The Effect of Maternal Asthma During Pregnancy on Placental Function and Fetal Development

Vanessa Evonne Murphy
B Med Chem (Hons)

A thesis submitted for the degree of Doctor of Philosophy
The University of Newcastle, Australia
January 2004
Declaration

I hereby certify that the work embodied in this thesis is the result of original research and has not been submitted for a higher degree to any other University or Institution

Signed

Vanessa E Murphy
January 2004
Acknowledgements

Many thanks go to my supervisors, Dr Vicki Clifton and Prof Roger Smith, for encouraging me and supporting me over the past four years. I have enjoyed my PhD enormously because of your guidance and the opportunities you have given me. I have thoroughly enjoyed being part of such an enthusiastic group of scientific and clinical researchers who together are interested in all aspects of human parturition and complications of pregnancy. I have learnt a lot and have appreciated my time here. Vick, thanks for pushing me to always do my best and encouraging me to have a good time doing it. I received financial assistance during my PhD in the form of a Dora Lush Biomedical National Health and Medical Research Council (NHMRC) Scholarship. Additional funding from the following sources allowed me to present my work at national and international conferences: Newcastle University Postgraduate Student’s Association, Medibank Private, the Endocrine Society of Australia and the Australian Society for Medical Research (ASMR).

So many people have contributed to the asthma and pregnancy study and I would like to thank each one for their contribution to this project, especially Prof Peter Gibson, who was involved in the clinical management of each subject’s asthma during their pregnancy and Sr Carolyn Kessell who recruited asthmatic women and assessed their asthma, Prof Warwick Giles who performed ultrasound examinations, our collaborator Dr Robert Baxter from the Kolling Institute in Sydney for assistance with IGFBP assays, Maria Bowman for carrying out CRH assays, the midwives of the John Hunter Hospital antenatal clinic for assistance with recruitment of subjects and the midwives of the delivery suite who were so consistent in ensuring that we were contacted and able to collect placental samples at all hours. I also thank the pregnant women who volunteered for this study and Dr Vicki Clifton for co-ordinating the activities of the research group.

I would like to acknowledge the assistance and encouragement from all the members of the Mothers and Babies Research Centre, especially A/Prof Tamas Zakar for his helpful advice on the enzyme activity study, Dr Andrew Bisits for statistical advice, Dr Sam Mesiano and Tamas Zakar for the provision of β-actin primers, Annette Osei-Kumah for providing TNF-α, IL-1β, IL-6 and IL-8 primers, Carol Mitchell for teaching me the PCR technique and assisting with collection of control samples and Philippa Talbot for assistance in data collection and information regarding asthma assessments. I thank
everyone in the lab for their friendship and encouragement: Natalie, Toni, Renee, Nicki, Annette, Rohan, Aaron, Tan, Carol, Jo, Giavanna, Sam, Tamas, Rick, John, Cheng, Gemma, Maria, Kristy, Kellie, Manon, Mark, Ian, Bruce, Shaun, Trish, Aimee, Philippa, Pawel, Rebecca, Kath, Renee C, Jacqueie, Lynda, David, Sonya, Belinda and Naomi. Special thanks to Joanne Davies for doing such a thorough job of proof-reading the thesis and thanks to Giavanna and Renee for taking the time to read various sections and for their helpful comments.

Some parts of my PhD work were carried out at another institution, the Ferring Research Institute in San Diego, California. I would like to acknowledge the support of Dr Pierre Riviere, and supervision of Dr Karen Akinsanya and Dr Yung-Chih Wang during my time there. Assistance in the use of the SELDI machine by Dr James LeBlanc of Ciphergen is gratefully acknowledged. I would especially like to thank Renee Johnson who kept me company for three long months away from home and from whom I learnt so much. Thanks Renee for your patience and assistance in the proteomics work and to all the staff at Ferring who made us feel so welcome. Financial assistance to conduct this work overseas was provided by the NHMRC, ASMR and a University of Newcastle RGC special grant.

I am thankful for wonderful support from my family and friends during the last few years. I would especially like to thank my Mum and Dad for bringing me up to recognise the value of a good education and for their constant encouragement in my academic pursuits. I would like to thank Teresa, my “sister”, for her friendship and advice over the years. It’s been great to watch you complete your PhD just ahead of me and I admire your drive and determination so much.

Last but not least, I’d like to thank the person who has done more to make my life on earth worth living than anyone or anything else – my best friend, life partner and soul mate. Chris, I love the way you have been interested in my research and have become so enthusiastic about my work. Thanks for all the ways you helped me with my PhD, from driving me into work at strange hours, engaging in debates about asthma and pregnancy, to your technical assistance over the last few years and more recently in producing this thesis. Thanks for always loving me just the way I am, whether at home or away.

Philippians 4:13

I can do all things through Christ who strengthens me
Publication List

The work presented in this thesis has directly resulted in the following publications:

2. **Murphy VE** and Clifton VL. Alterations in human placental 11β-hydroxysteroid dehydrogenase type 1 and 2 with gestational age and labour. Placenta 2003; 24(7), 739-744.

The work presented in this thesis has directly resulted in the following abstracts/conference presentations:

3. **Murphy VE**, Zakar T, Smith R, Giles WB, Gibson PG and Clifton VL. The effects of asthma during pregnancy on placental 11β-hydroxysteroid dehydrogenase type 2 and neonatal birth weight centile. 10th NSW Scientific
Meeting of the Australian Society for Medical Research, Sydney, Australia, 4 June 2001 (Oral).

4. **Murphy VE**, Zakar T, Smith R, Giles WB, Gibson PG and Clifton VL. A potential mechanism for growth retardation in pregnancies complicated by asthma. 44th Annual Scientific Meeting of the Endocrine Society of Australia, Gold Coast, Australia, 9-12 September 2001 (Oral - Finalist for the Novartis Junior Scientist Award).

5. Clifton VL, **Murphy VE**, Giles WB, Zakar T, Gibson PG and Smith R. 11β-hydroxysteroid dehydrogenase type 2 activity in pregnancies complicated by asthma. 8th Meeting of the International Federation of Placenta Associations, Sorrento, Italy, 19-23 September 2001 (Presented by Dr Vicki Clifton).

6. **Murphy VE**, Zakar T, Smith R, Giles WB, Gibson PG and Clifton VL. Female fetal growth is adversely affected by maternal asthma in the absence of glucocorticoid therapy. 40th National Scientific Conference of the Australian Society for Medical Research, Gold Coast, Australia, 24-27 November 2001 (Poster - won the Medibank Private Student Researcher Award).

8. Clifton VL, **Murphy VE**, Zakar T, Smith R, Giles WB and Gibson PG. Female fetal growth is adversely affected by maternal asthma in the absence of inhaled glucocorticoid (ICS) therapy. 98th Annual Scientific Meeting of the American Thoracic Society, Atlanta, GA, USA, 17-22 May 2002 (Presented by Prof Peter Gibson).

9. **Murphy VE**, Gibson PG, Giles WB, Zakar T, Smith R, Kessell CG and Clifton VL. Maternal asthma affects female fetal growth and is associated with reduced placental 11β-HSD2 activity and altered sensitivity to cortisol. 11th NSW Scientific Meeting of the Australian Society for Medical Research, Sydney, Australia, 3 June 2002 (won Best Poster Presentation by a Student).

15. **Murphy VE**, Gibson PG, Giles WB, Smith R and Clifton VL. Placental and maternal inflammatory pathways in pregnancies complicated by asthma. 9th Meeting of the International Federation of Placenta Associations, Mainz, Germany, 24-27 September 2003 (Oral - won the New Investigator Award).

Table of Contents

Table of Figures ... v
Table of Tables... vii
Abbreviations ... ix
Abstract ... xii
Chapter 1 Literature Review .. 1
Literature Review Part 1: Asthma and Pregnancy ... 2
 1.1 The pathophysiology of asthma .. 2
 1.2 The role of inflammation in asthma ... 3
 1.3 The prevalence of asthma ... 4
 1.4 The effect of asthma on pregnancy outcome.. 5
 1.4.1 Population based studies ... 6
 1.4.2 Prospective studies ... 15
 1.4.3 Possible mechanisms for the effect of maternal asthma on pregnancy outcomes ... 20
 1.5 The effect of pregnancy on asthma severity ... 22
 1.5.1 Possible mechanisms for the effect of pregnancy on maternal asthma 27
 1.6 The treatment of asthma during pregnancy ... 29
 1.6.1 Theophylline ... 30
 1.6.2 β2-agonists .. 31
 1.6.3 Glucocorticoids .. 32
Literature Review Part 2: Fetal Growth ... 39
 1.7 Low birth weight .. 39
 1.8 Developmental origins of adult disease .. 40
 1.9 The role of the mother in fetal growth regulation .. 45
 1.10 The role of the placenta in fetal growth regulation .. 49
 1.10.1 Trophoblast invasion and uteroplacental blood flow .. 50
 1.10.2 Nutrient transport ... 51
 1.10.3 Placental production of growth factors and growth regulating hormones 53
 Insulin–like growth factors (IGFs).. 53
 1.10.4 Placental metabolism of glucocorticoids .. 58
 Glucocorticoids and the fetus .. 58
 Placental 11β-hydroxysteroid dehydrogenase (11β-HSD) 60
 Placental 11β-HSD2 and fetal growth ... 64
 Glucocorticoids and fetal programming .. 65
 Regulation of placental 11β-HSD2 ... 68
 1.11 The role of the fetus in growth regulation ... 70
Chapter 2 Background, Hypotheses and Aims .. 74
 2.1 Background .. 75
 2.2 Hypotheses .. 76
 2.3 Aims ... 76
Chapter 3 Methods .. 80
 3.1 Subject recruitment ... 81
 3.2 Assessment of maternal asthma .. 81
 3.3 Assessment of maternal asthma treatment ... 82
3.4 Assessment of maternal inflammation .. 83
3.5 Assessment of fetal growth ... 83
3.6 Assessment of pregnancy outcomes ... 84
3.7 Placenta and cord blood collection ... 85
3.8 Measurement of placental 11β-HSD2 activity .. 86
 3.8.1 Principles of 11β-HSD2 activity assay ... 86
 Radiometric conversion assay .. 86
 Thin layer chromatography (TLC) .. 87
 Scintillation Counting ... 87
 3.8.2 Materials .. 88
 3.8.3 Protein Extraction .. 88
 3.8.4 11β-HSD2 enzyme activity assay .. 89
 3.8.5 Optimisation of 11β-HSD2 enzyme activity assay 90
3.9 Measurement of placental 11β-HSD2 protein expression by Western blotting .. 94
 3.9.1 Principle of Western blotting ... 94
 3.9.2 Materials .. 94
 3.9.3 Western blotting ... 95
3.10 Measurement of placental gene expression by quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) 96
 3.10.1 Principles of PCR ... 96
 3.10.2 Materials .. 100
 3.10.3 Primer design .. 100
 3.10.4 RNA extraction, purification and reverse transcription 102
 3.10.5 Quantitative PCR ... 105
3.11 Cord blood hormone measurements .. 107
 3.11.1 Principles of radioimmunoassay ... 107
 3.11.2 Cortisol radioimmunoassay ... 108
 3.11.3 Unconjugated estriol radioimmunoassay ... 108
 3.11.4 Corticotropin Releasing Hormone (CRH) radioimmunoassay 109
 3.11.5 IGFBP radioimmunoassays .. 110
3.12 Statistical Analysis .. 111
 3.13.1 Principles of SELDI-TOF MS ... 112
 3.13.2 Materials .. 114
 3.13.3 Sample preparation .. 115
 3.13.4 Calibration ... 117
 3.13.5 Plasma protein profiling method ... 119
 3.13.6 Placental tissue protein profiling ... 121
 3.13.7 Data Analysis ... 123
Results/Discussion .. 125
Chapter 4 Fetal Growth in Asthmatic Pregnancies ... 126
 4.1 Maternal characteristics ... 127
 4.2 Fetal growth during gestation .. 137
 4.3 Neonatal size at birth .. 142
 4.4 Fetal Growth - Discussion ... 152
 4.5 Fetal Growth - Summary .. 157
Chapter 5 The Mother ... 158
 5.1 Maternal asthma during pregnancy ... 159
5.2 Maternal lung function during pregnancy ...167
5.3 Maternal glucocorticoid use during pregnancy170
5.4 Maternal inflammation during pregnancy ...171
5.5 Maternal plasma proteins during pregnancy176
 5.5.1 The effect of asthma on maternal plasma proteins during pregnancy ...176
 5.5.2 The effect of fetal sex on maternal plasma proteins during pregnancy ...178
 5.5.3 The effect of asthma and fetal sex on maternal plasma proteins during pregnancy180
5.6 Pregnancy outcomes for women with asthma184
5.7 The Mother - Discussion ..188
5.8 The Mother – Summary ..195

Chapter 6 The Placenta ..196
6.1 Placental characteristics ...197
6.2 Placental 11β-HSD ...200
 6.2.1 Placental 11β-HSD2 activity ..200
 6.2.2 Placental 11β-HSD2 protein ..201
 6.2.3 Placental 11β-HSD2 mRNA ..202
 6.2.4 Placental 11β-HSD1 mRNA ..203
6.3 Placental CRH ..204
6.4 Placental growth factors ..205
6.5 Placental cytokines ..208
6.6 Placental glucocorticoid receptors ..212
6.7 Placental protein profile ...217
 6.7.1 The effect of maternal asthma on placental proteins217
 6.7.2 The effect of fetal sex on placental proteins219
 6.7.3 The effect of maternal asthma and fetal sex on placental proteins 220
 6.7.4 Human defensins in the placenta ..220
6.8 The Placenta - Discussion ..222
6.9 The Placenta - Summary ..231

Chapter 7 The Fetus ...232
7.1 Neonatal characteristics ...233
7.2 Fetal HPA axis development ..236
 7.2.1 Umbilical vein cortisol ..236
 7.2.2 Umbilical vein estriol ...237
 7.2.3 Umbilical vein CRH ...240
7.3 Umbilical vein IGFBP-1 and IGFBP-3 ..240
7.4 Cord blood protein profile ..245
 7.4.1 The effect of maternal asthma on cord blood proteins245
 7.4.2 The effect of fetal sex on cord blood proteins247
 7.4.3 The effect of maternal asthma and fetal sex on cord blood proteins ...247
7.5 The Fetus - Discussion ..249
7.6 The Fetus - Summary ...253

Chapter 8 Linking the Mother, Placenta and Fetus254
8.1 Final summary ...255
8.2 Final discussion ..256
8.3 Clinical and scientific implications ..262
8.4 Future work ..263
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.1</td>
<td>Regulation of placental 11β-HSD2</td>
<td>263</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Maternal inflammatory pathways in asthma</td>
<td>264</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Maternal and fetal oxygenation in asthmatic pregnancies</td>
<td>264</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Identification and characterisation of maternal, placental and fetal proteins</td>
<td>265</td>
</tr>
<tr>
<td>8.5</td>
<td>Final conclusion</td>
<td>266</td>
</tr>
</tbody>
</table>

References .. 268
Appendices ... 321

Appendix 1 Participant information sheet and consent form (control subjects)322
Appendix 2 Participant information sheet and consent form (asthmatic subjects) ...327
Appendix 3 Ethics approval .. 332
Appendix 4 Asthma Management Service scripting ... 333
Appendix 5 Asthma action plan ... 335
Appendix 6 Cumulative inhaled glucocorticoid use during pregnancy336
Appendix 7 John Hunter Hospital intrauterine growth charts ... 337
Appendix 8 Buffer recipes ... 338
 Sodium phosphate buffer with protease inhibitors ... 338
 Western blot buffers .. 338
 PCR buffers ... 339
 SELDI buffers ... 340
Appendix 9 SELDI spot protocols ... 341
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Example spirogram showing the FEV$_1$ and FVC</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Chemical structures of cortisol and synthetic glucocorticoid drugs</td>
<td>33</td>
</tr>
<tr>
<td>1.3</td>
<td>Interconversion of cortisol and cortisone by 11β-HSD</td>
<td>61</td>
</tr>
<tr>
<td>1.4</td>
<td>Aspects of the relationship between mother, placenta and fetus to be examined in this study</td>
<td>79</td>
</tr>
<tr>
<td>1.5</td>
<td>Placenta from an asthmatic woman showing location of the umbilical vein</td>
<td>86</td>
</tr>
<tr>
<td>1.6</td>
<td>Optimisation of 11β-HSD2 activity over time</td>
<td>90</td>
</tr>
<tr>
<td>1.7</td>
<td>Cofactor dependence of 11β-HSD2 activity</td>
<td>91</td>
</tr>
<tr>
<td>1.8</td>
<td>cortisol saturation curve for 11β-HSD2</td>
<td>92</td>
</tr>
<tr>
<td>1.9</td>
<td>Lineweaver-Burk plot used to determine enzyme kinetics of 11β-HSD2</td>
<td>92</td>
</tr>
<tr>
<td>1.10</td>
<td>Protein concentration dependence of 11β-HSD2</td>
<td>93</td>
</tr>
<tr>
<td>1.11</td>
<td>Western blot</td>
<td>96</td>
</tr>
<tr>
<td>1.12</td>
<td>Quantitative RT-PCR using SybrGreen</td>
<td>98</td>
</tr>
<tr>
<td>1.13</td>
<td>Agarose gel electrophoresis of extracted placental RNA</td>
<td>104</td>
</tr>
<tr>
<td>1.14</td>
<td>Amplification plots of the PCR reaction</td>
<td>106</td>
</tr>
<tr>
<td>1.15</td>
<td>Dissociation curves of the PCR products</td>
<td>107</td>
</tr>
<tr>
<td>1.16</td>
<td>Bioprocessor and eight spot ProteinChip® arrays</td>
<td>116</td>
</tr>
<tr>
<td>1.17</td>
<td>Ciphergen Protein Biology System IIc</td>
<td>116</td>
</tr>
<tr>
<td>1.18</td>
<td>Low and high mass spectra</td>
<td>117</td>
</tr>
<tr>
<td>1.19</td>
<td>Low and high mass calibration spectra</td>
<td>118</td>
</tr>
<tr>
<td>1.20</td>
<td>Detection of CRH in pregnant plasma</td>
<td>120</td>
</tr>
<tr>
<td>1.21</td>
<td>WCX pH 6 and pH 9 spectra for placental homogenates</td>
<td>122</td>
</tr>
<tr>
<td>1.22</td>
<td>Distribution of mild, moderate and severe asthmatics within the no glucocorticoid and glucocorticoid groups</td>
<td>133</td>
</tr>
<tr>
<td>1.23</td>
<td>Birth weight of male and female neonates in asthmatic and non-asthmatic pregnancies</td>
<td>148</td>
</tr>
<tr>
<td>1.24</td>
<td>Birth weight of male and female neonates of women with mild asthma according to glucocorticoid use</td>
<td>148</td>
</tr>
<tr>
<td>1.25</td>
<td>Alterations in fetal growth in asthmatic pregnancies</td>
<td>157</td>
</tr>
<tr>
<td>1.26</td>
<td>Birth weight in the no glucocorticoid group according to maternal use of β2-agonists during pregnancy</td>
<td>164</td>
</tr>
<tr>
<td>1.27</td>
<td>Birth weight in the no glucocorticoid group according to the provision of asthma action plans</td>
<td>166</td>
</tr>
<tr>
<td>1.28</td>
<td>Maternal lung function during pregnancy in asthmatic women</td>
<td>168</td>
</tr>
<tr>
<td>1.29</td>
<td>Relationship between maternal lung function and female birth weight</td>
<td>169</td>
</tr>
<tr>
<td>1.30</td>
<td>Inhaled glucocorticoid intake during pregnancy in asthmatic women</td>
<td>171</td>
</tr>
<tr>
<td>1.31</td>
<td>Circulating monocytes in asthmatic women during pregnancy</td>
<td>172</td>
</tr>
<tr>
<td>1.32</td>
<td>Circulating eosinophils in asthmatic women during pregnancy</td>
<td>173</td>
</tr>
<tr>
<td>1.33</td>
<td>Asthma associated peptide in maternal plasma</td>
<td>178</td>
</tr>
<tr>
<td>1.34</td>
<td>Female fetus associated protein in maternal plasma</td>
<td>179</td>
</tr>
<tr>
<td>1.35</td>
<td>Changes in maternal plasma protein profiles in the presence of asthma according to fetal sex</td>
<td>181</td>
</tr>
</tbody>
</table>
Figure 5.11 Maternal plasma peak 22205 and 22231...182
Figure 5.12 Maternal plasma peak 6556 at 18 and 30 weeks gestation.................183
Figure 5.13 The interaction between mother and fetus in pregnancies complicated by asthma...195
Figure 6.1 Placental 11β-HSD2 activity according to glucocorticoid intake classification...201
Figure 6.2 Placental 11β-HSD2 protein according to glucocorticoid intake classification..202
Figure 6.3 Placental 11β-HSD2 mRNA according to glucocorticoid intake classification..203
Figure 6.4 Placental CRH mRNA according to glucocorticoid intake classification..205
Figure 6.5 Placental IL5:TNF-α mRNA ratio according to glucocorticoid intake classification...210
Figure 6.6 The relationship between the Th2:Th1 cytokine ratio and placental 11β-HSD2 activity...211
Figure 6.7 Proposed model of altered glucocorticoid sensitivity of male and female fetuses ...213
Figure 6.8 Placental GR-α mRNA and GR-β mRNA according to glucocorticoid intake classification...215
Figure 6.9 Placental GR-α:GR-β mRNA ratio according to glucocorticoid intake classification...216
Figure 6.10 Placental MR mRNA abundance according to glucocorticoid intake classification...216
Figure 6.11 Protein 2944 in asthmatic and non-asthmatic placentae.........................218
Figure 6.12 Protein 3109 in placentae from male and female neonates..............219
Figure 6.13 Human defensin proteins in the placenta..221
Figure 6.14 The interactions between mother, placenta and fetus in pregnancies complicated by asthma (part 1)...231
Figure 7.1 Umbilical vein cortisol according to glucocorticoid intake classification...237
Figure 7.2 Production of estriol and proposed negative feedback loop..................238
Figure 7.3 Unconjugated estriol concentrations in the umbilical vein according to glucocorticoid intake classification.................................239
Figure 7.4 Correlation between umbilical vein cortisol and estriol......................240
Figure 7.5 Cord blood IGFBP-1 according to fetal sex and its correlation with birth weight...243
Figure 7.6 Cord blood IGFBP-3 according to fetal sex and its correlation with birth weight...244
Figure 7.7 The relationship between cortisol and IGFBP-1 in female cord blood..245
Figure 7.8 Cord blood peak 3899 in asthmatic and non-asthmatic pregnancies246
Figure 7.9 Cord blood peak 8701 in asthmatic and non-asthmatic pregnancies248
Figure 7.10 Interactions between mother, placenta and fetus in pregnancies complicated by asthma (part 2)...253
Figure 8.1 Summary of the interactions between mother, placenta and fetus in asthmatic pregnancies..267
Table of Tables

Table 1.1 Results of studies on adverse outcomes in pregnancies complicated by asthma ... 7
Table 3.1 Criteria used to assign asthma severity classifications ... 82
Table 3.2 Apgar scoring .. 85
Table 3.3 List of primers .. 102
Table 4.1 Clinical characteristics of women pregnant with a female fetus and classified by asthma severity ... 128
Table 4.2 Clinical characteristics of women pregnant with a male fetus and classified by asthma severity .. 129
Table 4.3 Clinical characteristics of women pregnant with a female fetus and classified by glucocorticoid intake ... 131
Table 4.4 Clinical characteristics of women pregnant with a male fetus and classified by glucocorticoid intake .. 132
Table 4.5 Maternal asthma characteristics for women classified by asthma severity ... 134
Table 4.6 Maternal asthma characteristics for women classified by glucocorticoid intake ... 135
Table 4.7 Fetal growth measurements at 18 and 30 weeks gestation for women pregnant with a female fetus and classified by asthma severity ... 138
Table 4.8 Fetal growth measurements at 18 and 30 weeks gestation for women pregnant with a male fetus and classified by asthma severity ... 139
Table 4.9 Fetal growth measurements at 18 and 30 weeks gestation for women pregnant with a female fetus and classified by glucocorticoid intake ... 140
Table 4.10 Fetal growth measurements at 18 and 30 weeks gestation for women pregnant with a male fetus and classified by glucocorticoid intake ... 141
Table 4.11 Neonatal growth parameters for women pregnant with a female fetus and classified by asthma severity .. 144
Table 4.12 Neonatal growth parameters for women pregnant with a male fetus and classified by asthma severity .. 145
Table 4.13 Neonatal growth parameters for women pregnant with a female fetus and classified by glucocorticoid intake ... 146
Table 4.14 Neonatal growth parameters for women pregnant with a male fetus and classified by glucocorticoid intake ... 147
Table 4.15 Neonatal birth weight according to inhaled glucocorticoid drug used by asthmatic mothers ... 151
Table 4.16 Neonatal birth weight according to the use of oral steroids by asthmatic mothers ... 151
Table 5.1 Maternal asthma assessment at the first AMS visit ... 160
Table 5.2 Maternal asthma assessment at the last AMS visit ... 161
Table 5.3 Circulating white blood cells in non-asthmatic and asthmatic women pregnant with a female fetus .. 174
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Circulating white blood cells in non-asthmatic and asthmatic women pregnant with a male fetus</td>
<td>175</td>
</tr>
<tr>
<td>5.5</td>
<td>Pregnancy outcomes for combined groups classified by asthma severity</td>
<td>185</td>
</tr>
<tr>
<td>5.6</td>
<td>Pregnancy outcomes for combined groups classified by glucocorticoid intake</td>
<td>186</td>
</tr>
<tr>
<td>6.1</td>
<td>Placental characteristics for groups classified by asthma severity</td>
<td>198</td>
</tr>
<tr>
<td>6.2</td>
<td>Placental characteristics for groups classified by glucocorticoid intake</td>
<td>199</td>
</tr>
<tr>
<td>6.3</td>
<td>Placental IGF-I, IGF-II and IGFBP-1 mRNA according to glucocorticoid intake classification</td>
<td>207</td>
</tr>
<tr>
<td>6.4</td>
<td>Placental cytokine mRNA abundance according to glucocorticoid intake classification</td>
<td>209</td>
</tr>
<tr>
<td>7.1</td>
<td>Fetal and neonatal characteristics for groups classified by asthma severity</td>
<td>234</td>
</tr>
<tr>
<td>7.2</td>
<td>Fetal and neonatal characteristics for groups classified by glucocorticoid intake</td>
<td>235</td>
</tr>
<tr>
<td>7.3</td>
<td>Cord blood IGFBP-1, IGFBP-3 and cortisol concentrations according to glucocorticoid intake classification</td>
<td>242</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11β-HSD</td>
<td>11 beta-hydroxysteroid dehydrogenase</td>
</tr>
<tr>
<td>2D-PAGE</td>
<td>Two dimensional-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>³H</td>
<td>Tritium (Tritiated)</td>
</tr>
<tr>
<td>ACTH</td>
<td>Adrenocorticotropic hormone</td>
</tr>
<tr>
<td>AME</td>
<td>Apparent mineralocorticoid excess</td>
</tr>
<tr>
<td>AMS</td>
<td>Asthma Management Service</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>β₂-agonist</td>
<td>Beta two adrenergic receptor agonist</td>
</tr>
<tr>
<td>BDP</td>
<td>Beclomethasone dipropionate</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BPD</td>
<td>Biparietal diameter</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>BWC</td>
<td>Birth weight centile</td>
</tr>
<tr>
<td>C section</td>
<td>Caesarean section</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic 3',5'-adenosine monophosphate</td>
</tr>
<tr>
<td>cGMP</td>
<td>Cyclic 3',5'-guanosine monophosphate</td>
</tr>
<tr>
<td>CHAPS</td>
<td>3-[(3-chloramidopropyl)-dimethylammonio]-1-propanesulfonate</td>
</tr>
<tr>
<td>CHCA</td>
<td>α-cyano-4-hydroxycinnamic acid</td>
</tr>
<tr>
<td>cpm</td>
<td>Counts per minute</td>
</tr>
<tr>
<td>CRH</td>
<td>Corticotropin releasing hormone</td>
</tr>
<tr>
<td>Cₜ</td>
<td>Threshold cycle</td>
</tr>
<tr>
<td>Da</td>
<td>Daltons</td>
</tr>
<tr>
<td>dATP</td>
<td>2'-deoxyadenosine 5'-triphosphate</td>
</tr>
<tr>
<td>dCTP</td>
<td>2'-deoxycytidine 5'-triphosphate</td>
</tr>
<tr>
<td>dGTP</td>
<td>2'-deoxyguanosine 5'-triphosphate</td>
</tr>
<tr>
<td>DHEA-S</td>
<td>Dehydroepiandosterone sulfate</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Deoxynucleotide triphosphates</td>
</tr>
<tr>
<td>dpm</td>
<td>Disintegrations per minute</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>dTTP</td>
<td>2'-deoxythymidine 5'-triphosphate</td>
</tr>
<tr>
<td>dUTP</td>
<td>2'-deoxyuridine 5'-triphosphate</td>
</tr>
<tr>
<td>EAM</td>
<td>Energy absorbing molecule</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene-diamine-tetra-acetic acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylene-glycol-bis(β-aminoethyl ether)-tetra-acetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>FEV₁</td>
<td>Forced expiratory volume at one second</td>
</tr>
<tr>
<td>FRI</td>
<td>Ferring Research Institute</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle stimulating hormone</td>
</tr>
<tr>
<td>FVC</td>
<td>Forced vital capacity</td>
</tr>
<tr>
<td>fwd</td>
<td>Forward (primer)</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GH</td>
<td>Growth hormone</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte macrophage-colony stimulating factor</td>
</tr>
<tr>
<td>GR</td>
<td>Glucocorticoid receptor</td>
</tr>
<tr>
<td>HC:AC</td>
<td>Head circumference to abdominal circumference ratio</td>
</tr>
</tbody>
</table>
hCG Human chorionic gonadotropin
HPA Hypothalamic-pituitary-adrenal
HPLC High performance liquid chromatography
IFN-γ Interferon gamma
IgE Immunoglobulin E
IGF Insulin-like growth factor
IGFBP Insulin-like growth factor binding protein
IL Interleukin
IMAC Immobilised metal affinity capture
IQ Intelligence quotient
IU International units
IUGR Intrauterine growth restriction
KCl Potassium chloride
Km Michaelis constant
LPS Lipopolysaccharide
LTB₄ Leukotriene B₄
MALDI Matrix assisted laser desorption/ionisation
MR Mineralocorticoid receptor
mRNA Messenger RNA
MS Mass spectrometry
MW Molecular weight
m/z Mass to charge ratio
n Number of subjects
NaCl Sodium chloride
NAD Nicotinamide adenine dinucleotide
NADH Nicotinamide adenine dinucleotide reduced form
NADP Nicotinamide adenine dinucleotide phosphate
NADPH Nicotinamide adenine dinucleotide phosphate reduced form
NBT/BCIP Nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate
Ni-NTA Nickel nitrilotriacetic acid
No. Number
NO Nitric oxide
NTC No template control
PBS Phosphate buffered saline
PCA Principal component analysis
PCR Polymerase chain reaction
PCO₂ Partial pressure of carbon dioxide
PEF Peak expiratory flow
PEFR Peak expiratory flow rate
PGE₂ Prostaglandin E₂
PGF₂α Prostaglandin F₂α
pI Isoelectric point
PIH Pregnancy induced hypertension
PO₂ Partial pressure of oxygen
PPROM Preterm premature rupture of membranes
PVDF Polyvinylidene fluoride
RDS Respiratory distress syndrome
rev Reverse (primer)
RIA Radioimmunoassay
rRNA Ribosomal RNA
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-PCR</td>
<td>Reverse transcriptase-polymerase chain reaction</td>
</tr>
<tr>
<td>SAX</td>
<td>Strong anion exchange</td>
</tr>
<tr>
<td>SD</td>
<td>Systolic/diastolic ratio</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulfate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SELDI-TOF</td>
<td>Surface enhanced laser desorption/ionisation-time of flight</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>SGA</td>
<td>Small for gestational age</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>SPA</td>
<td>Sinapinic acid</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris borate EDTA</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris buffered saline</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factor-beta</td>
</tr>
<tr>
<td>Th1/2</td>
<td>T helper type 1/2</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>Tm</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour necrosis factor-alpha</td>
</tr>
<tr>
<td>TOF</td>
<td>Time of flight</td>
</tr>
<tr>
<td>TTTS</td>
<td>Twin to twin transfusion syndrome</td>
</tr>
<tr>
<td>TX-100</td>
<td>Triton X-100</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VC</td>
<td>Vital capacity</td>
</tr>
<tr>
<td>WCX</td>
<td>Weak cation exchange</td>
</tr>
</tbody>
</table>
Abstract

Maternal asthma is associated with low birth weight, a risk factor for disease in adult life. To determine the mechanisms involved, the relationships between mother, placenta and fetus were examined in asthmatic and non-asthmatic pregnancies.

Maternal asthma and its treatment (no glucocorticoid or glucocorticoid) was monitored throughout pregnancy. Fetal growth was examined during gestation, and at birth, neonatal size and sex were determined. Placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) enzyme activity and umbilical vein plasma cortisol and estriol concentrations were measured. Placental cytokine, growth factor and glucocorticoid receptor (GR) mRNA were determined using quantitative RT-PCR.

Birth weight of female neonates in the no glucocorticoid asthmatic group only, was significantly reduced compared to females of the non-asthmatic group. Male neonates were unaffected by asthma or its treatment. Asthmatic women pregnant with a female fetus showed a significant increase in circulating monocytes and glucocorticoid treatment as pregnancy progressed, while those pregnant with a male fetus did not, suggesting that maternal asthma worsens in the presence of a female fetus. 11β-HSD2 activity was significantly reduced in placentae from female neonates of the no glucocorticoid group compared to other female neonates and was associated with a trend towards higher plasma cortisol, reduced fetal adrenal activity demonstrated by lower cord blood estriol, reduced placental GR expression, no alteration in placental or fetal insulin-like growth factors or their binding proteins and a significantly increased Th2:Th1 cytokine mRNA ratio, which was inversely correlated with 11β-HSD2 activity in all females. Reduced placental 11β-HSD2 activity may be an important component leading to decreased female fetal growth in pregnancies complicated by asthma.

This study provides strong evidence for a fetal sex-specific effect on the maternal immune system which can have adverse effects on the female fetus. The female fetus alters maternal inflammatory pathways, which when not controlled by the use of inhaled glucocorticoids results in reduced placental 11β-HSD2 activity, contributing to suppressed fetal adrenal function and a late gestation decrease in female fetal growth.