Generalised, parsimonious, individual-based computer models of ecological systems

by

William John Chivers

B.Sc., Dip.Ed., M.Ed.(Hons.)

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

The University of Newcastle

July, 2009
This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Signature____________________________________

Date__
I would like to express my deepest thanks and appreciation to the many people who provided me with help and encouragement during my research. These people include:

my wife Robyn and my children Ben, Ian and Chesca, whose love and support made this possible,

my supervisors Dr. Ric Herbert and Associate Professor William Gladstone for their support, patience and most valued suggestions and criticisms,

Donald DeAngelis, Michael Fuller, Volker Grimm, Louis Gross, John Hearne, Henriette Jager, Roland Lamberson, Rick McGarvey, Steve McKelvey, Steven Railsback, Anna Redden, Catherine Roberts and Kenneth Rose for their help, support and suggestions and

the University of Newcastle, Australia.
DEDICATION

To my wife Robyn and my children Ben, Ian and Chesca.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Abstract</th>
<th>xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publications from this Research</td>
<td>xxi</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction

1.1 Overview and purpose ... 1
1.2 Summary of findings .. 5

Chapter 2: Literature Review

2.1 Individual-based modeling in ecology 9
 2.1.1 Introduction .. 9
 2.1.2 The emergence of higher-level patterns from local interactions . 11
 2.1.3 Comparison with traditional modeling 15
 2.1.4 Examples of the use of individual-based modeling in ecology 18
2.2 Generalised and parsimonious individual-based models 20
2.3 A pattern-oriented approach to model verification 22
 2.3.1 Parsimony in model design 22
 2.3.2 The pattern-oriented approach 23
 2.3.3 Model verification ... 25
 2.3.4 Modeling as a constructivist activity 26
2.4 Parameter sensitivity analysis 28
2.5 Concluding remarks .. 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Overview and chapter structure</td>
<td>32</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Introduction</td>
<td>32</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Summary of the chapter findings</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Literature review</td>
<td>35</td>
</tr>
<tr>
<td>3.2.1</td>
<td>The timing of variable updating</td>
<td>35</td>
</tr>
<tr>
<td>3.2.2</td>
<td>The importance of individual variation in individual-based modeling</td>
<td>37</td>
</tr>
<tr>
<td>3.2.3</td>
<td>The inclusion of prey refuges</td>
<td>38</td>
</tr>
<tr>
<td>3.2.4</td>
<td>The Lotka-Volterra model</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Description of the individual-based model</td>
<td>41</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Overview</td>
<td>42</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Design concepts</td>
<td>43</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Details</td>
<td>44</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Model output</td>
<td>48</td>
</tr>
<tr>
<td>3.4</td>
<td>Aspects of model behaviour</td>
<td>51</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Cycling population levels</td>
<td>51</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Constant period length</td>
<td>52</td>
</tr>
<tr>
<td>3.4.3</td>
<td>The chaotic nature of the model</td>
<td>52</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Prey population in the absence of predators</td>
<td>54</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Behaviour of the models after an exogenous shock</td>
<td>54</td>
</tr>
<tr>
<td>3.4.6</td>
<td>The timing of variable updating</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>Hidden prey: the simulation of prey refugia</td>
<td>57</td>
</tr>
<tr>
<td>3.6</td>
<td>Sensitivity to initial conditions and parameter values</td>
<td>61</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Introduction</td>
<td>61</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Methodology</td>
<td>63</td>
</tr>
</tbody>
</table>
3.6.3 Summary of results ... 65
3.6.4 Sensitivity of the model to the initial condition or parameter values 66
3.7 Discussion ... 71
 3.7.1 The viability and utility of a generalised, parsimonious, individual-based approach ... 71
 3.7.2 The emergence of non-linear dynamics, intrinsic mean population levels and population cycle peaks and troughs ... 72
 3.7.3 The timing of variable updating 74
 3.7.4 The importance of individual variation 77
 3.7.5 The inclusion of prey refuges 79
 3.7.6 The causes of the persistence of the predator population ... 79
3.8 Concluding remarks ... 81
3.9 Appendix: Mean period lengths for model predator population cycles ... 82

Chapter 4: A pattern-oriented, generalised and parsimonious approach to modeling cycling populations of predator-prey systems 83
 4.1 Overview and chapter structure 84
 4.1.1 Introduction ... 84
 4.1.2 Summary of the chapter findings 85
 4.2 Literature review .. 87
 4.2.1 Introduction ... 87
 4.2.2 The Canadian lynx and snowshoe hare system 90
 4.2.3 The Fennoscandian mustelid and microtine system 92
 4.2.4 Models of the lynx-hare system 95
 4.2.5 Models of the mustelid-microtine system 99
 4.3 Description of the model 101
 4.4 Patterns produced by the model 101
 4.4.1 The major pattern of cycling populations 101
 4.4.2 The minor pattern of constant period length 102
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.3</td>
<td>The minor pattern of chaotic amplitudes</td>
<td>103</td>
</tr>
<tr>
<td>4.4.4</td>
<td>The minor pattern of increased amplitudes with an increased predator</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>trapping rate</td>
<td></td>
</tr>
<tr>
<td>4.4.5</td>
<td>The minor pattern of decreased amplitudes with increased generalist</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>predators</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Discussion</td>
<td>108</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Comparison of the IBM and previous models</td>
<td>109</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Reproduction of the patterns in the empirical data by a generalised</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>and parsimonious model</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Concluding remarks</td>
<td>114</td>
</tr>
<tr>
<td>4.7</td>
<td>Appendix: Mean period lengths for lynx fur returns</td>
<td>115</td>
</tr>
<tr>
<td>4.7.1</td>
<td>All Northern Department regions 1821–1891</td>
<td>115</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Mackenzie River Region, 1821–1934</td>
<td>115</td>
</tr>
<tr>
<td>4.8</td>
<td>Appendix: Mean period lengths for the microtine population cycles</td>
<td>117</td>
</tr>
<tr>
<td>4.9</td>
<td>Appendix: Sensitivity analysis of the predator trapping rate (p_{tr}) and predator generalist rate (p_{grate}) parameters</td>
<td>118</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Predator trapping rate (p_{tr})</td>
<td>118</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Predator generalist rate (p_{grate})</td>
<td>122</td>
</tr>
<tr>
<td>5.1</td>
<td>Overview and chapter structure</td>
<td>128</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Introduction</td>
<td>128</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Summary of the chapter findings</td>
<td>129</td>
</tr>
<tr>
<td>5.2</td>
<td>Literature review</td>
<td>132</td>
</tr>
<tr>
<td>5.2.1</td>
<td>The importance of space in understanding ecological systems</td>
<td>132</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Spatial representation in ecological modeling</td>
<td>134</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Pattern formation in spatially-explicit predator-prey models</td>
<td>139</td>
</tr>
<tr>
<td>5.2.4</td>
<td>The characteristics of cells in spatial models</td>
<td>142</td>
</tr>
</tbody>
</table>

Chapter 5: A spatially-explicit, generalised and parsimonious individual-based model of herbivore-producer interaction 127

5.1 Overview and chapter structure 128

5.1.1 Introduction 128

5.1.2 Summary of the chapter findings 129

5.2 Literature review 132

5.2.1 The importance of space in understanding ecological systems 132

5.2.2 Spatial representation in ecological modeling 134

5.2.3 Pattern formation in spatially-explicit predator-prey models 139

5.2.4 The characteristics of cells in spatial models 142
Chapter 6: Herding-like behavior in a spatially-explicit, generalised and parsimonious individual-based model of producer-herbivore interaction

6.1 Overview and chapter structure

6.1.1 Introduction

6.1.2 Summary of the chapter findings

6.2 Literature review

6.2.1 Herding behaviour

6.2.2 The modeling of herding behaviour

6.2.3 The detection of herding in the model

6.3 Description of the model

6.4 Patterns produced by the model

6.4.1 Description of the herding patterns

6.4.2 Periodicity of the herding patterns

6.5 Methods of detection of herding patterns

6.5.1 Visual detection by the human user of the model

6.5.2 Percentages of herbivores with given numbers of neighbours

6.5.3 Mean number of neighbours for each herbivore

6.5.4 Mean Hamming distance between adjacent rows and columns

6.6 Methodology
Appendix B: Parameter and initial condition sensitivity analysis of the spatial model

B.1 Matrix size: width in cells (m_w) and height in cells (m_h) 383
B.2 Matrix edge existence or otherwise (m_e) ... 385
B.3 Herbivore initial population (p_n) ... 387
B.4 Herbivore initial resources (p_r) ... 389
B.5 Herbivore metabolic cost per time step (p_{mc}) 391
B.6 Herbivore trophic efficiency (p_{te}) .. 393
B.7 Percentage of producer eaten on current cell per time step by a herbivore (p_{pe}) 395
B.8 Herbivore maximum move distance per time step (p_{md}) 397
B.9 Herbivore move cost (p_{mvc}) .. 399
B.10 Growth rate of producer organism (attribute of each cell) (b_r) 401
B.11 Maximum producer population (attribute of each cell) (b_K) 403

Appendix C: Model algorithms and software details

C.1 Availability of the model computer programming code 405
C.2 Algorithm used in the model described in Chapter 3 405
C.3 Class diagrams for the model described in Chapter 3 408
C.4 Algorithm used in the model described in Chapter 5 410
C.5 Class diagrams for the model described in Chapter 5 412
C.6 Screen images of the model graphical user interfaces 414
 C.6.1 Screen images of the graphical user interface for the model described in Chapter 3 414
 C.6.2 Screen images of the graphical user interface for the model described in Chapter 5 416
C.7 Software used to write this thesis .. 418
Abstract

Generalised, parsimonious, individual-based computer models of ecological systems

by William John Chivers

The original contribution of this thesis is to demonstrate the use of a generalised and parsimonious approach to building individual-based computer models of ecological systems with the objective of advancing our mechanistic understanding of these systems.

Two models are presented; the first, a model of predator-prey interaction, produces the expected non-linear dynamics and illustrates the importance of the timing of variable updating and individual variation for the persistence of the populations. This model is applied to two near-exclusive, cycling predator-prey systems, those of the Canadian lynx and snowshoe hare and the Fennoscandian mustelid predators and their microtine prey. The reproduction of the patterns found in the empirical data of these systems by the model suggests that the underlying mechanism of these predator-prey systems may be more simple than is suggested by other more complex models reported in the literature.

The second model describes a system similar to that of a grazing herbivore in a two-dimensional space. The emergence of complex behaviour resulting from the use of space in the model, including metapopulation-like local extinction and re-population and the effects of corridors and edge qualities on the species are demonstrated. The inclusion of a graphical display of the two-dimensional space in the computer interface to the model reveals important details of system behaviour not evident in the population means, including herding behaviour. The latter is dependent on herbivore mobility and the re-growth of resources in an heterogeneous environment, and emerges in the absence of social behaviour. The problem of detecting herding behaviour automatically is addressed, including the development of qualitative and quantitative definitions of herding in the model.
PUBLICATIONS FROM THIS RESEARCH

The research reported in this thesis has been published in the following fully-refereed journal articles:

The research reported in this thesis has been presented at the following refereed conferences:

xxii

VITA

William John CHIVERS
B.Sc., (The University of NSW, 1980)
M.Ed.(Hons.) (Charles Sturt University, 1998)