibit downstream signals to result in reduced growth and survival.

A novel and important finding arising from this body of work is the functional link between oncogenic c-KIT activation and PP2A inhibition (Table 5.1). No study to date has investigated the importance of PP2A regulation in c-KIT-driven transformation. One recent report found that primary AML samples with a high-risk, complex karyotype had significantly reduced PP2A activity compared to those with the CBF-AML translocation t(8;21) (Gallay et al. 2009). Notably, the mutation status of c-KIT in these samples was not determined. Studies comparing the activity of PP2A in normal haematopoietic progenitors to CBF-AML samples are required to determine whether the inactivation of PP2A observed in the current FDC-P1 model translates into the clinic.
Regulation of PP2A activity and specificity is complex. Translation of the catalytic subunit is tightly controlled (Janssens & Goris 2001), and indeed, no changes in the total protein expression of PP2Ac in cells with or without c-KIT was found (Figure 5.2 and 5.3). However, expression of the structural and a number of regulatory PP2A subunits were decreased in the mutant c-KIT expressing FDC-P1 cells (Figure 5.2 and 5.3). RNAi knockdown of PP2A A in neuronal cells leads to the proteasomal degradation of B family subunits, with a concomitant loss of total PP2A activity (Strack et al. 2004). Furthermore, suppression of PP2A Aα or B56γ using shRNA induces tumourigenicity in the HEK-TER transformation model (Chen et al. 2004, Chen et al. 2005). Reduced expression of PP2A subunits has also been observed in human gliomas, breast cancers and B-CLL primary samples (Wlodarski et al. 2006, Suzuki & Takahashi 2006, Colella et al. 2001, Falt et al. 2005), as well as lung cancer cell lines (Chen et al. 2004). In addition, a dominant negative isoform of B56γ1 is associated with increased metastatic potential of the melanoma cell line, BL6 (Ito et al. 2000). In the present study, B56γ is reduced to undetectable levels in both of the mutant c-KIT FDC-P1 cell lines (Figure 5.2 and 5.3). Taken together, downregulation of the structural and regulatory subunits in cells expressing active c-KIT may be one mechanism which could contribute to reduced PP2A activity in these cells. It is interesting to note that although BCR/ABL and mutant c-KIT both inhibit PP2A activity, BCR/ABL appears to increase PP2A subunit expression, whilst the opposite effect is observed in mutant c-KIT cells. Given the fact that these two oncogenes activate similar downstream signalling pathways, one would hypothesise that they employ a similar mechanism of PP2A regulation. The reason for this apparent discrepancy is currently unknown, and warrants further investigation.

In summary, the data presented in this Chapter demonstrates for the first time that activating c-KIT receptors inhibit the tumour suppressor, PP2A (Figure 5.11A). Importantly, enhancing the activity of PP2A effectively suppresses the in vitro growth of imatinib-sensitive and –resistant oncogenic c-KIT cells (Figure 5.11B). This study, together with those related to the interplay between PP2A and BCR/ABL (Neviani et al. 2007) (Chapters 3 and 4), indicate that functional inactivation of PP2A may represent a key step in the induction and maintenance of leukaemias and, perhaps, other solid tumours characterised by the aberrant activation of oncogenic tyrosine kinases.
A) Mutant c-KIT

↓

PP2A

↓

Signalling pathways

↓

TUMOURIGENESIS

B) Mutant c-KIT

Reactivate PP2A

↑

e.g. FTY720

↓

PP2A

↑

Signalling pathways

↓

TUMOURIGENESIS
Figure 5.11 Regulation of PP2A by mutant c-KIT and reactivation with FTY720

A) Activating oncogenic c-KIT receptors in myeloid progenitors impair PP2A activity, which contributes to the tumourigenic phenotype. B) Reactivation of PP2A with FTY720 inactivates the oncogenic tyrosine kinase itself, and is predicted to inhibit downstream signalling pathways to reduce mutant c-KIT-driven tumour growth.
6.1 Introduction

Oncogenic mutations of the receptor tyrosine kinase c-KIT play an important role in the pathogenesis of several malignancies including CBF-AML, systemic mastocytosis and GIST. Whilst JMD mutations commonly detected in GIST are sensitive to imatinib (e.g. V560G), the kinase domain mutations frequently encountered in CBF-AML and systemic mastocytosis (e.g. D816V) are unresponsive to targeted inhibition (Frost et al. 2002). It is likely that successful treatment of c-KIT-driven cancers may require alternative strategies which simultaneously target c-KIT and its oncogenic signalling pathways via mechanisms different to those employed by traditional inhibitors. Using FDC-P1 mouse myeloid cells expressing imatinib-sensitive (V560G) or –resistant (D816V) mutant c-KIT, the findings from Chapter 5 demonstrate that inhibition of PP2A is required for c-KIT-mediated tumorigenesis. As such, enhancing the tumour suppressive activity of PP2A is an attractive therapeutic strategy for these malignancies.

Several studies have demonstrated the antiproliferative agents, forskolin and ceramide, both mediate cell death through the activation of PP2A (Dobrowsky et al. 1993, Feschenko et al. 2002, Hannun & Obeid 2002). More recently, enhanced activity of PP2A was discovered as an underlying mechanism by which the sphingosine analogue, FTY720, induces apoptosis of Jurkat cells (Matsuoka et al. 2003). Furthermore, FTY720 has demonstrated promising results against in vitro and in vivo models of imatinib-resistant Ph1 CML/ALL (Neviani et al. 2007) and B-CLL (Liu et al. 2008). Importantly, no cytotoxic effects were observed with long-term FTY720 treatment, highlighting its specificity for leukaemia cells. Results obtained from the present study indicate that the pharmacological reactivation of PP2A by FTY720 inhibits c-KIT-mediated growth and survival of myeloid progenitors, as demonstrated by reduced proliferation, enhanced apoptosis and impaired clonogenicity of FDC-P1 mutant c-KIT cells (Chapter 5). In addition, FTY720 also impairs the oncogenic activation of c-KIT itself. All together these results indicate that the reactivation of PP2A may be a novel treatment strategy for mutant c-KIT+ cancers. Thus this Chapter aimed to assess the...
preclinical efficacy of FTY720 in an *in vivo* model of V560G and D816V c-KIT tumour growth.

6.2 Results

6.2.1 Establishing an *in vivo* model for FDC-P1 c-KIT tumour growth

To evaluate the therapeutic potential of reactivating PP2A in oncogenic c-KIT cells, it was necessary to establish a mouse model for c-KIT+ tumour growth. FDC-P1 cells were originally isolated from DBA/2J mice (Dexter *et al.* 1980), and as such, this strain was used to develop a syngeneic model for the growth of tumours formed by FDC-P1 cells expressing either the V560G or D816V mutant c-KIT (Cullinane *et al.* 2005). Cells expressing WT c-KIT do not form tumours in mice and therefore could not be included as a negative control (Ferrao *et al.* 1997). A preliminary study was conducted to investigate the tumour kinetics and determine the optimal cell number required for tumour growth. The mice were randomised into groups of 4 that received s.c. injections of either 2.5 or 5 x 10^6 FDC-P1 cells on both flanks. Developing tumours were visibly inspected and palpated daily until day 18, when the volumes were accurately measured with callipers. At this point the tumours grew at a rapid rate, with most mice reaching the ~2100 mm^3 limit and being sacrificed by day 23. No differences were observed between the growth rate of tumours formed by 2.5 or 5 x 10^6 cells (Figure 6.1). For both cell lines, the take rate for the higher dose was 100%, whilst 3 out of 4 mice developed tumours in the lower group. Based on this observation, 5 x 10^6 cells/tumour site was chosen as an optimal cell number to inject. The body weight of the mice remained stable for the first 14 days, at which point a gradual increase correlated with tumour development (Figure 6.1).

6.2.2 Evaluating the toxicity of FTY720 in DBA/2J mice

Numerous preclinical models have demonstrated the safety of FTY720 treatment, with no adverse events being reported following long term administration up to 10 mg/Kg/day (Neviani *et al.* 2007, Liu *et al.* 2008). However, an initial toxicity study was required to determine the maximum tolerable dose for FTY720 in the DBA/2J strain. The mice were randomised into three groups of 4 with the first group receiving daily saline i.p. injections, whilst the other two groups were administered daily i.p. injections
Figure 6.1 Preliminary studies of FDC-P1 V560G and D816V c-KIT tumour growth
DBA/2J mice were randomised into groups of 4. FDC-P1 cells expressing V560G or
D816V c-KIT were s.c. inoculated into both flanks (2.5 or 5 x 10^6 cells/site). A) and B)
Tumour volume was determined by calliper measurement using the formula:
\[
\text{tumour volume} = 0.5 \times \text{length (mm)} \times \text{width}^2 \text{ (mm)}
\]. Points, mean tumour volume (mm^3) from 4 mice; bars, SEM. C) and D) Mice were weighed every second day to monitor for
toxic side effects. Points, mean body weight (g) from 4 mice; bars, SEM.
of 5 or 10 mg/Kg FTY720. An initial decline in animal weight after the first two FTY720 treatments was observed. However, this stabilised at day 5 of treatment, and the mice continued to gain weight until they were sacrificed at day 23 (Figure 6.2). No further signs of acute or delayed toxicity were noted. Haematological data revealed no difference in the number of red blood cells compared to saline controls. FTY720 (10 mg/Kg/day) resulted in significantly reduced white blood cell counts and splenic weight (Table 6.1). As FTY720 is an immunomodulator and induces reversible lymphopaenia in animal models and humans, this finding was expected (Pinschewer et al. 2000, Budde et al. 2002, Chiba et al. 1998, Skerjanec et al. 2005). No other toxic side effects were noted (Table 6.1). Based on these observations, 10 mg/Kg/day FTY720 was the dose chosen for the subsequent treatment studies.

6.2.3 FTY720 delays mutant c-KIT tumour growth

Next, the efficacy of FTY720 against established tumours expressing either the V560G or D816V mutant c-KIT was evaluated in the syngeneic mouse model. FDC-P1 cells (5 x 10^6) were s.c. injected into the left and right flanks of DBA/2J mice. Once the tumours reached ~200 mm^3 on day 5, the control mice received daily administration of saline [(i.p. or oral gavage (p.o.)). Mice bearing V560G c-KIT tumours received daily doses of FTY720 (10 mg/Kg) via i.p. injection, whilst two routes of administration were tested on mice harbouring D816V c-KIT tumours (i.p and p.o.). Imatinib treatment (50 mg/Kg/day p.o.) was also performed on a minimal number of mice as a positive control for this model.

Compared to saline-treated mice, the growth of V560G c-KIT tumours was marginally suppressed by FTY720 (Figure 6.3). Consistent with in vitro results (Chapter 5), administration of FTY720 significantly delayed the growth of tumours expressing D816V c-KIT (Figure 6.3). This effect was observed up to 23 days post-tumour injection. No significant difference was seen between i.p. and oral dosing of FTY720 against D816V c-KIT mutant tumours (Figure 6.3). As expected, imatinib was extremely effective at suppressing the growth of V560G c-KIT tumours, but had no effect on tumours harbouring the D816V mutant (Figure 6.4).
Mice were randomised into groups of 4 that received daily i.p. injections of either saline, 5 or 10 mg/Kg/day FTY720. Body weights were monitored every second day. Points, mean body weight (g) from 4 mice; bars, SEM.

Table 6.1 Toxicity data for FTY720 treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Spleen (mg)</th>
<th>Liver (mg)</th>
<th>Kidney (mg)</th>
<th>RBC (x10^12/dL)</th>
<th>WBC (x10^8/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline</td>
<td>89 ± 8</td>
<td>1135 ± 48</td>
<td>269 ± 5</td>
<td>1.3 ± 0.02</td>
<td>5.2 ± 1.2</td>
</tr>
<tr>
<td>5 mg/Kg FTY720</td>
<td>73 ± 4</td>
<td>1035 ± 61</td>
<td>250 ± 15</td>
<td>1.2 ± 0.05</td>
<td>3.0 ± 0.2</td>
</tr>
<tr>
<td>10 mg/Kg FTY720</td>
<td>56 ± 7*</td>
<td>1040 ± 20</td>
<td>243 ± 7</td>
<td>1.3 ± 0.03</td>
<td>1.9 ± 0.3*</td>
</tr>
</tbody>
</table>

1On day 23 all mice were sacrificed. The organs were weighed and the red and white blood cells (RBC/WBC) were counted. Data is presented as mean ± SEM, n=4. *p<0.05, Student’s t-test compared to saline-treated.
Figure 6.3 FTY720 delays mutant c-KIT tumour growth

FDC-P1 cells expressing A) V560G or B) and C) D816V c-KIT were s.c. inoculated into both flanks of DBA/2J mice (5 x 10^6 cells/site). Treatment started day 5 post-tumour injection with daily administration (i.p. or p.o.) of either saline or 10 mg/Kg FTY720 (arrows). Relative tumour volume was calculated by dividing the tumour volume on any given day by the tumour volume at start of treatment (day 5). Points, mean of individual mice; bars, SEM. *p<0.05, **p<0.01, Student’s t-test compared to saline-treated.
Figure 6.4 Effect of imatinib on mutant c-KIT tumour growth
FDC-P1 cells expressing A) V560G or B) D816V c-KIT were s.c. inoculated into both flanks of DBA/2J mice (5 x 10^6 cells/site). Treatment started day 5 post-tumour injection with daily p.o. administration of saline or 50 mg/Kg imatinib (arrows). Relative tumour volume was calculated by dividing the tumour volume on any given day by the tumour volume at start of treatment (day 5). Points, mean of individual mice; bars, SEM. **p<0.01, Student’s t-test compared to saline-treated.
It was noted that tumours expressing the D816V *c-KIT* mutation grew at a faster rate than those harbouring V560G *c-KIT*. As the kinase domain mutation elicits stronger receptor activation (Mol *et al.* 2003) and demonstrates a more transformed phenotype compared to the JMD mutation, this result was not surprising (Lam *et al.* 1999).

6.2.4 FTY720 improves the survival of mice bearing mutant *c-KIT* tumours

When the total tumour volume exceeded ~2100 mm3, the mice were sacrificed. The estimated probabilities for survival were calculated using the Kaplan-Meier method, and the log-rank test was used to determine the differences among survival distributions. For mice harbouring V560G *c-KIT* tumours, the median survival for FTY720-treated mice was 24 days, a modest increase from 21 days for saline-treated mice (Figure 6.5). Similarly, for tumours expressing D816V *c-KIT*, FTY720 significantly prolonged the survival of mice from 18 to 22 days (Figure 6.5). Consistent with the tumour growth data, all mice bearing V560G *c-KIT* tumours and receiving imatinib were still alive up until day 40. In contrast, the survival curve for mice harbouring D816V *c-KIT* tumours resembled saline-treated controls (Figure 6.6). This highlights the effectiveness of FTY720 compared to imatinib for the treatment of D816V *c-KIT* malignancies.

6.2.5 FTY720 prevents the infiltration of D816V *c-KIT* cells into secondary organs

At day 14, a subset of mice from each group were sacrificed, with the tumours evaluated and weighed. Compared to saline-treated mice, FTY720 significantly reduced the tumour mass in both the V560G *c-KIT* and D816V *c-KIT* groups (Figure 6.7). Accordingly, an increase in TUNEL staining, which detects cells undergoing apoptosis, was observed in tumours treated with FTY720 compared to saline-treated controls (Figure 6.8 and 6.9).

The D816V *c-KIT* tumours grew at a faster rate than those expressing V560G *c-KIT* (Figure 6.3). Consistent with this observation, saline-treated mice from the D816V *c-KIT* group developed splenomegaly by day 14, as indicated by an increase in splenic weight compared to age-matched controls (Figure 6.10). Importantly, the spleen size of
Figure 6.5 FTY720 improves the survival of mice bearing mutant c-KIT tumours
FDC-P1 cells expressing A) V560G or B) and C) D816V c-KIT were s.c. inoculated into both flanks of DBA/2J mice (5 x 10^6 cells/site). Treatment started day 5 post-tumour injection with daily administration (i.p. or p.o.) of either saline or 10 mg/Kg FTY720. The estimated probabilities for survival were calculated using the Kaplan-Meier method, and the log-rank test was used to determine the differences among survival distributions.
Figure 6.6 Effect of imatinib on the survival of mice bearing mutant c-KIT tumours
FDC-P1 cells expressing A) V560G or B) D816V c-KIT were s.c. inoculated into both flanks of DBA/2J mice (5 x 10⁶ cells/site). Treatment started day 5 post-tumour injection with daily p.o. administration of saline or 50 mg/Kg FTY720. The estimated probabilities for survival were calculated using the Kaplan-Meier method, and the log-rank test was used to determine the differences among survival distributions.
Figure 6.7 FTY720 reduces mutant c-KIT tumour burden at day 14
FDC-P1 cells expressing A) V560G or B) and C) D816V c-KIT were s.c. inoculated into both flanks of DBA/2J mice (5 x 10^6 cells/site). Treatment started day 5 post-tumour injection with daily administration (i.p. or p.o.) of either saline or 10 mg/Kg FTY720. At day 14, a subset of mice were sacrificed and the tumour mass was recorded. Columns, mean tumour weight (mg); bars, SEM. *p<0.05, n=6; **p<0.01, n=12, Student’s t-test FTY720-treated compared to saline.
Figure 6.8 FTY720 induces apoptosis in FDC-P1 V560G c-KIT tumours at day 14
Apoptotic death within FDC-P1 V560G c-KIT tumour tissue harvested at day 14 from saline and FTY720 (10/mg/Kg/day)-
treated mice was assessed by TUNEL staining detected by FITC. Images were acquired at 400x magnification on DAPI (blue)
and FITC (green) channels with an Axioplan 2 imaging system and merged with Axio Vision v4.7 software.
Figure 6.9 FTY720 induces apoptosis in FDC-P1 D816V c-KIT tumours at day 14
Apoptotic death within FDC-P1 D816V c-KIT tumour tissue harvested at day 14 from saline and FTY720 (10/mg/Kg/day)-treated mice was assessed by TUNEL staining as detected by FITC. Images were acquired at 400x magnification on DAPI (blue) and FITC (green) channels with an Axioplan 2 imaging system and merged with Axio Vision v4.7 software.
Figure 6.10 FTY720 reduces the splenic weight of mice bearing FDC-P1 D816V c-KIT tumours

FDC-P1 cells expressing D816V c-KIT were s.c. inoculated into both flanks of DBA/2J mice (5 x 10^6 cells/site). Treatment started day 5 post-tumour injection with daily administration of saline and 10 mg/Kg FTY720 either A) i.p. or B) oral. At day 14, a subset of mice were sacrificed and the spleen mass was recorded. Columns, mean spleen weight (mg); bars, SEM. *p<0.05, **p<0.01, Student’s t-test. Age-matched, n=17; saline i.p., n=6; FTY720 i.p., n=6; saline p.o., n=3; FTY720 p.o., n=3.
FTY720-treated mice was significantly lower than saline-treated controls (Figure 6.10). Immunohistochemical staining confirmed the extensive infiltration of c-KIT$^+$ tumour cells from the primary site of s.c. injection into the spleen, with a disruption of splenic architecture and intense c-KIT positive staining observed in saline-treated mice only (Figure 6.11). Importantly, the histopathology of FTY720-treated mice resembled that of age-matched controls and the presence of c-KIT$^+$ cells was almost non-detectable (Figure 6.11). Similar results were observed in the bone marrow, indicating that FTY720 treatment delays the migration of D816V c-KIT tumour cells into secondary lymphoid organs (Figure 6.12). It should be noted that no splenomegaly (Figure 6.13) or c-KIT positive staining was observed at day 14 in mice injected with V560G c-KIT cells (Figure 6.14).
Figure 6.11 FTY720 prevents the infiltration of FDC-P1 D816V c-KIT cells into the spleen

Immunohistochemical staining for human c-KIT was carried out on 4 μm tissue sections from formalin-fixed, paraffin-embedded spleens harvested at day 14. Positive staining was detected using DAB (red) as the chromogen. Sections were evaluated under 100x or 400x magnification on an inverted light microscope and pictures were taken with a ColorView II camera and analySIS software.
Figure 6.12 FTY720 prevents the infiltration of FDC-P1 D816V c-KIT cells into the bone marrow
Immunohistochemical staining for human c-KIT was carried out on 4 μm sections from formalin-fixed, paraffin-embedded bone marrow harvested at day 14. Positive staining was detected using DAB (red) as the chromogen. Sections were evaluated under 200x or 400x magnification on an inverted light microscope and pictures were taken with a ColorView II camera and analySIS software.
Figure 6.13 Mice bearing V560G c-KIT tumours do not develop splenomegaly

A) FDC-P1 cells expressing V560G were s.c. inoculated into both flanks of DBA/2J mice (5 x 10^6 cells/site). Treatment started day 5 post-tumour injection with daily i.p. injections of saline or 10 mg/Kg FTY720. At day 14, a subset of mice were sacrificed and the spleen mass was recorded. Columns, mean spleen weight (mg); bars, SEM. Age-matched, n=17; saline i.p., n=3; FTY720 i.p., n=3.
Figure 6.14 Absence of V560G c-KIT cells in the spleen

Immunohistochemical staining for human c-KIT was carried out on 4 mm sections from formalin-fixed, paraffin-embedded spleen harvested at day 14. Positive staining was detected using DAB (red) as the chromogen. Sections were evaluated under 100x or 400x magnification on an inverted light microscope and pictures were taken with a ColorView II camera and analySIS software.
6.3 Discussion

Given the lack of effective treatments available for c-KIT⁺ patients who are unresponsive to current tyrosine kinase inhibitors, it is important to explore the possibility of whether molecules that have been developed for other diseases might serve to inhibit drug-resistant c-KIT⁺ malignancies. The identification of leads among compounds that are already being tested in the clinic may expedite the development of therapeutic strategies for overcoming resistance. The fact that FTY720 demonstrates a favourable safety profile in humans (Budde et al. 2002, Skerjanec et al. 2005, Kovarik et al. 2004b, Tedesco-Silva et al. 2005) and is effective against oncogenic c-KIT⁺ cells in vitro (Chapter 5), warranted further investigation of this compound as an alternative therapeutic strategy for c-KIT⁺ cancers.

The results presented in this Chapter provide evidence that tumours harbouring oncogenic c-KIT mutations are sensitive to FTY720 treatment. Daily administration of FTY720 significantly delayed the growth of c-KIT⁺ tumours via induction of apoptosis at the cellular level (Figure 6.3, 6.8 and 6.9). The observed reduction in tumour mass resulted in prolonged survival of FTY720-treated mice compared to saline-treated controls (Figure 6.5). Furthermore, FTY720 prevented the infiltration of FDC-P1 D816V c-KIT tumour cells into secondary lymphoid organs such as the spleen and bone marrow (Figure 6.11 and 6.12).

FTY720 is considered promising for the treatment of multiple sclerosis (Kappos et al. 2006, O'Connor et al. 2009). Two phase III trials are currently being conducted, with recent reports showing obvious benefits for patients receiving FTY720 over the standard of care (Cohen et al. 2009). Importantly, FTY720 is non-toxic and demonstrates an excellent tolerability profile in humans. Consistent with its role as an immunomodulator, FTY720 transiently reduces peripheral lymphocytes, with numbers generally returning to normal levels four weeks after the cessation of treatment (Budde et al. 2002, Skerjanec et al. 2005, Tedesco-Silva et al. 2005, Kovarik et al. 2004a). Indeed these effects were confirmed in the present study, with a dose-dependent decrease in white blood cell numbers observed with daily administration of FTY720 in DBA/2J mice (Table 6.1).
High micromolar concentrations of FTY720 have been shown to effectively inhibit the growth of several haematological malignancies including promyelocytic leukaemia (Shinomiya et al. 1997), T-cell leukaemia (Nagahara et al. 2000) and multiple myeloma (Yasui et al. 2005). More recently FTY720 has demonstrated remarkable therapeutic efficacy against in vivo models of Ph1 CML/ALL and B-CLL (Liu et al. 2008, Neviani et al. 2007). It has also proven beneficial against solid tumours including breast (Azuma et al. 2002), prostate (Chua et al. 2005, Permpongkosol et al. 2002), glioma (Sonoda et al. 2001) and hepatocellular carcinoma (Hung et al. 2008, Lee et al. 2004); although the exact mechanisms by which FTY720 delays solid tumour growth have not been fully defined. Whilst FTY720 induces apoptosis in these models with an ID₅₀ ranging between 5–18 μM, its inhibitory effects against oncogenic c-KIT kinase activity occurs at a lower concentration (2.5 μM) (Table 5.2). The heightened sensitivity of mutant c-KIT tumours to FTY720 highlights the potential of targeting malignant cells at doses that do not impair the viability of normal haematopoietic function (Kahan 2004).

To date, no studies have reported the specific administration of FTY720 to DBA/2J mice. Therefore a preliminary study was conducted to evaluate the toxicity and determine the maximum tolerable dose of FTY720 in this model. The dosing schedule was based on prior reports indicating that short-term (20-35 days) administration of 10 mg/Kg/day FTY720 i.p. severely impacts tumour growth without causing toxicity (Lee et al. 2004, Azuma et al. 2002). Furthermore, long-term treatment (>100 days) at doses up to 10mg/Kg/day does not affect haematopoietic or non-haematopoietic tissue function (Kim et al. 2003, Liu et al. 2008, Neviani et al. 2007). In contrast, the administration of higher doses (15-20 mg/Kg/day) to rodents for 4 to 6 months is lethal, with the major cause of death resulting from pulmonary smooth muscle hypertrophy/hyperplasia with bronchoconstriction (Kahan 2004).

Whilst a majority of the preclinical studies administer FTY720 via i.p. injection, oral administration is the primary route in humans. Clinical trials investigating the pharmacokinetics of daily FTY720 dosing report several unique properties. Firstly, FTY720 exhibits a prolonged absorption phase, which can be explained by its ability to be absorbed over the whole length of the gastrointestinal tract (Budde et al. 2002). In addition, FTY720 has a long elimination half-life, and as a result, minimal fluctuations of plasma concentration are detected over the dosing interval period. This observation
justifies the daily administration of FTY720 in the current DBA/2J model (Budde et al. 2002, Kovarik et al. 2004a). All together, the pharmacokinetic profile of FTY720 confers high bioavailability between 60 to 90%, with maximal plasma concentrations attained within 12 to 24 hours and a steady state reached in 4 weeks (Skerjanec et al. 2005, Kahan et al. 2003). To more closely resemble the clinical setting and allow a direct comparison between two different routes of FTY720 administration, both i.p. injection and oral gavage were included in this study. It should be noted that although the oral administration appears to be more effective against the D816V c-KIT tumours (Figure 6.3), this is actually due to initial differences in tumour kinetics between the saline-treated groups, where orally-treated mice showed a faster growth rate compared to the i.p injected group. Accordingly, no improvement in survival between the two routes of FTY720 administration was observed (Figure 6.5).

A recent clinical study has shown that oral administration of FTY720 results in enhanced lymphopaenia compared with intravenous injection (Kovarik et al. 2007). Given that FTY720-P is responsible for retarding lymphocyte mobilisation, these findings suggest that a proportion of FTY720 is phosphorylated in the liver, where there is an abundance of SphK2 (Liu et al. 2000). Consequently, the potent depletion of lymphocytes observed with oral dosing is most likely due to increased plasma levels of the active FTY720-P. In the current study, no appreciable difference in mutant c-KIT tumour growth was observed between the i.p. and oral dosing regimens of FTY720 (Figure 6.3 and 6.5). This provides supporting evidence that the non-phosphorylated version of FTY720 is responsible for the inhibitory effects observed on c-KIT+ tumour growth. As only the non-phosphorylated FTY720 activates PP2A, this strongly suggests that the observed reduction in tumour growth is due to PP2A reactivation rather than inhibition of S1PR signalling. Measurement of PP2A activity in the tumours is required to confirm this. It is also important to investigate the extent of c-KIT inhibition within the FTY720-treated tumours. Importantly, these results indicate that the oral administration of FTY720 is a valid dosing regime, as a similar proportion of unphosphorylated FTY720 must be reaching the target tumour cells to induce apoptosis.

It is widely accepted that D816V c-KIT tumours are completely unresponsive to imatinib treatment, and indeed the present data also confirms this (Figure 6.4 and 6.6). Dasatinib binds to the active confirmation of the c-KIT receptor and is effective against
D816V c-KIT$^+$ patient-derived mast cells in vitro (Shah et al. 2006). However, these results have not translated into the clinic, with limited efficacy observed in c-KIT$^+$ AML and systemic mastocytosis patients (Purtill et al. 2008, Rondoni et al. 2007, Verstovsek et al. 2008). While the precise mechanisms responsible for this observation are unclear, it is likely that concentrations which effectively inhibit D816V c-KIT activity in preclinical models are not therapeutically achievable in patients. To combat this issue of drug resistance, several small molecules have been developed and tested against D816V c-KIT. These include the FLT3 inhibitors midostaurin (Gotlib et al. 2005) and tandutinib (Corbin et al. 2004), and the novel c-KIT kinase inhibitors EXEL-0862 (Pan et al. 2007) and AP23464 (Corbin et al. 2005). In regards to the use of midostaurin (formerly PKC412), one case study reported a transient clinical response in a D816V c-KIT$^+$ mast cell leukaemia patient (Gotlib et al. 2005). Whilst a marked decrease in peripheral mast cells was observed, in a similar observation to phase II trials in FLT3$^+$ AML (Stone et al. 2005), there was minimal reduction in the burden of mast cells and leukaemic blasts within the bone marrow. These findings suggest that the bone marrow microenvironment may secrete unidentified factors which render the cells insensitive to midostaurin treatment (Gotlib et al. 2005). The quinazoline-based inhibitor tandutinib (formerly MLN518) (Corbin et al. 2004), and the novel kinase inhibitor EXEL-0862 (Pan et al. 2007), effectively inhibit the growth of D816V c-KIT cells in vitro; although their in vivo activity has not been investigated. Lastly, whilst studies examining the therapeutic potential of the c-KIT inhibitor AP23464 against tumours formed by the mouse mastocytoma cell line, P815, showed reduced c-KIT phosphorylation levels, no significant decrease in tumour size was recorded (Corbin et al. 2005).

Taken together, the development of small molecules which effectively bind to, and inhibit, kinase domain c-KIT mutants has proven extremely difficult. Thus, successful treatment of these cancers will most likely require alternate strategies that simultaneously target the oncogenic receptor as well as its downstream signalling cascades. The data presented in this Chapter strongly supports the hypothesis that FTY720-induced reactivation of PP2A is an effective therapeutic approach for the treatment of mutant c-KIT$^+$ patients who are unresponsive to current tyrosine kinase inhibitors. In addition, these findings identify a novel treatment strategy which may be effective against other cancers characterised by functional loss of PP2A activity.
CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

The ability to balance a complex network of signal transduction pathways is imperative for maintaining normal cellular homeostasis. A key mechanism governing signal activation is protein phosphorylation, which is controlled by the balanced activities of protein kinases and phosphatases. Genetic or regulatory alterations of specific tyrosine kinases can result in the aberrant activation of oncogenic pathways that induce cell growth and inhibit apoptosis, thus facilitating a tumourigenic phenotype. Indeed, numerous oncogenic tyrosine kinases have been implicated in the pathogenesis of human malignancies. A selection of these include BCR/ABL in CML (Ben-Neriah et al. 1986), c-KIT and FLT3 in AML (Mrozek et al. 2008, Meshinchi & Appelbaum 2009), and epidermal growth factor receptor (EGFR) in non-small-cell lung cancer (Hirsch et al. 2009).

The advent of targeted therapies for specific malignancies, such as imatinib for CML, resulted in a surge of optimism in the field of oncology. Despite the general positive response of chronic phase CML patients to imatinib treatment, a small proportion are unresponsive to targeted inhibition (Druker et al. 2006). Furthermore, a serious problem that emerges with time is the development of resistance, which occurs primarily through the outgrowth of subclones bearing mutations in the target kinase that interfere with drug binding (Gorre et al. 2001, Shah & Sawyers 2003). Initially reported in CML, this mechanism is broadly applicable to other cancers, such as c-KIT in GIST (Antonescu et al. 2005). In addition, a range of mutations in FLT3 confer resistance to midostaurin (Weisberg et al. 2009), and certain mutations within the EGFR are unresponsive to gefitinib (Gazdar 2009). Second-generation compounds (e.g. dasatinib), are effective against some imatinib-resistant mutations; however, the issue of drug resistance continues to exist (Soverini et al. 2007). Furthermore, tyrosine kinase inhibitors described to date do not effectively kill the leukaemic stem cells (Copland et al. 2006, Graham et al. 2002, Jorgensen et al. 2007). Therefore, the investigation of signalling pathways regulated by oncogenic tyrosine kinases may identify novel treatment approaches directed against rational therapeutic targets. One promising candidate is the potential tumour suppressor, PP2A.
Using mouse myeloid progenitor cells, the results presented in Chapters 3 and 4 of this thesis highlight that PP2A is indeed regulated by active BCR/ABL. A detailed investigation of individual PP2A holoenzyme components showed, for the first time, increased expression and association of the structural and specific regulatory subunits in BCR/ABL+ myeloid progenitors. Mechanistically, an abundance of these subunits favours the assembly of PP2A holoenzymes containing B55α and B56α (Figure 7.1A), with simultaneous displacement of PP2A-B56γ complexes that normally exert negative regulation (Figure 7.1B). Whilst enhanced expression is not regulated at the mRNA level, the precise mechanisms governing these effects remain undefined. One possibility is that BCR/ABL inhibits the ubiquitin-mediated degradation of PP2A subunits and increases protein stability. To detect dysfunctional ubiquitin machinery, FDC-P1 cells treated with a proteasome inhibitor, such as MG132, would show enrichment of the polyubiquitinated PP2A subunit in the empty vector controls but not in the BCR/ABL+ cells. A further investigation could include the immunoprecipitation of ubiquitin-containing complexes and subsequent probing for the specific PP2A subunit of interest, which would be faint or undetectable in FDC-P1 cells expressing BCR/ABL.

Although the increased formation of PP2A complexes that potentiate oncogenic signalling (e.g. B55α and B56α) may explain how elevated subunit expression contributes to BCR/ABL-leukaemogenesis, it does not explain the observed reduction in PP2A activity. This could arise from technical considerations associated with the experimental protocol. The phosphatase assay measures free phosphate that is cleaved by isolated PP2Ac immunoprecipitates, and is indicative of global PP2A activity. As the regulatory subunit plays a key role in determining PP2A activation, one improvement of this assay would be to isolate the individual B subunits from the FDC-P1 cell lines, and determine the associated PP2A activity. Another experiment could be to isolate specific PP2A heterotrimers from BCR/ABL+ cells and assess the in vitro dephosphorylation of known PP2A substrates such as Ras, β-catenin and p53. In addition to directing substrate specificity, the B subunit also targets the PP2A holoenzyme to distinct locations within the cell. Using immunofluorescence staining to assess differences in subcellular distribution of specific complexes may further define the underlying mechanisms by which PP2A function is perturbed in BCR/ABL+ myeloid progenitors.
To investigate which subunits are functionally important for BCR/ABL-mediated leukaemogenesis, individual PP2A regulatory subunits were targeted with shRNA sequences in FDC-P1 WT BCR/ABL cells, and the loss-of-function phenotype was examined. These studies identified B56α as a key PP2A subunit that contributes to BCR/ABL+ leukaemia growth. This was demonstrated by the fact that downregulation of B56α not only restored PP2A activity, but significantly inhibited cellular proliferation, and reduced the clonogenic potential of BCR/ABL+ cells. Future studies examining the tumour growth rate of shB56α WT BCR/ABL FDC-P1 cells compared to empty vector controls in an *in vivo* model will further highlight the importance of B56α in facilitating the leukaemic phenotype. Preliminary observations based on cellular morphology indicate that knockdown of B56α may also induce partial differentiation, although this requires confirmation by analysis of lineage-specific markers and ruling out the induction of apoptosis. A characteristic feature of CML-BC is the expansion of myeloid or lymphoid precursors that facilitate the rapidly fatal blast crisis phenotype, and are also insensitive to tyrosine kinase inhibition (Copland *et al.* 2006, Graham *et al.* 2002, Jorgensen *et al.* 2007). The potential to partially reverse this phenotype via PP2A manipulation, specifically by downregulation of B56α, represents an exciting and novel finding.

A notable consequence of enhanced B56α association in the FDC-P1 cells expressing BCR/ABL may be the displacement of B56γ from the core PP2A dimer. Several lines of evidence support the involvement of B56γ in mediating the tumour suppressive function of PP2A in mammalian cells (Westermarck & Hahn 2008). Overexpression of this subunit in the FDC-P1 BCR/ABL myeloid progenitors will elucidate whether depletion of PP2A-B56γ complexes contributes to the leukaemic phenotype in these cells. Furthermore, in the shB56α WT BCR/ABL FDC-P1 cells, a reasonable prediction is that the restoration of PP2A activity is a reflection of increased B56γ binding and function. Future studies aimed at isolating the catalytic subunit from these cells and determining the proportion of bound regulatory subunits will confirm whether suppression of B56α leads to enhanced formation of PP2A complexes containing B56γ.

Interestingly, the knockdown of PP2A B56δ in FDC-P1 WT BCR/ABL cells was associated with an increased proportion of cells which appeared to be undergoing mitotic delay. Another striking observation was the presence of large, irregular shaped
cells containing multiple nuclei, which indicates defective cytokinesis. Although speculative at the moment, these findings suggest that B56δ may be an important regulator of the cell cycle in BCR/ABL + myeloid progenitors (Figure 7.1C). Recent evidence demonstrates a specific role for B56δ in controlling the entry into and exit from mitosis (Forester et al. 2007, Margolis et al. 2006). A detailed analysis of the downstream molecules targeted by PP2A B56δ will not only shed light on the importance of this enzyme in cell cycle regulation, but will also determine its relevance in the pathogenesis of BCR/ABL + CML. It is predicted that continued DNA synthesis without cytokinesis would have catastrophic effects on cell survival (Gizatullin et al. 2006, Harrington et al. 2004). Whether or not the polyploid cells in the shB56δ WT BCR/ABL FDC-P1 population eventually undergo apoptosis remains unknown, and would be an interesting avenue of future investigation. Of note, the morphological changes observed in these cells resemble the phenotype previously reported for Aurora kinase inhibition in colon and pancreatic cancer (Harrington et al. 2004). This suggests that targeting individual PP2A subunits is a valid approach for the development of novel CML therapies.

Collectively, the results presented in Chapters 3 and 4 provide new insight into the biology of PP2A, and begin to uncover the precise mechanisms by which BCR/ABL induces transformation via PP2A in myeloid cell lines. An important next step would be to investigate the molecular regulation of PP2A in CML patient samples. Interestingly, preliminary analysis of CD34+ progenitors isolated from patients who have responded favourably to imatinib, show a dose-dependent reduction of PP2Ac-pY307 upon exposure to imatinib in culture. In contrast, imatinib-resistant CD34+ blasts show considerably higher levels of PP2Ac-pY307 with imatinib treatment up to 5 μM (Appendix Figure 1). Since increased phosphorylation transiently inactivates the PP2A enzyme (Chen et al. 2004), this preliminary data supports the findings that inhibition of BCR/ABL reactivates PP2A in imatinib-sensitive cells only.

In addition to CD34+ CML-BC myeloid progenitors, PP2A inhibition has also been demonstrated in Ph+ ALL patient samples. Importantly, reactivation of PP2A with FTY720 impairs the growth of these cells in vitro (Neviani et al. 2007). From a clinical perspective, de novo Ph+ ALL resembles CML lymphoid blast crisis, and generally presents as a more aggressive disease that responds poorly to tyrosine kinase inhibition.
MAPK

β-catenin

BCR/ABL

p53 Akt

β-catenin

p53

CML-BC

B55α, B56α

Aurora Kinases

Proliferation?
Differentiation?

Cell Cycle?
Figure 7.1 Proposed model of PP2A regulation by BCR/ABL in myeloid progenitors

BCR/ABL alters PP2A function through a variety of mechanisms (Chapters 3 and 4).

A) BCR/ABL enhances the formation of PP2A complexes containing B55α, which may induce the activation of certain pathways such as MAPK and Wnt/β-catenin. In addition, an abundance of PP2A holoenzymes containing B56α could inhibit p53. Together these effects appear to contribute to enhanced proliferation and impaired differentiation of myeloid cells. Functional studies with knockdown of B56α identify this subunit as a key player in BCR/ABL-mediated leukaemogenesis.

B) The simultaneous displacement of PP2A B56γ from the core AC dimer in BCR/ABL+ cells may also result in aberrant regulation of Akt, β-catenin and p53.

C) PP2A B56δ appears to be important for cell cycle regulation BCR/ABL+ cells, with a potential target being Aurora kinases.
Administration of dasatinib typically induces significant haematological and cytogenetic responses that are rapidly lost despite persistent treatment, suggesting that additional aberrations downstream from the kinase contribute to the more aggressive phenotype and to the reduced therapeutic response (Mullighan et al. 2008). Furthermore, the underlying mechanisms governing the development of lymphoid, as opposed to myeloid blast crisis are poorly understood. Given that PP2A is functionally inactivated in Ph\(^1\) ALL (Neviani et al. 2007), it would be interesting to investigate its regulation by BCR/ABL in lymphoid cell lines.

In this body of work, the regulation of PP2A was also extended to another oncogenic tyrosine kinase, c-KIT. The data presented in Chapter 5 demonstrates for the first time that constitutively active c-KIT receptors (V560G and D816V) inhibit the activity of PP2A in myeloid progenitors, and this contributes to the tumourigenic phenotype (Figure 7.2A). Activating mutations in c-KIT are associated with a variety of cancers, including GISTs, AML, testicular seminomas and melanoma. Thus these novel findings may have wide applicability to a range of human malignancies. An important follow up would be to investigate the activation status of PP2A in primary mutant c-KIT\(^+\) patient samples.

In contrast to BCR/ABL, oncogenic c-KIT cells displayed reduced expression of the PP2A structural and several regulatory subunits (B55\(\alpha\), B56\(\alpha\), B56\(\gamma\) and B56\(\delta\)) (Figure 7.2A). Subsequent investigations in our laboratory indicate that these changes are not regulated at the transcriptional level (A.M. Smith, N.M. Verrills, personal communication); thus the precise mechanisms governing this effect remain to be determined. Overexpressing the individual PP2A subunits in oncogenic c-KIT cells and determining the functional effects on cell growth will further define their importance in c-KIT-mediated tumourigenesis. Indeed, preliminary studies in our laboratory have shown that overexpression of the PP2A A subunit in D816V c-KIT FDC-P1 cells inhibits factor-independent growth (N.M. Verrills, personal communication). In support of the current findings, previous reports on human glioma, breast cancer and B-CLL primary samples also suggest that depletion of PP2A components contributes to tumourigenic transformation (Wlodarski et al. 2006, Suzuki & Takahashi 2006, Colella et al. 2001, Falt et al. 2005). Furthermore, somatic alterations of the gene encoding PP2A A\(\beta\) (PPP2R1B) have been detected in up to 15% of colon, lung and breast cancers.

Importantly, reactivation of PP2A with FTY720 significantly inhibited proliferation, induced apoptosis and suppressed the clonogenic potential of imatinib-sensitive (V560G) and –resistant (D816V) FDC-P1 cells *in vitro* (Figure 7.2B). The molecular mechanisms by which FTY720 enhances the activity of PP2A remain undefined. Although it is known to directly activate purified PP2A dimers and trimers *in vitro* (Matsuoka et al. 2003), further investigation is required to elucidate the precise interactions with PP2A in myeloid progenitors expressing oncogenic c-KIT. Another interesting follow up would be to determine the sensitivity of individual PP2A complexes to FTY720-induced PP2A activation (Figure 7.2B). Notably, the cytotoxic effects of FTY720 are dependent on the functional status of PP2A whereby mutant c-KIT cells, but not empty vector controls or WT c-KIT cells grown in SCF, are sensitive to low concentrations of FTY720, presumably due to their altered PP2A complexes and markedly reduced PP2A activity.

The promising *in vitro* findings obtained with FTY720 were translated into an *in vivo* model, where the daily administration of FTY720 significantly delayed the growth of mutant c-KIT tumours. Furthermore, FTY720 prevented the infiltration of D816V c-KIT tumour cells into secondary lymphoid organs. As a consequence, the survival of FTY720-treated mice was significantly improved compared to saline-treated controls. Notably, the administration of FTY720 did not completely cure the mice. This observation is most likely attributable to the particular type of *in vivo* model that was used. Specifically, the D816V c-KIT subcutaneous tumours were very aggressive, with the first saline-treated mouse reaching its designated cull volume by day 14. Given this rapid tumour burden, it is likely that insufficient levels of FTY720 were reaching the tumour. As a result, the cells located within the middle would be protected from
TUMOURIGENESIS

Mutant c-KIT

- Reactivate PP2A
 - e.g. FTY720

- Expression

- Activity

- Expression

TUMOURIGENESIS
Figure 7.2 Summary of PP2A regulation by oncogenic c-KIT in myeloid progenitors

A) Decreased expression of the PP2A structural subunit and specific regulatory subunits (B55α, B56α, B56γ and B56δ) by mutant c-KIT is associated with reduced PP2A activity. Together, these effects are essential for c-KIT-mediated tumourigenesis (Chapter 5).

B) Reactivation of PP2A, for example with FTY720, inhibits the oncogenic c-KIT receptor itself and impairs the *in vitro* and *in vivo* growth of imatinib-sensitive and -resistant c-KIT FDC-P1 cells (Chapters 5 and 6). The effect of FTY720 on PP2A regulatory subunit expression and holoenzyme composition is unknown.
FTY720-induced PP2A reactivation, and therefore continue to proliferate in the presence of drug. These results could be improved by performing a tail vein injection of the mutant c-KIT FDC-P1 cells and establishing a systemic model which more closely resembles a myeloproliferative disease. Indeed, 50% of T315I BCR/ABL⁺ mice displaying systemic CML-like disease were still alive after 27 weeks of daily treatment with 10 mg/Kg FTY720, whereas all of the saline-treated mice were sacrificed by week 5 (Neviani et al. 2007). Therefore, future studies will most likely show enhanced therapeutic efficacy of FTY720 in a D816V c-KIT leukaemia model in comparison to the current subcutaneous model.

Based on previous results with BCR/ABL⁺ myeloid progenitors (Neviani et al. 2007), it was predicted that reactivation of PP2A by FTY720 induced apoptosis in mutant c-KIT cells through inactivation of the oncogenic receptor itself, and simultaneous inhibition of downstream signalling pathways. Indeed, FTY720-induced apoptosis was observed in the c-KIT mutants both in vitro and in vivo. Importantly, FTY720 treatment markedly reduced the phosphorylation of mutant c-KIT receptors, whilst having no effect on WT c-KIT. This is an exciting finding as small molecules which are designed to specifically bind to, and inhibit, c-KIT are completely ineffective against the kinase domain mutants. In addition, preliminary results from our laboratory indicate that reactivation of PP2A with FTY720 dephosphorylates the anti-apoptotic protein, BAD, in cells expressing D816V mutant c-KIT compared to WT c-KIT (A.M. Smith, N.M. Verrills, personal communication). Following on from this, a detailed analysis of other pathways, such as PI3K/Akt and STAT5, will reveal the complete effect of FTY720 on oncogenic cascade inhibition.

Currently no effective treatments are available for the inhibition of activating kinase domain c-KIT mutations. As such, there is a strong need for the development of improved therapeutic options for drug-resistant patients. The results obtained in this study demonstrate that myeloid precursors expressing D816V c-KIT are highly sensitive to reactivation of PP2A by FTY720. In addition to its use as a monotherapy, another therapeutic application for FTY720 may be the combination with a second-generation tyrosine kinase inhibitor, such as dasatinib. Although this compound inhibits D816V c-KIT receptors in vitro, it has proven largely ineffective in the clinic. However, the simultaneous administration of dasatinib with FTY720 may result in an additive or
synergistic effect. This hypothesis is based on the observation that reactivation of PP2A not only inhibits oncogenic pathways downstream of the D816V c-KIT receptor, but effectively inactivates the kinase itself. Therefore, the combination of both compounds may reduce the concentration of dasatinib required for targeted inhibition of c-KIT mutants in vivo. Preliminary data from cytotoxicity assays indicate that the addition of FTY720 and dasatinib markedly reduces the viability of cells incubated with either drug alone, indicating at least an additive effect (Appendix Figure 2). Further investigation into the effect of different concentration ratios, in addition to testing these combinations in vivo, will validate their potential use in the clinic.

In support of the findings that enhanced PP2A activity specifically induces apoptosis of mutant c-KIT cells, several studies have recently confirmed PP2A activation as a powerful therapeutic approach in a range of human malignancies. For example, α-tocopheryl succinate has been shown to mediate its antitumour effects against LNCaP prostate cancer cells through a complex network of signalling pathways that are mediated by the activation of PP2A (Huang et al. 2009). Furthermore, the antiproliferative effects of the dithiolethione compound, ACS-1, in aggressive human lung and breast cancer cell lines is attributed to a dose-dependent increase in PP2A activity, which inhibits Akt signalling and results in reduced c-myc expression (Switzer et al. 2009). Lastly, impaired PP2A activity in MDA-MB-231 breast cancer cells can be restored with adiponectin-activated AMPK, and inhibits invasiveness in an in vivo metastasis model (Kim et al. 2009). It would be interesting to compare the efficacy of FTY720-induced PP2A reactivation in these cancer models, and conversely, to test these compounds in the BCR/ABL and mutant c-KIT-expressing FDC-P1 cells.

Taken together, the data presented in this thesis demonstrates that two very different oncogenic tyrosine kinases both require inhibition of PP2A activity and altered PP2A subunit expression for tumourigenicity. This suggests that functional inhibition of PP2A may be a common mechanism of tyrosine kinase driven tumour growth. In support of this, increased phosphorylation of PP2Ac, which generally reduces PP2A activity (Chen et al. 1992), has been reported in HER-2+ breast tumour specimens compared to normal breast tissue. Furthermore, elevated levels of PP2Ac-p^{Y307} significantly correlate with tumour progression (Wong et al. 2009). The HER-2 kinase is often overexpressed or amplified in breast cancer, and its activation contributes to tumour progression by
increasing proliferation as well as promoting metastasis and invasion (Freudenberg et al. 2009). The study by Wong et al., identifies another important link between an activating tyrosine kinase and the regulation of a phosphatase in malignant disease. In addition to this, stimulation of Rat-1 fibroblasts or A431 epithelial cells with EGF also impairs the activity of PP2A and facilitates signalling through the MAPK pathway (Belcher et al. 2005, Ugi et al. 2002). Future investigation into the regulation of PP2A by mutated and constitutively active kinases such as FLT3 in AML (Meshinchi & Appelbaum 2009), EGFR in non-small-cell lung cancer (Hirsch et al. 2009) and JAK2 in myeloproliferative disorders (Levine & Gilliland 2008) will reveal whether PP2A inhibition contributes to the transforming potential of oncogenic tyrosine kinases (Figure 7.3).

In summary, this body of work highlights the complex regulation of PP2A by the oncogenic tyrosine kinases, BCR/ABL and c-KIT. Identifying the specific PP2A holoenzymes that are perturbed in cancers characterised by aberrant kinase activation substantially contributes to our understanding of cancer cell signalling and of PP2A biology. Importantly, these PP2A subunits may provide novel therapeutic targets to form the basis of improved cancer therapies. The heightened sensitivity of D816V c-KIT cells to FTY720, in conjunction with low toxicity, supports the translational application of PP2A-activating agents for the treatment of drug-resistant c-KIT+ patients. Taken together, the data suggests that functional inactivation of PP2A may represent a general mechanism employed by constitutively active kinases to facilitate tumour growth. As such, the reactivation of PP2A is a valid and powerful therapeutic strategy which may be applicable to a wide range of human malignancies.
A

| Mutant c-KIT |
| PP2A |
| Signalling pathways |
| TUMOURIGENESIS |

B

| FLT3?? |
| PP2A |
| JAK2?? |
| Signalling pathways |
| TUMOURIGENESIS |
APPENDIX 1 – BUFFERS AND STOCK SOLUTIONS

DNA loading buffer: 50% glycerol, 1 mM EDTA, 0.4% bromophenol Blue, 0.4% xylene cyanol

FACS fixative: 2% (w/v) glucose, 1% formaldehyde, 0.02% sodium azide in PBS

10% formic acid in 10% NBF (1L): 100 ml 90% formic acid, 900 ml 10% NBF

Freezing mix: 30% FCS, 20% DMSO and 50% Roswell Park Memorial Institute medium. The solution was filter sterilized through a 0.22 μm filter and stored at -20°C.

Inoue Transformation Buffer: 55 mM MnCl₂, 15 mM CaCl₂, 250 mM KCl and 10 mM PIPES was made up to 30 ml with milli-Q water. The solution was filter sterilized through a 0.45 μm filter and stored at 4°C.

IP lysis buffer: 1% NP40, 150 mM NaCl, 50 mM Tris pH 8.0) supplemented with 20 μl/ml protease inhibitor cocktail (Sigma).

LB Medium (1L): 10 g Bacto tryptone, 5 g Bacto yeast extract, 10 g NaCl, pH 7.0. The solution was sterilized by autoclaving and if required, ampicillin was added at a final concentration of 100 μg/ml.

LB Agar Plates: 15 g Bacto-agar was added to LB medium prior to autoclaving. The solution was allowed to cool and if required, ampicillin was added at a final concentration of 100 μg/ml. Plates were poured under aseptic conditions, dried and stored at 4°C.

10% NBF (1L): 100 ml 40% formalin (aqueous solution of formaldehyde), 4 g sodium dihydrogen orthophosphate (monohydrate), 6.5 g disodium hydrogen orthophosphate (anhydrous)
PBA: 0.1% BSA and 0.1% sodium azide in PBS.

PBS: 0.138 M NaCl, 0.0027 M KCl pH 7.4.

PBT: 1% BSA, 0.1% Tween-20 made up in PBS

Polyacrylamide Separating Gel (12%): 50 ml 30% acrylamide, 12.5 ml 1.5 M Tris pH 8.8 (375 mM), 500 µl 10% SDS (0.1%), 16.75 ml milli-Q water, 50 µl/10 ml 10% ammonium persulphate, 5 µl/10 ml TEMED.

Polyacrylamide Stacking Gel (4%): 3.3 ml 30% acrylamide, 6.3 ml 0.5 M Tris pH 6.8 (375 mM), 250 µl 10% SDS (0.1%), 15 ml milli-Q water, 100 µl/10 ml 10% APS and 10 µl/10 ml TEMED.

PP2A Activity Assay Lysis Buffer: 20 mM imidazole-HCl, 2 mM EDTA, 2 mM EDTA

pNPP Ser/Thr Assay Buffer: 50 mM Tris pH 7.0, 100 µM CaCl₂

RBC lysis buffer: 320 mM sucrose, 5 mM MgCl₂, 10% Triton X-100, 10 mM Tris-HCl pH 7.8

RIPA Buffer: 1% NP40, 150 mM NaCl, 50 mM Tris pH 7.5, 0.1% SDS, 0.25% sodium deoxycholate) supplemented with 20 µl/ml protease inhibitor cocktail (Sigma).

Modified RIPA Buffer: 1% NP40, 50 mM Tris pH 7.6, 150 mM NaCl, 1 mM EDTA, 0.25% Na deoxycholate, 0.05% SDS supplemented with 5 mM sodium fluoride, 5 mM sodium vanadate, 1 mM phenylmethyl sulphonyl fluoride (PMSF) and 20 µl/ml protease inhibitor cocktail (Sigma).

RNA Lysis Buffer: 4M guanidium thiocyanate, 25 mM Na citrate pH 7.0, 0.5% sarkosyl, β-mercaptoethanol, made up in DEPC-treated water and stored in the dark.
Stripping Buffer: 0.2M glycine, 100 mM β-mercaptoethanol, pH 2.6. Store at 4°C. Preheat aliquots to 55°C and do 3x 20 minute incubations followed by 3x 10 minutes TBS-T washes.

5x SDS loading buffer: 60 mM Tris pH 6.8, 25% glycerol, 2% SDS, 375 mM DTT, 0.1% bromophenol blue

50x TAE (1L): 0.5 M EDTA pH 8.0, 57.1 ml glacial acetic acid, 242 g Tris base.

10x TBS (2L): 200 ml 1M Tris pH 8.0, 175.3 g NaCl

1x TBS-T (2L): 1 mM Tris pH 8.0, 150 mM NaCl, 0.1% Tween-20

1x Transfer Buffer (2L): 200 ml 10x western solution, 400 ml methanol

10x Western Solution (1L): 30.3 g Tris base, 144 g glycine

1x Western Solution (1L): 100 ml 10x western solution, 5 ml 20% SDS
Appendix Figure 1 Expression of PP2Ac-pY307 in CD34+ CML primary samples

A) Membranes were obtained from Prof. Timothy Hughes at IMVS. CD34+ cells were isolated from imatinib-sensitive or –resistant CML-CP patients then treated in vitro with increasing concentrations of imatinib (0-3 μM) for 2 hours. For each sample, 2 x 10^6 cells were lysed and the lysates were prepared in 1x sample buffer, subjected to SDS-PAGE, then transferred onto PVDF membranes and initially probed for CrkL. These steps were performed by lab personnel at IMVS. At the University of Newcastle, the dried blots were briefly rehydrated in 100% methanol then stripped and visualised with ECL to confirm complete removal of the CrkL signal. The membranes were blocked and probed for PP2Ac-pY307 as described in Section 2.6.2.

B) Quantitation of two independent blots from two imatinib-sensitive or –resistant patients. Columns, percentage of mean densitometry normalised to untreated controls; bars, SEM.
Appendix Figure 2 Combined effects of FTY720 and dasatinib on D816V c-KIT FDC-P1 cell growth

A cytotoxicity assay was performed on FDC-P1 D816V c-KIT cells with the indicated concentrations of FTY720 (μM), dasatinib (nM) or FTY720 (μM) and dasatinib (nM) together. **Columns**, mean cell viability normalised to 0.625 μM FTY720. Three independent assays were performed in quadruplicate; **bars**, SEM.
REFERENCES

Frost, M. J., Ferrao, P. T., Hughes, T. P. and Ashman, L. K. (2002) Juxtamembrane mutant V560GKit is more sensitive to Imatinib (STI571) compared with wild-type c-kit whereas the kinase domain mutant D816VKit is resistant. *Mol Cancer Ther*, 1, 1115-1124.

Inui, S., Sanjo, H., Maeda, K., Yamamoto, H., Miyamoto, E. and Sakaguchi, N. (1998) Ig receptor binding protein 1 (alpha4) is associated with a rapamycin-sensitive signal transduction in lymphocytes through direct binding to the catalytic subunit of protein phosphatase 2A. Blood, 92, 539-546.

Jiao, B., Wu, C.-F., Liang, Y. et al. (2009) AML1-ETO9a is correlated with C-KIT overexpression/mutations and indicates poor disease outcome in t(8;21) acute myeloid leukemia-M2.

Maki, R. G., Fletcher, J. A., Heinrich, M. C. et al. (2005) Results from a continuation trial of SU11248 in patients (pts) with imatinib (IM)-resistant gastrointestinal stromal tumor (GIST). ASCO Meeting Abstracts, 23, 9011-.

Silver, R. T., Talpaz, M., Sawyers, C. L. et al. (2004) Four Years of Follow-Up of 1027 Patients with Late Chronic Phase (L-CP), Accelerated Phase (AP), or Blast Crisis (BC) Chronic Myeloid Leukemia (CML) Treated with Imatinib in Three Large Phase II Trials. ASH Annual Meeting Abstracts, 104, 23-.

Soverini, S., Martinelli, G., Rosti, G. et al. (2005) ABL mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to
imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: a study by the GIMEMA Working Party on Chronic Myeloid Leukemia. J Clin Oncol, 23, 4100-4109.

Sun, L., Liang, C., Shirazian, S. et al. (2003) Discovery of 5-[5-fluoro-2-oxo-1,2-dihydroindol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J Med Chem, 46, 1116-1119.

compounds inhibit Akt signaling in human breast and lung cancer cells by increasing PP2A activity. *Oncogene.*

Verstovsek, S., Akin, C., Manshouri, T. et al. (2006) Effects of AMN107, a novel aminopyrimidine tyrosine kinase inhibitor, on human mast cells bearing wild-type or mutated codon 816 c-kit. Leukemia research, 30, 1365-1370.

mutations to be associated with clinical resistance to the Abl kinase inhibitor nilotinib (AMN107). *Blood*, 108, 1328-1333.

