APPROXIMATE FRÉCHET SUBDIFFERENTIABILITY OF CONVEX FUNCTIONS

JOHN R. GILES
(Received November 2006)

Abstract. A generalisation of strong subdifferentiability and its characterisations are given along with implications for a Banach space to be Asplund or reflexive.

1. Introduction

Given a continuous convex function ϕ on a nonempty open convex subset A of a Banach space X, we say that ϕ is Fréchet differentiable at $a \in A$ if there exists a continuous linear functional $\phi'(a)$ and given $0 < \varepsilon < 1$ there exists $0 < \delta(a, \varepsilon) < 1$ such that

$$0 \leq \phi(a + y) - \phi(a) - \phi'(a)(y) < \varepsilon \|y\|$$

for all $\|y\| < \delta$.

We say that ϕ is Fréchet subdifferentiable at $a \in A$ if the continuous sublinear functional $\phi'_+(a)$, given $0 < \varepsilon < 1$ there exists $0 < \delta(a, \varepsilon) < 1$ such that

$$0 \leq \phi(a + y) - \phi(a) - \phi'_+(a)(y) < \varepsilon \|y\|$$

for all $\|y\| < \delta$.

As with Fréchet differentiability, this property has a characterisation by a continuity property of the subdifferential mapping, [6, p.28] and when ϕ is a gauge a characterisation in terms of weak*—exposed subsets of the appropriate polar set in the dual, [8, p.400].

Here we are interested in a further generalisation of this concept. Given $0 < d < 1$, we say ϕ is d-Fréchet subdifferentiable at $a \in A$ if there exists $0 < \delta(a, \varepsilon) < 1$ such that

$$0 \leq \phi(a + y) - \phi(a) - \phi'_+(a)(y) < d \|y\|$$

for all $\|y\| < \delta$.

Now this generalisation is of interest because d-Fréchet subdifferentiability has similar characterisations to Fréchet subdifferentiability and proofs are obtained by slight modification of the earlier proofs. But significantly,

(i) if for some $0 < d < 1$, the norm of the space X is d-Fréchet subdifferentiable on the unit sphere $S(X)$ then X is an Asplund space, and

1991 Mathematics Subject Classification 58C20, 46G05, 46B20.
Theorem 2.1. Consider a continuous convex function ϕ on a nonempty open convex subset A of a Banach space X and $a \in A$, the weak$^*-$compact convex subset of the dual space X^*. $\partial \phi(a) \equiv \{ f \in X^*: f(x) \leq \phi'_+(a)(x) \text{ for all } x \in X \}$ is the subdifferential of ϕ at a and the set-valued mapping $x \mapsto \partial \phi(x)$ on A is called the subdifferential mapping of ϕ. It is well known that the Fréchet differentiability of ϕ at a can be characterised by single-valuedness and norm upper semicontinuity of the subdifferential mapping of ϕ at a, [10, p.19]. Further, Fréchet subdifferentiability of ϕ at a can be characterised by Hausdorff norm upper semicontinuity of the subdifferential mapping of ϕ at a, [6, p.28]. A modification of this proof provides us with a similar characterisation of approximate Fréchet subdifferentiability.

Theorem 2.1. Consider a continuous convex function ϕ on a nonempty open convex subset A of a Banach space X and $0 < d < 1$. ϕ is Fréchet differentiable at a if and only if

\begin{align*}
\text{(i)} & \quad \text{if for some } 0 < d < 1, \text{ the norm of the dual space } X^* \text{ is } d-\text{Fréchet subdifferentiable on the dual unit sphere } S(X^*) \text{ then } X \text{ is reflexive.}
\end{align*}

2. The Continuity Characterisation

Given a continuous convex function ϕ on a nonempty open convex subset A of a Banach space X and $a \in A$, the weak$^*-$compact convex subset of the dual space X^*

\begin{align*}
\partial \phi(a) \equiv \{ f \in X^*: f(x) \leq \phi'_+(a)(x) \text{ for all } x \in X \}
\end{align*}

is the subdifferential of ϕ at a and the set-valued mapping $x \mapsto \partial \phi(x)$ on A is called the subdifferential mapping of ϕ.

Then $\partial \phi(a)$ is the closed unit ball of $\partial \phi(a)$.

Proof. (i) Suppose that there exists a sequence $\{y_n\}$ in A, $y_n \to a$ and $f_n \in \partial \phi(y_n)$ such that $f_n \notin \partial \phi(a) + dB[X^*]$ for all $n \in N$. Now $\partial \phi(a) + dB[X^*]$ is weak$^*-$closed and convex so for each $n \in N$, f_n can be strongly separated from $\partial \phi(a) + dB[X^*]$ by some $x_n \in X$, $\|x_n\| = 1$. Since for any $y \in X$, $\phi'_+(a)(y) = \sup \{ f(y) : f \in \partial \phi(a) \}$ we have that $(f_n - \phi'_+(a))(x_n) > d$.

Put $z_n = \delta x_n$. Then $0 \leq \phi(a + z_n) - \phi(a) - \phi'_+(a)(z_n) < d\delta$.

Now $f_n((a + z_n) - y_n) \leq \phi(a + z_n) - \phi(y_n)$ so

\begin{align*}
f_n(z_n) & \leq \phi(a + z_n) - \phi(a) + f_n(y_n - a) + \phi(a) - \phi(y_n).
\end{align*}

Then

\begin{align*}
\|z_n\| & \leq (f_n - \phi'_+(a))(z_n) \\
& \leq \phi(a + z_n) - \phi(a) - \phi'_+(a)(z_n) + M\|y_n - a\| + \phi(a) - \phi(y_n)
\end{align*}

for some $M > 0$. As $y_n \to a$ and ϕ is continuous we have

\begin{align*}
\|z_n\| & \leq \phi(a + z_n) - \phi(a) - \phi'_+(a)(z_n)
\end{align*}
but this contradicts the given d-Fréchet subdifferentiability condition of ϕ at a.

(ii) The continuity condition implies that, given $a + y \in A$, $\|y\| < \delta$ for each $f_{a+y} \in \partial \phi(a + y)$ there exists $f_a \in \partial \phi(a)$ such that $\|f_{a+y} - f_a\| \leq d$. Now
\[
\phi'_+(a)(y) \leq \phi(a + y) - \phi(a) \leq f_{a+y}(y) \leq f_a(y) + d\|y\| \leq \phi'_+(a)(y) + d\|y\|
\]
so we conclude that
\[
0 \leq \phi(a + y) - \phi(a) - \phi'_+(a)(y) \leq d\|y\| \quad \text{for all } \|y\| < \delta.
\]
\[\square\]

3. The Dual Characterisation for Gauges

A nonnegative continuous sublinear functional p on a Banach space X is the gauge of the closed bounded convex set $C \equiv \{ x \in X : p(x) \leq 1 \}$. The polar of C is the set $C^0 \equiv \{ f \in X^* : f(x) \leq p(x) \text{ for all } x \in X \}$. It is well known that $f \in \partial p(x)$ if and only if $f \in C^0$ and $f(x) = p(x)$, [10, p.84].

It is said that $\partial p(x)$ is a weak*—exposed subset of C^0 and C^0 is weak*—exposed by x. Further C^0 is weak*—strongly exposed by x if for all $\{f_n\} \subset C^0$ such that $f_n(x) \to \partial p(x)(x)$ then $\text{dist}(f_n, \partial p(x)) \to 0$ as $n \to \infty$. It is known that C^0 is weak*—strongly exposed by x if and only if p is Fréchet subdifferentiable at x, [p.400]8. We generalise this result modifying the standard arguments.

Given $0 < d < 1$, we say that C^0 is d-weak*—strongly exposed by x if for all $\{f_n\} \subset C^0$ such that $f_n(x) \to \partial p(x)(x)$ then $\text{dist}(f_n, \partial p(x)) \to d$ as $n \to \infty$; equivalently, there exists $\delta > 0$ such that
\[
\mathcal{S}\ell(C^0, \tilde{x}, \delta) \subset \partial p(x) + dB[X^*]
\]
where $\mathcal{S}\ell(C^0, \tilde{x}, \delta) \equiv \{ f \in C^0 : f(x) > \sup \{ f(x) : f \in C^0 \} - \delta \}$, a weak*—slice of C^0.

Theorem 3.1. Consider p the gauge of a closed bounded convex set C in a Banach space X.

(i) If at $x \in X$ there exists $0 < \delta(x) < 1$ such that
\[
0 \leq p(x + y) - p(x) - p'_+(x)(y) < d\|y\| \quad \text{for all } \|y\| \leq \delta
\]
then the polar C^0 is d-weak*—strongly exposed by x.

(ii) If the polar C^0 is d-weak*—strongly exposed by x then there exists $0 < \delta(x) < 1$ such that
\[
0 \leq p(x + y) - p(x) - p'_+(x)(y) \leq d\|y\| \quad \text{for all } \|y\| < \delta.
\]

Proof. (i) Suppose there exists a sequence $\{f_n\} \subset C^0$ where $f_n(x) \to \partial p(x)(x)$ but $\text{dist}(f_n, \partial p(x)) > d$ for all $n \in N$. Now for each $n \in N$ we can strongly separate f_n from $\partial p(x) + dB[X^*]$ by some $z_n \in X$, $\|z_n\| = 1$. Then for any $f \in \partial p(x)$,
\[
(f_n - f)(z_n) > d \quad \text{for all } n \in N.
\]
Put $y_n \equiv \delta z_n$. Then
\[
d\|y_n\| \leq (f_n - f)(y_n)
\]
\[
= (f_n - f)(x + y_n) - (f_n - f)(x)
\]
\[
\leq p(x + y_n) - p(x) - f(y_n) - (f_n - f)(x)
\]
since \(f_n \in C^0 \) and \(f \in \partial p(x) \). As \(f_n(x) \to f(x) = \partial p(x)(x) \) and this holds for all \(f \in \partial p(x) \) we have that
\[
d\|y_n\| \leq p(x + y_n) - p(x) - p^*(x)(y_n)
\]
and this contradicts the given \(d \)-Fréchet subdifferentiability condition of \(p \) at \(x \).

(ii) We show that for all sequences \(\{x_n\} \), \(\partial p(x_n) \subset \partial p(x) + dB[X^*] \) when \(x_n \to x \). Now \(\partial p(x_n) \subset C^0 \) and \(p(x_n) = \partial p(x_n)(x_n) \). Given any \(f_n \in \partial p(x_n) \) and \(f \in \partial p(x) \),
\[
|f_n - f(x)| = |(f_n - f)(x - x_n) + f_n(x_n) - f(x_n)| \\
\leq \|f_n - f\| \|x_n - x\| + |p(x_n) - f(x_n)|.
\]
Now as \(x_n \to x \) we have \(p(x_n) \to p(x) \), \(f(x_n) \to f(x) = p(x) \) and \(\|f_n - f\| \) is bounded. So \(f_n(x) \to \partial p(x)(x) \). Since \(\partial p(x) \) is a \(d \)-weak*-strongly exposed subset of \(C^0 \), then \(\text{dist}(f_n, \partial p(x)) \leq d \); but this is true for all \(f_n \in \partial p(x_n) \) so \(\partial p(x_n) \subset \partial p(x) + dB[X^*] \) as \(x_n \to x \). Our conclusion follows from Theorem 2.1(ii).

4. The Condition Implying that the Space is Asplund

A Banach space \(X \) is an Asplund space if every continuous convex function \(\phi \) on a nonempty open convex subset \(A \) of \(X \) is Fréchet differentiable at the points of a dense \(G_a \) subset of \(A \). We will use the significant characterisation that \(X \) is Asplund if and only if every closed separable subspace of \(Y \) of \(X \) has separable dual \(Y^* \), \([10, p.32]\). It was proved by Godefroy that a Banach space \(X \) with norm Fréchet subdifferentiable on \(S(X) \) is an Asplund space \([5, p.68]\, [7, p.64]\). We use our approximate Fréchet subdifferentiability to generalise this.

The following crucial result was devised by Godefroy as a consequence of Simon's inequality. The statement is as given by Franchetti and Paya, \([5, p.68]\).

Lemma 4.1. Consider a Banach space \(X \). If there exists a countable set \(C \) in \(S(X^*) \) and \(0 < \alpha < 1 \) such that for each \(x \in S(X) \) we have \(\|f_x - f\| \leq \alpha \) for some \(f_x \in \partial \|x\| \) and some \(f \in C \), then \(X^* = \text{sp} \) \(C \) and so \(X \) and \(X^* \) are separable.

Proof. Denote by \(\sigma \) the selection on \(S(X) \) where \(\sigma(x) \in \partial \|x\| \) and satisfying the given inequality. Suppose \(X^* \neq \text{sp} \) \(C \). Then there exists an \(F \in S(X^{**}) \) such that
\[
F(\text{sp} C) = 0.
\]
Choose \(0 < \alpha < \beta < 1 \) and \(g \in S(X^*) \) such that
\[
F(g) > \beta.
\]
Since \(\hat{X} \) is weak*-dense in \(X^{**} \) and \(C \) is countable there exists a sequence \(\{x_n\} \) in \(B[X] \) such that
\[
(a) \ f(x_n) \to F(f) \text{ for all } f \in C \text{ and } (b) \ g(x_n) \to F(g).
\]
We may assume that \(g(x_n) \geq \beta \) for all \(n \in N \). Now the function \(\Phi \) on \(X^* \) where
\[
\Phi(f) = \limsup_{n \to \infty} |f(x_n)|
\]
is convex and norm lower semi continuous. Now from (a) we have
\[
\sup \{\Phi(f) : f \in C\} = 0
\]
but our given inequality gives
\[\sup \{ \Phi(f) : f \in \sigma(S(X)) \} \leq \alpha. \]
Also from (b) we have
\[\sup \{ \Phi(f) : f \in B[X^*] \} \geq \beta. \]
But this contradicts Simon’s Theorem, \([4, p.81]\).

It is important to note that in this result the constant \(0 < \alpha < 1\) is to hold generally for all \(x \in S(X)\). Godefroy \([7, p.62]\) has given a renorming of the separable space \(\ell_1\) where, under this renorming there is a sequence \(\{f_n\}\) in \(B(\ell_1^*)\) and a sequence of real numbers \(\{\epsilon_n\}\) where \(\epsilon_n \to 0\) and
\[B(\ell_1^*) \subset \bigcup_{n=1}^{\infty} B[f_n; 1-\epsilon_n] \]
but of course \(\ell_1^*\) is non-separable.

Theorem 4.2. A Banach space \(X\) is an Asplund space if for some \(0 < d < 1\) the norm is \(d\)-Fréchet subdifferentiable on \(S(X)\).

Proof. Since the restriction to a closed linear subspace \(Y\) has norm \(d\)-Fréchet subdifferentiable on \(S(Y)\) and the Asplund property is separably determined, it is sufficient to consider \(X\) separable and prove that \(X^*\) is separable. By Mazur’s Theorem \([10, p.12]\) there exists a dense countable subset \(E\) of \(S(X)\) where the norm is Gâteaux differentiable so \(\partial \|E\|\) is countable. By Theorem 2.1(i) the subdifferential mapping \(x \mapsto \partial \|x\|\) has the property that, given \(x \in S(X)\) there exists an open neighbourhood \(U\) of \(x\) such that
\[\partial \|y\| \subset \partial \|x\| + dB[X^*] \quad \text{for all} \quad y \in U \]
so
\[\partial \|E\| \cap (\partial \|x\| + dB[X^*]) \neq \emptyset. \]
Then, by Lemma 4.1, we have that \(X^*\) is separable. \(\square\)

5. The Condition Implying that the Space is Reflexive

A Banach space \(X\) whose dual \(X^*\) has norm Fréchet subdifferentiable on \(S(X^*)\) is reflexive. This was proved by Aparicio et al. \([1, p.29]\) and by Godefroy \([7, p.69]\). An attractive proof was given by Franchetti and Paya \([5, p.65]\). We follow Godefroy’s proof in establishing our more general result. He takes his proof through several steps, \([7, p.65-69]\).

Godefroy’s proof is based on ‘ball topology’ techniques: given a Banach space \(X\), the ball topology \(b_X\) on \(X\) is the weakest topology for which the norm closed balls are closed. He proves:
(i) that a Banach space \(X\) where every \(f \in X^*\) is \(b_X\)-continuous on \(B[X]\) has \(X^*\) with no proper norming subspace, \([7, p.68]\);
(ii) that a Banach space \(X\) where every closed separable subspace \(Y\) of \(X\) has \(Y^*\) with no proper norming subspace has every \(f \in X^*\) \(b_X\)-continuous on \(B[X]\), \([7, p.67]\);
(iii) that a Banach space where the norm is Fréchet subdifferentiable on $S(X)$ has every closed separable subspace Y of X with Y^* having no proper norming subspace, [7, p.68].

So his proof that a Banach space X where the norm of X^* is Fréchet subdifferentiable is reflexive, follows from (iii) \Rightarrow (ii) \Rightarrow (i).

We present Godefroy’s proof of (i) because our statement is more general than that given in his paper. We recall that a typical b_X-open neighbourhood of 0 is of the form

$$X \setminus \bigcup_{k=1}^{n} B[x_k; r_k] \quad \text{where} \quad 0 < r_k < \|x_k\| \quad \text{for} \quad k \in \{1, 2, \ldots, n\}.$$

Proof. (i) It is sufficient to show that for any $F \in S(X^{**})$, $\ker F$ is not a norming subspace of X^*. If it were norming then

$$\|F - \widehat{x}\| \geq \|x\| \quad \text{for all} \quad x \in X, \ [4, p.134].$$

Choose an $f \in B[X^*]$ such that $F(f) > 0$ and consider a net $\{\widehat{x}_\alpha\}$ in $B[\widehat{X}]$ weak*-convergent to F. Since the norm is weak*-lower semi continuous then

$$\liminf_{\alpha} \|x_\alpha - x\| \geq \|x\| \quad \text{for all} \quad x \in X \quad \text{and so} \quad b_X \lim_{\alpha} x_\alpha = 0.$$

But $\lim_{\alpha} f(x_\alpha) = F(f) > 0$ so we conclude that f is not b_X-continuous on $B[X]$. □

We achieve our result by generalising (iii) for approximate Fréchet subdifferentiability.

Lemma 5.1. Consider a Banach space X and $0 < d < 1$. If the norm on X is d-Fréchet subdifferentiable on $S(X)$ then for every closed separable subspace Y of X, Y^* contains no proper norming subspace.

Proof. If $N \subset Y^*$ is norming then $N \cap B[Y^*]$ is weak*-dense in $B[Y^*]$. Since $B[Y^*]$ is weak*-compact and metrisable there exists a sequence $\{f_n\}$ in $N \cap B[Y^*]$ which is weak*-dense in $B[Y^*]$. Then since the norm on Y is also d-Fréchet subdifferentiable on $S(Y)$ we have from Theorem 3.1(i) that

$$\partial \|y\| \cap \bigcup_{n=1}^{\infty} B[f_n; d] \neq \emptyset \quad \text{for all} \quad y \in S(Y).$$

So, by Lemma 4.1, $Y^* = \overline{\mathcal{P}\{f_n : n \in \mathcal{N}\}}$ and so $N = Y^*$. □

Theorem 5.2. A Banach space X where, for some $0 < d < 1$, the dual X^* has norm d-Fréchet subdifferentiable on $S(X^*)$ is reflexive.

Proof. Lemma 5.1 \Rightarrow (ii) \Rightarrow (i) and a nonreflexive space always has X^{**} with proper norming subspace \widehat{X}. □

6. Postscript

Prof. Cascales pointed out that the characterisations in §2 and §3 suggest a generalisation of the standard result that a Banach space X is Asplund if every nonempty bounded subset of X^* has weak*-slices of arbitrarily small diameter, [10, Th 2.32, p.31].
Theorem 6.1. A Banach space X is an Asplund space if for some $0 < d < 1$, every nonempty subset of $B[X^*]$ has weak*--slices of diameter less than or equal to d.

Proof. Consider a nonempty open subset E of $B[X^*]$ with a weak*--slice $S\ell_1$ of diameter less than or equal to d. Then there exists a closed ball B_1 with radius $r_1 \leq d$ such that $S\ell_1 \subset B_1$. Consider this ball B_1 magnified from its centre by $\frac{1}{r_1}$. Then by our hypothesis, this magnified slice $\frac{1}{r_1}S\ell_1$ has a weak*--slice of diameter less than or equal to d. So the original slice $S\ell_1$ has a weak*--slice $S\ell_2$ of diameter less than or equal to r_1d. Then there exists a weak*--open set W_2 such that $E \cap W_2 = S\ell_2$ with diameter less than or equal to d.

Repeating this process, there exists a closed ball B_2 with radius $r_2 \leq r_1d$ such that $S\ell_2 \subset B_2$. Again consider this ball B_2 magnified from its centre by $\frac{1}{r_2}$. Then by our hypothesis, this magnified slice $\frac{1}{r_2}S\ell_2$ has a weak*--slice of diameter less than or equal to d. So the original slice $S\ell_2$ has a weak*--slice $S\ell_3$ of diameter less than or equal to r_2r_1d. Then there exists a weak*--open set W_3 such that $E \cap W_3 = S\ell_3$ with diameter less than or equal to d.

So given $0 < \varepsilon < 1$ there exists $n \in \mathbb{N}$ such that after n steps in this process we have that there exists a weak*--open set W_n such that $E \cap W_n = S\ell_n$ with diameter less than or equal to $r_n \cdots r_1d < \varepsilon$. That is, every nonempty subset of $B[X^*]$ with the weak*--topology is fragmentable by the norm of the space, and this implies that X is an Asplund space, [3, Th 5.2.3, p90].

We can go on to generalise the standard result that a Banach space X is Asplund if every equivalent norm has a point of Fréchet differentiability, [10, Corol 2.35, p31].

Corollary 6.2. A Banach space X is an Asplund space if for some $0 < d < 1$ and every equivalent norm p on X there exists a point $x \in X$ where $\text{diam} \partial p(x) < d$ and p is Fréchet subdifferentiable at x.

Proof. Consider a bounded subset E of $B[X^*]$. Let $K = \text{co}(E \cup -E) + B[X^*]$. Then K is a bounded symmetric convex subset of X^* with nonempty interior and the functional p on X where $p(x) = \sup\{f(x) : f \in K\}$ is an equivalent norm for X.

If for $x \in X$, $\text{diam} \partial p(x) < d$ and p is Fréchet subdifferentiable at x then for $0 < 2\varepsilon < d - \text{diam} \partial p(x)$ there exists $0 < \delta(\varepsilon, x) < 1$ such that

$$0 \leq p(x + y) - p(x) - p_+(x)(y) < \varepsilon \|y\| \quad \text{for all} \quad \|y\| < \delta.$$

Now

$$0 \leq p_+(x)(y) + p_+(x)(-y) = \sup\{f(y) : f \in \partial p(x)\} - \inf\{f(y) : f \in \partial p(x)\} \leq \text{diam} \partial p(x) \cdot \|y\|.$$

Then

$$0 \leq p(x + y) + p(x - y) - 2p(x) < d\|y\| \quad \text{for all} \quad \|y\| < \delta \quad (\ast)$$

But if every weak*--slice of E has diameter greater than or equal to d then K has the same property. Then given $\varepsilon > 0$ and $n \in \mathbb{N}$

$$\text{diam}\{f \in K : f(x) > p(x) - \frac{\varepsilon}{n}\} \geq d.$$
Now there exist $f_{1n}, f_{2n} \in K$ such that
\[
f_{1n}(x) > p(x) - \frac{\varepsilon}{n}, \quad f_{2n}(x) > p(x) - \frac{\varepsilon}{n} \quad \text{and} \quad \|f_{1n} - f_{2n}\| > d - \frac{1}{n},
\]
So there exists $\{y_n\}, \|y_n\| = 1$ such that $(f_{1n} - f_{2n})(y_n) > d - \frac{1}{n}$.
Therefore
\[
p \left(x + \frac{y_n}{n} \right) + p \left(x - \frac{y_n}{n} \right) - 2p(x) \geq f_{1n} \left(x + \frac{y_n}{n} \right) + f_{2n} \left(x - \frac{y_n}{n} \right) - (f_{1n} + f_{2n})(x) - \frac{2\varepsilon}{n}
\]
\[
= \frac{1}{n}(f_{1n} - f_{2n})(y_n) - \frac{2\varepsilon}{n} > \frac{d}{n} - \frac{1}{n^2} - \frac{2\varepsilon}{n}
\]
which contradicts (\ast). So we conclude that E has a weak*−slice with diameter less than or equal to d and the result follows from Theorem 6.1.
\[\square\]

Acknowledgement. I wish to thank Scott Sciffer for his careful scrutiny and assistance in the preparation of this paper.

References

John R. Giles
The University of Newcastle
NSW 2308
AUSTRALIA
John.Giles@newcastle.edu.au