Lyme Borreliosis, the Australian perspective

by

Michelle Catherine Wills

B. Ag. Sc. Hon 1 (University of Sydney)

A Thesis submitted for the degree of DOCTOR OF PHILOSOPHY

Faculty of Medicine, University of Newcastle.

Newcastle, New South Wales, Australia.

I hereby certify that the work embodied in this thesis is the result of original research and has not been submitted for a higher degree to any other University or Institution

Michelle Catherine Wills
In memory of Sally Therese Wilson.
24th July 1961 - 12th June 1970.

Be like a very small
happy child
living gloriously in the
ever present Now
without a single worry or concern
about even the next
moment of time.

Eileen Caddy
The Dawn of Change
ACKNOWLEDGMENTS

I would like to thank the following people for the support and encouragement they provided.

Firstly my supervisor, Associate Professor Richard Barry, who stood by me to the end of this project. Even in difficult times I recognise the effort he exerted to ensure that this dissertation was completed. I hope we will always remain friends and colleagues.

I would like to thank Dr Bernard Hudson for the clinical expertise, advice and enthusiasm he has contributed to my research project.

Professor Allan Barbour and Dr Virgilio Bundoc have provided expert advice and support for this project. Their help has been invaluable.

For the technical assistance they provided throughout the course of this research I would like to thank Denise Bitsikis, Susan Caves, Sandra Greive, John Burnside, Dale Leuitzke, Garry Weber, David Phelan, Robert Herd and Darren Shafren.

I would like to acknowledge the Arthritis Foundation and ROCHE Pharmaceutical’s for their financial support of my research. In particular I would like to thank Dr Simon Buckingham, Mr Alan Seeney, Dr Lindsay McQueen and Dr David Kingston for their willingness to foresee the potential of this relatively new field of research in this country.

I acknowledge the assistance I received by being awarded a Postgraduate Scholarship (1992-1994), and have appreciated the advice and support from the Post-Graduate Committee at Newcastle University.

I would like thank my proof readers Don Adams and Gary Ronan.

Thankyou to Terry Moore, who has become a great friend and colleague through this research project. Most importantly, she has taught me about the human side of medical research.

To my family, especially my mother, thank you for the support you have given me. I love you all very much.

Finally I want to thank my best friend and husband, Don Adams, for hours of help he has given me with the preparation of this dissertation. Thankyou for being understanding and being patient and most of all, thankyou for helping me keep my sense of humour.
INDEX

<table>
<thead>
<tr>
<th>ABBREVIATIONS</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td>1</td>
</tr>
<tr>
<td>FOREWORD</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER 1: Review of Literature</td>
<td>6</td>
</tr>
</tbody>
</table>

1.1 History of Lyme Borreliosis

1.1.1 Introduction
1.1.2 The emerging clinical syndrome
1.1.3 Discovery of the disease entity

1.2 The order Spirochaetales and the genus Borrelia

1.2.1 Introduction
1.2.2 Characteristics of the Order Spirochaetales
1.2.3 Taxonomy of spirochaetes
1.2.4 Structure of Borreliae spirochaetes
1.2.5 Cultivation of spirochaetes

1.3 The biological characteristics of B. burgdorferi

1.3.1 Introduction
1.3.2 In Vitro culture of B. burgdorferi
1.3.3 In Vivo culture of B. burgdorferi
1.3.4 Genetic structure
1.3.5 Identification and characterisation of the immunodominant antigens of B. burgdorferi sensu lato.
 a) Introduction

Page
b) Properties of main antigenic proteins of
B. burgdorferi

\[p83/100 \]

\[p60 \]

flagellin (41 kDa)

Osp A and Osp B (31 kDa and 34 kDa respectively)

Osp D (28 kDa)

Osp E and Osp F (19 kDa and 26 kDa respectively)

Osp C (21 kDa)
1.5.6 Prognosis

1.6 Management of Lyme Borreliosis
1.6.1 Introduction
1.6.2 Antibiotic treatment
 a) Early disease - Stage I and II
 b) Late disease - Stage III
1.6.3 Jarisch-Herxheimer reaction
1.6.4 Prevention

1.7 Diagnosis of Lyme Borreliosis
1.7.1 Introduction
1.7.2 Microbial diagnosis of Lyme Borreliosis
 a) Culture of *B. burgdorferi*
 Development of culture media
 b) Changes in *B. burgdorferi* following in vitro culture
 c) Isolation from clinical specimens
 d) Direct visualisation of *B. burgdorferi*
 Dark field and phase contrast microscopy
 Staining methods for light microscopy
 Immunofluorescence
 Antigen detection in body fluids

1.7.3 Serological Diagnosis of Lyme Borreliosis
 a) Introduction
 b) Immunological aspects of Lyme Borreliosis
 Introduction
 Humoral immune response in Lyme borreliosis
 Immune response in the CNS
Cellular immune response

Specific T Cell Populations

Phagocytic cell interactions

c) Crossreactive proteins of B. burgdorferi

d) Serological tests for the detection of B. burgdorferi

Immunofluorescence

Hemagglutination

Enzyme-linked immunosorbent assay (ELISA)

(i) ELISA

(ii) IgM Capture ELISA

(iii) Peptide enriched and recombinant antigen ELISA

(iv) Borreliacidal activity

e) Immunoblotting

f) Antibody detection in CSF

g) Seronegative Lyme borreliosis

h) Lymphocyte stimulation test

1.7.4 Amplification of B. burgdorferi DNA

1.8 Lyme Borreliosis in domestic animals

1.8.1 Introduction

1.8.2 Lyme Borreliosis in dogs

1.8.3 Lyme Borreliosis in cats

1.8.4 Lyme Borreliosis in horses

1.8.5 Lyme Borreliosis in cattle

1.8.6 Lyme Borreliosis in sheep

1.9 Epidemiology of Lyme Borreliosis

1.9.1 Geographical distribution
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9.2 Lyme Borreliosis in Australia</td>
<td>78</td>
</tr>
<tr>
<td>CHAPTER 2: Materials and Methods</td>
<td>80</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>80</td>
</tr>
<tr>
<td>2.2 Culture techniques</td>
<td>80</td>
</tr>
<tr>
<td>2.2.1 Laboratory strains of Borrelia burgdorferi</td>
<td>80</td>
</tr>
<tr>
<td>2.2.2 Culture media</td>
<td>81</td>
</tr>
<tr>
<td>a) Glassware</td>
<td>81</td>
</tr>
<tr>
<td>b) Antibacterial reagents</td>
<td>81</td>
</tr>
<tr>
<td>c) Media quality control</td>
<td>81</td>
</tr>
<tr>
<td>2.2.3 Culture Techniques</td>
<td>81</td>
</tr>
<tr>
<td>a) Laboratory strains of Borrelia burgdorferi</td>
<td>81</td>
</tr>
<tr>
<td>b) Microbial cultivation of ticks</td>
<td>82</td>
</tr>
<tr>
<td>c) Purification of tick spirochaete isolates contaminated with other bacteria</td>
<td>82</td>
</tr>
<tr>
<td>d) Antigen preparation</td>
<td>82</td>
</tr>
<tr>
<td>2.3 Immunoblotting</td>
<td>83</td>
</tr>
<tr>
<td>2.3.1 Preparation of antigen</td>
<td>83</td>
</tr>
<tr>
<td>2.3.2 Protein Estimation</td>
<td>83</td>
</tr>
<tr>
<td>2.3.3 Polyacrylamide gel electrophoresis (PAGE)</td>
<td>84</td>
</tr>
<tr>
<td>2.3.4 Protein staining of the gel</td>
<td>84</td>
</tr>
<tr>
<td>2.3.5 Protein transfer to nitrocellulose</td>
<td>85</td>
</tr>
<tr>
<td>2.3.6 Staining of the nitrocellulose</td>
<td>85</td>
</tr>
<tr>
<td>2.3.7 Immunoblotting</td>
<td>86</td>
</tr>
<tr>
<td>2.4 Polymerase Chain Reaction</td>
<td>87</td>
</tr>
</tbody>
</table>
2.4.1 Preparation of Samples
 a) Preparation of spirochaete DNA

2.4.2 Oligonucleotides for P.C.R.

2.4.3 PCR Amplification

2.4.4 Visualisation of PCR products

2.5 DNA Cloning

2.5.2 Gene cleaning of PCR products

2.5.2 Ligation of PCR products
 a) Vector
 b) Ligation protocol

2.5.3 Transformation of PCR product
 a) Preparation of competent *Escherichia coli* cells
 b) Transformation of competent *E. coli* cells with the plasmid vector
 c) Selection of transformed colonies

2.6 Isolation and analysis of plasmid DNA

2.6.1 Mini-prep (alkali lysis method) for plasmid DNA extraction

2.6.2 Wizard Minipreps DNA Purification System (Promega) for plasmid DNA extraction

2.6.3 Restriction endonuclease digestion of the plasmid

2.7 DNA Sequencing of the PCR product

2.7.1 Preparing single stranded DNA

2.7.2 Sequencing Protocols

2.7.3 Preparation of Sequencing gel

2.7.4 Autoradiography

2.7.5 Automatic sequencing
2.8 Staining techniques
2.8.1 Preparation of microorganisms
2.8.2 Giesma stain
2.8.3 Immunofluorescence

2.9 Electronmicroscopy
2.9.1 Scanning Electron Microscopy (S.E.M.)
2.9.2 Transmission Electron Microscopy (T.E.M.)
 a) Preparation of spirochaete samples
 b) Negative staining of spirochaete preparation and observation using T.E.M.

CHAPTER 3: Preliminary characterisation of Borrelia-like microorganisms found in Australian ticks

3.1 Introduction
3.2 Microbial examination of ticks
3.2.1 Initial studies
 a) Cultivation of ticks
 b) Observation of spirochaetes
3.2.2 Purification and concentration of spirochaetes
 a) Selective inhibition using antibacterial drugs
 b) Spirochaete purification using combined drug inhibition and filtration
 c) Purity

3.3 Cultural requirements for tick-derived spirochaetes
3.3.1 Growth in BSK-II medium
3.3.2 Can bacterial contaminants improve the growth of tick-associated spirochaetes?

a) Conditioning experiments

3.4 Initial conclusions

3.5 Morphology of the tick associated spirochaetes

3.5.1 Introduction

3.5.2 Dark-field examination of spirochaetes

a) Morphology of spirochaetes grown in BSK medium

b) Morphology of tick-associated spirochaetes grown in modified BSK medium

c) Spirochaete storage and recovery

3.5.3 Spirochaetal morphology - stained preparations

a) Giesma stain

b) Indirect Immunofluorescence

3.6 Ultrastructure of spirochaetes

3.6.1 Introduction

3.6.2 T.E.M. of B. burgdorferi - Standardising the procedure

3.6.3 T.E.M. of killed B. burgdorferi

3.6.4 T.E.M. of the tick isolates
3.6.5 Final comments on ultrastructure

3.7 Collection of Tick species
3.7.1 Choice of tick species
3.7.2 Collection of ticks
 a) Area of collection
 b) Tick storage
 c) Tick identification and culture

3.8 The polypeptide and antigenic components of candidate Australian tick-associated borreliae
3.8.1 Introduction
3.8.2 SDS-PAGE analysis of pure isolates 20, 51 and 72
3.8.3 SDS-PAGE analysis of isolate 17
3.8.4 Immunoblotting for the comparison of Australian borreliae with Lyme borreliae
 a) Detection of LB flagellin and outer surface protein antigens using monoclonal antibodies
 b) Reactivity of Australian tick isolate 17 with the MAb panel

3.9 Molecular analysis of tick isolates
3.9.1 Introduction
3.9.2 Choice of primers and the results of PCR amplification
 a) Amplification using Osp A primers
 b) Amplification using flagellin primers
 c) Amplification using 16S rRNA primers
 d) Summary
3.9.3 DNA Sequencing
CHAPTER 4: Serological and clinical evidence for the existence of Lyme Borreliosis in Australia

4.1 Introduction

4.2 Development of immunoblotting techniques for detection of B. burgdorferi antibody

4.2.1 Introduction

4.2.2 Polyacrylamide gel electrophoresis
 a) Introduction
 b) Optimisation of separation parameters

 Choice of electrophoresis equipment

 Strength of current for the electrophoretic separation of proteins

 Protein concentration and detection

4.2.3 Protein transfer to nitrocellulose membranes
 a) Introduction
 b) The significance of acrylamide concentration
 c) Gel thickness
 d) Temporal aspects of electrotransfer
 e) Optimising transfer current / power range
 f) Transfer buffering
 g) Choice of membrane substrate for immunoblotting

4.2.4 Immunological detection of antigens by immunoblotting
 a) Blocking buffers
 b) Antigen-antibody reaction time
 c) Detection system
4.3 SDS-Page and immunoblot methodology adapted for this study

4.4 Interpretation of Immunoblots

4.4.1 Criteria for Immunoblot (Western blot) positivity

4.4.2 Application of the Western blot procedure

4.4.3 Interpretation of Western blots
 a) Preliminary findings
 b) Diversity of immunoglobulin reactivity to LB polypeptides among candidate LB patients

4.4.4 Determining the specificity of the Western blot procedure

4.5 A Study of Patients with Clinical Lyme disease

4.5.1 Introduction

4.5.2 Identification of seven likely Australian Lyme disease candidates

4.5.3 Western blot serology of seven patients

4.6 Discussion

CHAPTER 5: The sero-epidemiology of Australian Lyme borreliosis: a preliminary investigation

5.1 Introduction

5.1.2 Specimen details

5.2 Distribution of LB candidates with positive serology to Lyme borreliae

5.2.1 Geographical areas studied

5.2.2 Geographical distribution of borreliial genotypes as determined by serology
5.3 Discussion

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIBLIOGRAPHY</td>
<td>237</td>
</tr>
<tr>
<td>APPENDIX A - COMPANY ADDRESSES</td>
<td>241</td>
</tr>
<tr>
<td>APPENDIX B - BUFFERS AND SOLUTIONS</td>
<td>280</td>
</tr>
<tr>
<td>APPENDIX C - CDC LYME DISEASE NATIONAL SURVEILLANCE CASE DEFINITION, USA</td>
<td>285</td>
</tr>
<tr>
<td>APPENDIX D - VETERINARY PRACTICES</td>
<td>298</td>
</tr>
<tr>
<td>APPENDIX E - PATHOLOGY PRACTICES</td>
<td>301</td>
</tr>
<tr>
<td>APPENDIX F - ANIMAL HEALTH PRACTICES</td>
<td>302</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>amino acid</td>
</tr>
<tr>
<td>ACA</td>
<td>Acrodermatitis chronica atrophicans</td>
</tr>
<tr>
<td>BCIP</td>
<td>5-bromo-4-chloro-3-indolyl phosphate</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>BSK</td>
<td>Barbour-Stoenner-kelly</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>ECM</td>
<td>erythema chronicum migrans</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamino tetraacetate</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>EM</td>
<td>erythema migrans</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>fla</td>
<td>flagellin gene</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>H.L.</td>
<td>Haemaphysalis longicornis (alternate spelling Haemaphysalis longicornis)</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-2-hydroxyethylpiperazine-N(^1)-2-ethane-sulphonic acid</td>
</tr>
<tr>
<td>I.H.</td>
<td>Ixodes holocyclus</td>
</tr>
<tr>
<td>IFAT</td>
<td>immunofluorescent antibody titre</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>LB</td>
<td>Lyme borreliosis</td>
</tr>
<tr>
<td>M</td>
<td>mole (s), molar</td>
</tr>
<tr>
<td>mA</td>
<td>milliampere</td>
</tr>
<tr>
<td>MAb</td>
<td>monoclonal antibody</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>millimole (s), millimolar</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>NBT</td>
<td>nitroblue tetrazolium</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>Osp</td>
<td>Outer surface protein</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene fluoride</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>S.E.M.</td>
<td>scanning electron microscopy</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquaticus DNA polymerase</td>
</tr>
<tr>
<td>T.E.M.</td>
<td>transmission electron microscopy</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N(^1),N(^1)-tetramethylethylenediamine</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µl</td>
<td>millilitre</td>
</tr>
<tr>
<td>µm</td>
<td>micrometre</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-bromo-4-chloro-3-indol-β-D-galactoside</td>
</tr>
</tbody>
</table>
SYNOPSIS

In 1989 when this study commenced, Lyme disease or Lyme Borreliosis (LB), was still a relatively recently identified disease entity. The earliest clinical description of some aspects of this disease are from Europe and extend back as far as 1883. These observations accumulated for nearly a century before the various manifestations were correlated and described as a single entity. Clinically, the description of LB is complex and comprises a diverse range of syndromes. Research established that distinct differences in the clinical presentations of patients occurred depending on the geographical locality in which they were infected.

Anecdotal reports that an illness not dissimilar to the Northern Hemisphere LB was common in the Manning Valley District of New South Wales (NSW) began circulating in the late 1980's. However, because of the geographical isolation of Australia from the Northern Hemisphere it seemed at that time only a remote possibility that such a disease could exist on this continent. If it did exist, it was questionable as to how likely it would be that it had the same cause as Northern Hemisphere LB.

This dissertation has been directed towards obtaining conclusive evidence that LB exists in Australia. The objectives have been:

1. To determine whether Australian ticks carry and transmit spirochaetes related to *Borrelia burgdorferi*.

2. To develop a specific and sensitive sero-diagnostic test to assess whether or not there is a correlation between clinical illness and the presence of *Borrelia burgdorferi* specific antibodies in likely Australian LB candidates.

3. To access the distribution of LB along the East Coast of Australia.
This study was initiated in December 1989 and concluded in December 1994.

It began as an attempt to detect the presence of *B. burgdorferi* in Australian ticks and concentrated on the Manning Valley, where two main species of ticks are common; *Ixodes holocyclus* and *Haemophysalis longicornis*. Because these tick species are widely distributed, the study extended south to include the Hunter Valley and to the Sydney regions (Plate 1).

Plate 1 Map of Australia. Main locations of study are as indicated

Despite modest success in the isolation of fragile spiral shape organisms, using conventional Borrelia culture methods (Wills and Barry, 1991), a controversy
subsequently developed as to the true nature of these agents, because it was claimed that they were artefacts, probably aggregates of bacterial flagellae (Russell et al., 1994). From experiments based on improvements in culture conditions and examination of the ultrastructure of antibacterially treated cultures of *B. burgdorferi*, it was concluded that the spiral shaped organisms detected in this study were mostly dead spirochaetes. Subsequent studies using monoclonal antibodies directed against the major structural proteins, as well as polymerase chain amplification of microbial DNA, provided evidence that *B. burgdorferi* - like spirochaetes are likely to occur in Australian ticks.

A second approach was an attempt to correlate the presence of LB-like symptoms in patients with the presence of LB-specific antibody. This study commenced in 1992, in conjunction with Dr B. Hudson, Infectious Diseases Physician at Royal North Shore Hospital, Sydney. The objective of this phase of the work was to develop a suitable serological test. The three genospecies of *B. burgdorferi* were used to develop and evaluate the usefulness of an immunoblot procedure and interpretation of this test was based on recommendations made by the American Center for disease Control [Centers for Disease Control and Prevention. Case definition for public health surveillance. MMWR, 39(RR-13):19-21, 1990] (Appendix C). Using stringent criteria for the clinical diagnosis of LB, Dr Hudson subdivided candidate LB patients into three categories based on the decreasing likelihood of LB specific illness. A correlation was established between the likelihood of clinical illness and positive serology. An unexpected finding to emerge was that the diagnostic specificity of the immunoblot test varied according to which genospecies of *B. burgdorferi* was used as antigen. Sera from Australian patients were most likely to be reactive to Osp A of *B. garinii*, with reactivity to *B. afzelii* Osp A less common. They were least likely to be reactive to *B. burgdorferi* sensu stricto.

The clinical manifestations of LB, acquired in Australia, resembled more closely those described in Europe, rather than in the USA. This may correlate to the nature of Australian *B. burgdorferi*. Due to more frequent seroreactivity in Australian patients to
B. garinii compared with other strains, especially B. burgdorferi sensu stricto, suggests that Lyme borreliosis in Australia is more likely to be caused by an organism resembling B. garinii.

This dissertation supports the conclusion that LB exists indigenously in Australia and provides a reasonable explanation for the controversy created by previous Australian studies. Further research is needed concerning several issues arising from this study, namely:

1. Development of suitable cultural conditions for the growth and maintenance of Australian B. burgdorferi.

2. The molecular characteristics of Australian strains of B. burgdorferi so that a taxonomical comparison with existing genospecies can be obtained.

3. A more exact definition of the clinical manifestations of Australian Lyme disease and the immunological responses of patients.

4. Determination of epizootiology of LB in Australia, and the importance of LB in Australian wild and domestic animal populations.
FOREWORD

This dissertation is concerned with the biology, morphology and cultural characteristics of a *Borrelia burgdorferi*-like organism found in Australian ticks and with the clinical and serological features of a Lyme borreliosis like illness thought to be associated with tick bite.

The introduction to this dissertation examines the history of Lyme disease, including the early clinical presentations observed independently in both America and Europe, and the ultimate realisation that both disease syndromes are caused by the same organism, *B. burgdorferi*. The review continues to examine the complexity and fastidious nature of *B. burgdorferi*, its modes of transmission and the difficulties in the diagnosis of the various clinical syndromes with which it is associated. The introduction ends with a discussion of the epidemiology of the disease and its importance in non-human animals.

This review has taken into account all publications in print and available in Australia at the 30th July 1995.

Following the literature review (Chapter 1), there is a description of the experimental methods (Chapter 2). The experimental results have been subdivided into three chapters:

1. **Chapter 3**: Preliminary characterisation of Borrelia-like microorganisms found in Australian ticks.
2. **Chapter 4**: Clinical and immunological assessment of Australian LB patients.
3. **Chapter 5**: Epidemiology of Australian LB.

Each experimental chapter is a discrete unit, containing both the experimental findings and a discussion that is relevant to the topic under consideration.