Dense Phase Pneumatic Conveying of Powders:
Design Aspects and Phenomena

A thesis submitted for the fulfilment of the requirements for the award of the degree of

Doctor of Philosophy

from

The University of Newcastle

by

Kenneth Charles Williams
BE (Mech - with Hons 1st Class)
Dip Av Sci

School of Engineering
Centre for Bulk Solids and Particulate Technologies
July, 2008
DECLARATION

I hereby certify that the work embodied in this thesis is the result of original research and has not been submitted for a higher degree to any other University or Institution

__

Kenneth Charles Williams
AKNOWLEDGEMENTS

There are specific individuals, departments and organisations that thanks must be given as they have been instrumental to me in either helping to nurture a seed of an idea, guiding an avenue of thought or providing much needed foundations for developing my research. Understandably, I give thanks to the following:

Firstly, my supervisor Professor Mark Jones, for providing essential guidance and clarifying important ideas, which gave me confidence in the approaches that I was taking were relevant research goals. Also for Professor Mark Jones and Professor Alan Roberts for providing an exceptional working environment at the Centre for Bulk Solids and Particulate Technologies, at The University of Newcastle, which encourages creative research, with the ultimate aim to increase the predictive model capability to solve real world problems.

To all my fellow colleagues for providing their insight and patiently listening to my incessant thoughts on research ideas and methods. In particular, Dr Andre Katterfeld for the clarifying discussions on some of the early mathematical approaches and tools.

To the technical staff at the Mechanical Engineering workshop and at TUNRA Bulk Solids for their thoughts on solutions to design issues and for constructing the research equipment. Specifically, Mr Mitchell Gibbs for the providing unique guidance and solutions on data acquisition problems to a young naïve researcher and to Mr Shane Keys for his valuable assistance throughout the research.

Most importantly, to my wife, Rachel, for her eternal love and understanding and for her forgiveness of the vagueness of my research working times. And to my three beautiful daughters, Holly, Claudia and Paige for simply being my children thus giving me an important balance to work and family and also for ensuring that my life will be forever full.
TABLE OF CONTENTS

ABSTRACT ...

CHAPTER 1: INTRODUCTION 2

1.1 Modes of Flow ... 3

1.1.1 Plug flow ... 4

1.1.2 Fluidised dense phase flow ... 6

1.2 Thesis Overview .. 8

1.2.1 Mode of flow ... 8

1.2.2 Solids friction .. 9

1.2.3 Solids velocity ... 11

CHAPTER 2: PREDICTING CONVEYING MODES OF FLOW 13

2.1 Bulk Material Parameters .. 14

2.1.1 Basic parameters .. 14

2.1.1.1 particle size distribution ... 14

2.1.1.2 particle density ... 14

2.1.1.3 bulk density ... 15

2.1.2 Air-particle parameters ... 15

2.1.2.1 permeability ... 16

2.1.2.2 steady state fluidisation pressure 16

2.1.2.3 de-aeration ... 16

2.2 Mode of Flow Data ... 17

2.3 Predictive Diagrams .. 21

2.3.1 Basic bulk material diagrams 21

2.3.1.1 Geldart’s fluidisation diagram 23
Dense Phase Pneumatic Conveying of Powders: Design Aspects and Phenomena

2.3.1.2 Molerus’s fluidisation diagram .. 27
2.3.1.3 Dixon’s slugging diagram .. 31
2.3.1.4 Pan’s pneumatic conveying predictive diagram 34
2.3.2 Air-particle bulk material diagrams .. 35
 2.3.2.1 Mainwaring and Reed diagram .. 36
 2.3.2.2 Jones diagram ... 39
 2.3.2.3 Chambers et al parameter ... 40
 2.3.2.4 Fargette et al parameter .. 42
 2.3.2.5 Sanchez et al diagram .. 44

2.4 Proposed Mode of Flow Diagram .. 46

2.5 Summary ... 47

CHAPTER 3: EXPERIMENTAL PROGRAM AND DATA ... 49

3.1 Bulk Material Testing Methods .. 49
 3.1.1 Basic parameter test methods... 49
 3.1.2 Air-particle parameter test methods... 51
 3.1.3 Flow property tests .. 53

3.2 Bulk Material Data .. 54
 3.2.1 Cement Meal .. 55
 3.2.2 Flyash ... 57
 3.2.3 Alumina .. 59

3.3 Conveying Tests .. 61
 3.3.1 Feeding and receiving systems ... 61
 3.3.2 Calibration of instruments .. 63
 3.3.3 Air mass flow rate calibration .. 65
CHAPTER 4: SOLIDS FRICTION CORRELATIONS – REVIEW AND ANALYSIS

4.1 Current Pressure Models
 4.1.1 Scale-up methods
 4.1.2 Empirical methods

4.2 Solids Friction and Two Phase Fluid Pressure Model
 4.2.1 Air friction factors
 4.2.2 Solids friction factors
 4.2.3 Effect on pressure drop
 4.2.3.1 diameter scale-up analysis
 4.2.3.2 length scale-up analysis

4.3 Comparison of Pressure Analysis with Experimental Tests

CHAPTER 5: SOLIDS FRICTION – POWER LAW

5.1 Back Calculation of the Power Law
 5.1.1 Co-efficient and exponent behaviour
 5.1.2 Scale-up behaviour
 5.1.2.1 pipeline length variations
5.1.2.2 pipeline diameter variations

5.1.3 Summary of power law back calculation

5.2 Optimal Power Law Determination

5.2.1 Empirical optimisation methods

Comparison of the optimal power law methods

5.2.2 Pressure drop prediction and bench scale based parameters

CHAPTER 6: NUMERICAL MODEL FOR SOLIDS VELOCITY

6.1 Current modelling

6.2 The Initial Continuum Model Approach

6.2.1 Force equilibrium and conservation of mass

6.2.2 Force equilibrium equations

6.2.3 Conservation of mass

6.3 Pressure Drop

6.4 Differential Equations

6.5 Initial Conditions

6.6 Behaviour of the Non-Linear Differential Equations

6.7 Comparison of Continuum Model to Conveying Tests

6.7.1 Constant solids friction along pipeline

6.7.1.1 limitations

6.7.2 Variable solids friction along pipeline

6.7.2.1 blockage analysis

6.7.3 Measuring fluidised dense phase flow velocity
CHAPTER 7: CONCLUSIONS ... 153

7.1 Mode of Flow ... 153
7.2 Solids Friction Resistance ... 155
7.3 Solids Velocity ... 157

CHAPTER 8: FUTURE WORK .. 158

8.1 Steady state approach .. 158
8.2 Transient approach ... 160

CHAPTER 9: REFERENCES ... 163

APPENDIX A: Mode of flow data .. A1-A5
APPENDIX B: Bulk material data .. B1-B10
APPENDIX C: Solids friction correlations ... C1-C7
APPENDIX D: Derivation of solids velocity differential equations D1-D3
APPENDIX E: MATLAB Scripts for solids flow velocity E1-E7
NOMENCLATURE

Upper Case Letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>area</td>
<td>$[m^2]$</td>
</tr>
<tr>
<td>A_F</td>
<td>Mainwaring and Reed de-aeration constant [24]</td>
<td>$[Pa \cdot s \cdot m^{-1}]$</td>
</tr>
<tr>
<td>A_i</td>
<td>$i = 1, 2, 3$ or 4 are constants in chapter 4</td>
<td>[-]</td>
</tr>
<tr>
<td>A_P</td>
<td>amplitude of the gas pulse</td>
<td>$[Pa]$</td>
</tr>
<tr>
<td>B</td>
<td>bend factor</td>
<td>[-]</td>
</tr>
<tr>
<td>B_i</td>
<td>$i = 1, 2, 3$ or 4 are constants in chapter 4</td>
<td>[-]</td>
</tr>
<tr>
<td>C</td>
<td>solids friction power law constant in equation 5.3</td>
<td>[-]</td>
</tr>
<tr>
<td>C_i</td>
<td>$i = 1, 2, 3$ or 4 are constants in chapter 4</td>
<td>[-]</td>
</tr>
<tr>
<td>D</td>
<td>diameter (pipe)</td>
<td>$[m]$</td>
</tr>
<tr>
<td>DL</td>
<td>abbreviation for Dilute phase only flow</td>
<td>[-]</td>
</tr>
<tr>
<td>FD</td>
<td>abbreviation for fluidised dense phase flow</td>
<td>[-]</td>
</tr>
<tr>
<td>F_{Fr}</td>
<td>Molerus defined adhesion factor [28]</td>
<td>[-]</td>
</tr>
<tr>
<td>Fr</td>
<td>Froude number</td>
<td>[-]</td>
</tr>
<tr>
<td>G_{rt}</td>
<td>Sanchez de-aeration based parameter [45]</td>
<td>[-]</td>
</tr>
<tr>
<td>HR</td>
<td>Hausner ratio</td>
<td>[-]</td>
</tr>
<tr>
<td>K_i</td>
<td>$i = 1$ or 2 defined by Equations 2.8 and 2.9</td>
<td>[-]</td>
</tr>
<tr>
<td>K_{sp}</td>
<td>Dixon’s single plug constant in Equation 2.12 [8]</td>
<td>[-]</td>
</tr>
<tr>
<td>K_v</td>
<td>Jones vibrated de-aeration factor [18]</td>
<td>$[m \cdot s^{-1}]$</td>
</tr>
<tr>
<td>L</td>
<td>length</td>
<td>$[m]$</td>
</tr>
<tr>
<td>N_B</td>
<td>number of bends</td>
<td>[-]</td>
</tr>
<tr>
<td>N_C</td>
<td>Chambers air-particle parameter [6]</td>
<td>[-]</td>
</tr>
<tr>
<td>P</td>
<td>pressure</td>
<td>$[Pa]$</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>PL</td>
<td>abbreviation for plug flow</td>
<td>[-]</td>
</tr>
<tr>
<td>P*</td>
<td>Sanchez permeability based parameter [45]</td>
<td>[-]</td>
</tr>
<tr>
<td>Q</td>
<td>volumetric flow rate</td>
<td>[m³ s⁻¹]</td>
</tr>
<tr>
<td>S</td>
<td>displacement (Chapter 6)</td>
<td>[m]</td>
</tr>
<tr>
<td>Ti</td>
<td>pressure transducer number, i=1, 2, 3,….</td>
<td>[-]</td>
</tr>
<tr>
<td>Tp</td>
<td>time period of the pressure pulse</td>
<td>[s]</td>
</tr>
<tr>
<td>X</td>
<td>conversion factor in Equation 2.17</td>
<td>[-]</td>
</tr>
<tr>
<td>Y</td>
<td>constant in Equation 2.18</td>
<td>[Pa m kg⁻¹ s⁻¹]</td>
</tr>
</tbody>
</table>

Lower Case Letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>solids friction power law exponent in equation 5.3</td>
<td>[-]</td>
</tr>
<tr>
<td>b</td>
<td>solids friction power law exponent in equation 5.3</td>
<td>[-]</td>
</tr>
<tr>
<td>c</td>
<td>exponent in equation 2.18</td>
<td>[-]</td>
</tr>
<tr>
<td>d</td>
<td>diameter (particle)</td>
<td>[m]</td>
</tr>
<tr>
<td>g</td>
<td>acceleration due to gravity</td>
<td>[m s⁻²]</td>
</tr>
<tr>
<td>k</td>
<td>parameter in Equation 2.6</td>
<td>[-]</td>
</tr>
<tr>
<td>k₁</td>
<td>defined Equation 2.11</td>
<td>[-]</td>
</tr>
<tr>
<td>m</td>
<td>mass flow rate</td>
<td>[kg s⁻¹]</td>
</tr>
<tr>
<td>m*</td>
<td>solids loading ratio</td>
<td>[-]</td>
</tr>
<tr>
<td>r</td>
<td>radius</td>
<td>[m]</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
<td>[s]</td>
</tr>
<tr>
<td>tₖ</td>
<td>calculated de-aeration time</td>
<td>[s]</td>
</tr>
<tr>
<td>tᵥₐ</td>
<td>Chambers de-aeration rate [6]</td>
<td>[s]</td>
</tr>
<tr>
<td>v</td>
<td>velocity</td>
<td>[m s⁻¹]</td>
</tr>
<tr>
<td>w</td>
<td>parameter defined in Equation 2.6</td>
<td>[-]</td>
</tr>
</tbody>
</table>
w_i parameter defined in Equation 2.11 [-]
x_i i = 1, 2, 3, 4, correlation constants in Equation 5.5 [-]
z pressure drop per displacement (Chapter 6) [Pa/m]

Greek Letters

δ effective angle of internal friction [°]
ε voidage [-]
λ friction factor [-]
Ω Fargette air-particle parameter [11] [-]
ρ density [kg m⁻³]
ϕ friction angle [°]
ψ permeability factor [m³ s kg⁻¹]
μ viscosity [kg m s⁻¹]

Subscripts

a air
b bulk
bl bulk, loose poured
f fluid or friction
g gas
i integer
j integer
mb minimum bubbling
mf minimum fluidisation
mod modification or change to a parameter
o origin or reference condition
NOTE: Some symbols displayed above are the same symbols used in the cited article by the relevant authors. Using the same symbols avoided confusion when discussing similar parameters derived by different researchers.