MOLECULAR PATHOGENESIS OF NON-EOSINOPHILIC ASTHMA

Katherine Joanne Baines

B.BiomedSci(Hons)

A Thesis Submitted for the Degree of Doctor of Philosophy
October 2007
Faculty of Health
School of Biomedical Sciences
University of Newcastle
STATEMENT OF ORIGINALITY

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

ACKNOWLEDGEMENT OF AUTHORSHIP/COLLABORATION

I hereby certify that the work embodied in this Thesis is the result of original research, the greater part of which was completed subsequent to admission to candidature for the degree (except in cases where the Committee has granted approval for credit to be granted from previous candidature at another institution).

Signature:... Date:..
Acknowledgements

When I first began thinking about writing this section of my thesis it dawned on me how lucky I am to have so many people I need to thank that have played an important role in both my PhD studies and my life. Doing a PhD has been a great challenge in which I have learnt so much and grown so much as a person and a researcher.

First and foremost I would like to acknowledge the The Asthma Foundation of NSW and the Asthma CRC for providing funding for my PhD scholarship. I would like to thank my supervisors Prof Peter Gibson and Prof Rodney Scott for your ongoing support and encouragement throughout this process. I have a lot of respect for you both and thankyou for your sound advice and ideas, and for being patient with me, but also for pushing me when I needed it. Thanks Rodney for your guidance, confidence in me, and recommending me to the Respiratory group in the beginning, that change was the best thing I could have done. Peter, thankyou for all the opportunities you have offered and continue to offer me, I really admire your wealth of knowledge and ability to see ‘the big picture’.

A big thankyou to all my colleagues and friends in the Respiratory Medicine and Childhood Cancer research groups at the Hunter Medical Research Institute. Thanks to Naomi Fibbens, Rebecca Oldham, Terry Grissell and Joanna Mimica for your lab work and skill, for teaching me methods, answering my many questions and also for a bit of a chat and laugh now and then. It’s loads of fun working with you guys, and you have become great friends. Thanks to Noreen Bell for your tireless work seeing the patients and collecting the samples for this study. Thanks to Deborah Hall for always getting me organised with everything I can think of, and for editing this thesis. Thanks to Glenda Walker for your help with the zymography. Thanks to Dr Nikola Bowden for your help with the microarrays. Thanks to Dr Vanessa Murphy for your help with formatting this thesis, and to Dr Lisa Wood for reviewing sections of this thesis.

To Dr Jodie Simpson (Country Star), it’s great working with you, thanks for all your guidance and encouragement. Thanks for bringing me out of my ‘shell’ and for being such a great friend and workmate. To my office buddies Nicole Ryan and Heather Powell, thanks for always being ready for a coffee and for being so kind and supportive.
To my dear friends Allison Thomas and Carolyn Brooks, thanks for always being there for me over the years; you are the best friends a girl could ask for. To the Uni girls (you know who you are), thanks for your friendship, for all the trips to Gloria’s, and for understanding the science talk and the PhD pressures. Thanks to my housemates Andrew and Bronwyn Rundle and Katie Brooker for putting up with me being stressed and having my papers everywhere, and for being so fun to live with.

To Shane Nolland, thankyou for being my ‘rock’, and my best friend, I am very lucky to have you in my life. I don’t know if I would have got this far if it wasn’t for your love, patience and support. Thanks to my sister Penny Baines and to Ryan Chan, we really enjoy spending time with you guys. Pen, you are a cool little sister, thanks for never being afraid to have a go at anything, you always inspire me. To my Grandma, Audrey Johnson, thanks for always giving me perspective, you may not realise it, but you always remind me what is important in life. Finally I want to thank my parents, Lesley and Lee Baines, for your unconditional love and support in so many ways. Thankyou for always having faith in me and for encouraging me to go after whatever I want in life. Dad you can relax now, I have finally finished!
Publications

Abstracts

TABLE OF CONTENTS

Table of Tables ... xi
Table of Figures ... xv
Abbreviations ... xvii

Abstract .. 1

CHAPTER 1: GENERAL INTRODUCTION ... 3

1.1 Asthma .. 3
 1.1.1 Allergy .. 4

1.2 Inflammatory Subtypes of Asthma ... 4
 1.2.1 Eosinophilic Asthma ... 5
 1.2.1.1 Adaptive Immune Response ... 5
 1.2.1.2 Eosinophils .. 7
 1.2.2 Non-Eosinophilic Asthma ... 8

1.3 Neutrophils in Asthma ... 12

1.4 Neutrophils in Chronic Obstructive Pulmonary Disease (COPD) 13

1.5 Biology of Neutrophils ... 14
 1.5.1 Neutrophil Migration .. 15
 1.5.1.1 Myeloid Development ... 16
 1.5.1.2 Neutrophil Trafficking and Margination 18
 1.5.1.3 Cellular Adhesion Molecules ... 18
 1.5.1.4 Integrins .. 19
 1.5.1.5 Inflammatory Stimulus .. 20
 1.5.1.6 Endothelial Cell Interactions .. 20
 1.5.1.7 Epithelial Cell Interactions .. 20
 1.5.1.8 Chemotactic Mediators ... 22
 1.5.1.8.1 Interleukin-8 ... 23
 1.5.2 Neutrophil Phagocytosis .. 24
 1.5.3 Innate Immune Activation ... 25
 1.5.3.1 Toll Like Receptors (TLRs) ... 25
 1.5.3.2 Nucleotide-Binding Oligomerisation Domain (NOD) Molecules 27
 1.5.4 Neutrophil Granules .. 27
 1.5.4.1 Mechanisms of Degranulation ... 29
 1.5.4.2 Proteolytic Enzymes ... 29
 1.5.5 Respiratory Burst ... 31
 1.5.5.1 Reactive Oxygen Species ... 32
 1.5.6 Neutrophil Clearance and Death ... 33
 1.5.7 Cytokine Synthesis ... 34
 1.5.8 Neutrophil Priming and Activation ... 36

1.6 Neutrophil Gene Expression ... 37

1.7 Contribution of Neutrophils to the Adaptive Immune Response 39

1.8 Neutrophil Function in Ageing ... 39

1.9 Neutrophilic Asthma ... 41
 1.9.1 Mechanisms of Neutrophilic Asthma 41
 1.9.2 Triggers of Neutrophilic Airway Inflammation 44
 1.9.2.1 Endotoxin .. 44
CHAPTER 2: MATERIALS AND METHODS ..48

2.1 CLINICAL INFORMATION ..48
 2.1.1 Collection of Clinical Information...48
 2.1.2 Spirometry ..48
 2.1.3 Saline Challenge and Sputum Induction ..49
 2.1.4 Allergy Skin Prick Testing ...50
 2.1.5 Ethics ..51

2.2 CELL ISOLATION ..51
 2.2.1 Isolation of Sputum Neutrophils ..51
 2.2.1.1 Induced Sputum Processing ...51
 2.2.1.2 Sputum Differential Cell Count ..51
 2.2.2 Sputum Cell Isolation via Magnetic Cell Separation52
 2.2.3 Isolation of Peripheral Blood Granulocytes ..52
 2.2.3.1 Percoll Density Gradient ..52
 2.2.3.2 Magnetic Cell Separation ...53
 2.2.3.3 Cell Culture and Stimulation ..53

2.3 ASSAYS ..54
 2.3.1 Interleukin-8 (IL-8) ...54
 2.3.2 Interleukin-1β (IL-1β) ...54
 2.3.3 Tumor Necrosis Factor-α (TNF-α) ...54
 2.3.4 Oncostatin M (OSM) ..54
 2.3.5 Neutrophil Elastase ...55
 2.3.6 Matrix Metalloproteinase-9 (MMP-9) ..55
 2.3.7 Zymography of MMP-9 Activity ..56

2.4 MOLECULAR METHODS ...56
 2.4.1 RNA Extraction ...56
 2.4.2 RNA Quantitation for Real-Time PCR ..57
 2.4.3 Reverse Transcription for Real-Time PCR ...57
 2.4.3.1 Primers and Probe Sequences ..58
 2.4.4 Real-Time PCR ...59
 2.4.4.1 Analysis of Relative Real-Time PCR results59
 2.4.4.2 PCR Controls ..59
 2.4.4.2.1 Endogenous Control ..59
 2.4.4.2.2 Specific Target Positive Controls (Calibrators)60
 2.4.4.2.2.1 IL-8 mRNA ..60
 2.4.4.2.2.2 IL-1β and TNF-α mRNA ..60
 2.4.4.2.2.3 TLR2, TLR4, and OSM mRNA ..60
 2.4.5 Gene Expression Studies with Illumina BeadArrays60
 2.4.5.1 RNA Quantitation for BeadArrays ..60
 2.4.5.2 RNA Amplification for BeadArrays ..61
 2.4.5.2.1 Reverse Transcription to Synthesise First Strand cDNA61
 2.4.5.2.2 Second Strand cDNA Synthesis ...61
 2.4.5.2.3 cDNA Purification ...62
 2.4.5.2.4 In Vitro Transcription (IVT) ..62
2.4.5.2.5 cRNA Purification... 62
2.4.5.3 Illumina BeadChip Protocol.. 62
2.4.5.3.1 Hybridisation... 63
2.4.5.3.2 Washing... 63
2.4.5.3.3 Scanning... 63

2.5 Data Analysis .. 63
2.5.1 Microarray Data Analysis... 64
2.5.1.1 Resting versus Stimulated Neutrophils 64
2.5.1.2 Resting Neutrophils in Asthma Subtypes 64
2.5.1.3 LPS Stimulated Neutrophils Asthma Subtypes 65

CHAPTER 3: ACTIVATION OF BLOOD GRANULOCYTES 66
3.1 Introduction.. 66
3.2 Methods.. 68
3.3 Results.. 68
3.3.2 Protease Release .. 69
3.3.3 Chemokine and Cytokine Release ... 71
3.4 Discussion.. 74

CHAPTER 4: DIFFERENCES BETWEEN AIRWAY AND SYSTEMIC INNATE IMMUNE FUNCTION ... 79
4.1 Introduction.. 79
4.2 Methods.. 81
4.3 Results.. 82
4.3.1 Magnetic Cell Separation of Neutrophils 82
4.3.2 Effects of LPS Stimulation on Peripheral Blood Neutrophils 86
4.3.3 Effects of LPS Stimulation on Sputum Neutrophils 90
4.3.4 Comparison of Sputum to Blood Neutrophils 91
4.3.5 Effects of DTT Treatment of Peripheral Blood Neutrophils 94
4.4 Discussion.. 95

CHAPTER 5: INNATE IMMUNE RESPONSES OF NEUTROPHILS IN AGEING ... 100
5.1 Introduction.. 100
5.2 Methods.. 101
5.3 Results.. 102
5.3.1 Clinical Features.. 102
5.3.2 Inflammatory Cells.. 103
5.3.3 Sputum Supernatant IL-8... 103
5.3.4 Chemokine and Cytokine Production from Sputum Neutrophils 104
5.3.5 Chemokine and Cytokine Production from Peripheral Blood Neutrophils .. 105
5.3.6 Total MMP-9 Release from Peripheral Blood Neutrophils 107
5.3.7 Neutrophil TLR Expression... 108
5.4 Discussion.. 110

CHAPTER 6: INNATE IMMUNE RESPONSES OF NEUTROPHILS IN AIRWAY DISEASE ... 114
6.1 Introduction.. 114
6.2 Methods.. 115
6.3 Results.. 116
6.3.1 Comparison of Asthma and Healthy Controls ..116
 6.3.1.1 Clinical Features ..116
 6.3.1.2 Inflammatory Cells ...117
 6.3.1.3 Sputum Supernatant IL-8 ..118
 6.3.1.4 Chemokine and Cytokine Production from Sputum Neutrophils119
 6.3.1.5 Chemokine and Cytokine Production from Peripheral Blood Neutrophils ..120
 6.3.1.6 Total MMP-9 Release from Peripheral Blood Neutrophils122
 6.3.1.7 Neutrophil TLR Expression ..122
6.3.2 Comparison of COPD and Healthy Controls ..125
 6.3.2.1 Clinical Features ..125
 6.3.2.2 Inflammatory Cells ...125
 6.3.2.3 Sputum Supernatant IL-8 ..126
 6.3.2.4 Chemokine and Cytokine Production from Sputum Neutrophils127
 6.3.2.5 Chemokine and Cytokine Production from Peripheral Blood Neutrophils ..127
 6.3.2.6 Total MMP-9 Release from Peripheral Blood Neutrophils130
 6.3.2.7 Neutrophil TLR Expression ..130
6.3.3 Comparison of Asthma and COPD ...133
 6.3.3.1 Clinical Features ..133
 6.3.3.2 Inflammatory Cells ...133
 6.3.3.3 Sputum supernatant IL-8...134
 6.3.3.4 Chemokine and Cytokine Production from Sputum Neutrophils134
 6.3.3.5 Chemokine and Cytokine Production from Peripheral Blood Neutrophils ..135
 6.3.3.6 Total MMP-9 Release from Peripheral Blood Neutrophils136
 6.3.3.7 Neutrophil TLR Expression ..137
6.4 DISCUSSION ..139

CHAPTER 7: INNATE IMMUNE RESPONSES OF NEUTROPHILS IN ASTHMA SUBTYPES ...143

7.1 INTRODUCTION...143
7.2 METHODS..144
 7.2.1 Asthma Subtype Classification ..145
7.3 RESULTS ..145
 7.3.1 Comparison of Eosinophilic and Non-Eosinophilic Asthma145
 7.3.1.1 Clinical Features ...145
 7.3.1.2 Inflammatory Cells ...146
 7.3.1.3 Sputum Supernatant IL-8 ..149
 7.3.1.4 Chemokine and Cytokine Production from Sputum Neutrophils149
 7.3.1.5 Chemokine and Cytokine Production from Blood Neutrophils151
 7.3.1.6 MMP-9 Release from Peripheral Blood Neutrophils153
 7.3.1.7 Neutrophil TLR Expression ..154
 7.3.2 Comparison of Eosinophilic, Neutrophilic and Paucigranulocytic Asthma ..157
 7.3.2.1 Clinical Features ...157
 7.3.2.2 Inflammatory Cells ...157
 7.3.2.3 Sputum Supernatant IL-8 ..160
 7.3.2.4 Chemokine and Cytokine Production from Sputum Neutrophils160
 7.3.2.5 MMP-9 Release from Sputum Neutrophils163
TABLE OF TABLES

Table 2.1 Trade Names of Medication Withheld for 4.5% Saline Challenge.................50
Table 3.1 Cell Viability of Granulocytes at Specified Time Points..........................69
Table 3.2 Levels of TLR4 and IL-1β mRNA at 2 hours...74
Table 4.1 Proportions of neutrophils, eosinophils and other (lymphocytes or monocytes) of the CD16⁻ and CD16⁺ blood cell fractions created using MACS..............................83
Table 4.2 Proportions of neutrophils, macrophages and eosinophils in the CD16⁻ and CD16⁺ sputum cell fractions created using MACS...85
Table 4.3 Cell viability before and after MACS..86
Table 4.4 Levels of chemokine and cytokine mRNA expression in isolated blood neutrophils (1 x 10⁶ cells/mL) at rest and with LPS stimulation...87
Table 4.5 Total and active MMP-9 (pg/mL) release from isolated peripheral blood neutrophils...88
Table 4.6 Levels of chemokine and cytokine mRNA expression in sputum neutrophils (1 x 10⁵ cells/mL) at rest and with LPS stimulation...90
Table 4.7 Cell viability of blood compared to sputum samples before and after MACS...91
Table 4.8 Levels of chemokine and cytokine mRNA expression in resting sputum and blood neutrophils (1 x 10⁵ cell/mL)..92
Table 4.9 Levels of chemokine and cytokine mRNA expression in LPS stimulated sputum and blood neutrophils (1 x 10⁵ cell/mL)...93
Table 5.1 Clinical characteristics of healthy control participants under and over 55 years of age..102
Table 5.2 Induced sputum inflammatory cell counts healthy control participants under and over 55 years of age..103
Table 5.3 Levels of chemokine and cytokine mRNA expression in resting sputum neutrophils from healthy control participants under (n=5) and over (n=4) 55 years of age..105
Table 5.4 Levels of chemokine and cytokine mRNA expression in resting blood neutrophils isolated from participants under (n=5) and over (n=8) years of age..106
Table 5.5 Levels of chemokine and cytokine mRNA expression in LPS stimulated blood neutrophils isolated from participants under (n=5) and over (n=8) years of age..107
Table 5.6 Total MMP-9 release from blood neutrophils (10⁶ cells/mL) isolated from participants under (n=5) and over (n=8) years of age...108
Table 5.7 Relative mRNA levels of TLR4 in sputum and blood neutrophils isolated from participants under (n=5) and over (n=8) years of age..108
Table 5.8 Relative mRNA levels of TLR2 in sputum and blood neutrophils isolated from participants under (n=5) and over (n=8) years of age ..109
Table 5.9 Summary of results for the comparison between older versus younger healthy control participants..109
Table 6.1 Clinical characteristics of participants with asthma and healthy control subjects..117
Table 6.2 Induced sputum inflammatory cell counts from participants with asthma compared to healthy controls ...118
Table 6.3 Levels of chemokine and cytokine mRNA expression in resting sputum neutrophils from participants with asthma compared to healthy controls120
Table 6.4 Levels of chemokine and cytokine mRNA expression in resting neutrophils from subjects with asthma and healthy controls.................................120
Table 6.5 Levels of chemokine and cytokine mRNA expression in LPS stimulated neutrophils from participants with asthma compared with healthy controls121
Table 6.6 Total MMP-9 release from blood neutrophils (10^6 cells/mL) isolated from participants with asthma compared with healthy controls ...122
Table 6.7 Active MMP-9 release from blood neutrophils (10^6 cells/mL) isolated from participants with asthma compared with healthy controls ...122
Table 6.8 Relative mRNA levels of TLR4 in sputum and blood neutrophils from participants with asthma compared with healthy controls ...123
Table 6.9 Relative mRNA levels of TLR2 in sputum and blood neutrophils from participants with asthma compared with healthy controls ...123
Table 6.10 Summary of results for the comparison between participants with asthma and age matched healthy controls ...124
Table 6.11 Clinical characteristics of participants with COPD compared to healthy controls ...125
Table 6.12 Induced sputum inflammatory cell counts for participants with COPD compared with healthy controls ...126
Table 6.13 Levels of chemokine and cytokine protein release from sputum neutrophils isolated from participants with COPD compared to healthy controls ...127
Table 6.14 Levels of chemokine and cytokine mRNA expression in sputum neutrophils isolated from participants with COPD compared to healthy controls ...127
Table 6.15 Levels of chemokine and cytokine mRNA in resting blood neutrophils isolated from participants with COPD and healthy controls ...128
Table 6.16 Levels of chemokine and cytokine mRNA expression in LPS stimulated neutrophils from participants with COPD compared with healthy controls129
Table 6.17 Active MMP-9 release from blood neutrophils (10^6 cells/mL) isolated from participants with COPD compared with healthy controls ...130
Table 6.18 Relative mRNA levels of TLR4 in sputum and blood neutrophils from participants with COPD compared with healthy controls ...131
Table 6.19 Relative mRNA levels of TLR2 in sputum and blood neutrophils from participants with COPD compared with healthy controls ...131
Table 6.20 Summary of results for the comparison between participants with COPD and age matched healthy controls ...132
Table 6.21 Clinical characteristics of participants with asthma compared to those with COPD ...133
Table 6.22 Induced sputum inflammatory cell counts for participants with asthma compared with COPD ...134
Table 6.23 Chemokine and cytokine production of sputum neutrophils isolated from participants with asthma compared with COPD ...135
Table 6.24 Levels of chemokine and cytokine mRNA expression in resting blood neutrophils isolated from participants with asthma compared with COPD135
Table 6.25 Levels of chemokine and cytokine mRNA expression in LPS stimulated neutrophils isolated from participants with asthma or COPD ...136
Table 6.26 Total MMP-9 release from blood neutrophils (10^6 cells/mL) isolated from participants with asthma compared with COPD ...137
Table 6.27 Relative mRNA levels of TLR4 in sputum and blood neutrophils from participants with asthma and COPD ...137
Table 6.28 Relative mRNA levels of TLR2 in sputum and blood neutrophils from participants with asthma and COPD ...137
Table 6.29 Summary of results for the comparison between participants with asthma and COPD ...138
Table 7.1 Clinical characteristics of eosinophilic asthma, non-eosinophilic asthma and healthy controls .. 147
Table 7.2 Inflammatory cell counts for subjects with eosinophilic asthma, non-eosinophilic asthma and healthy controls .. 148
Table 7.3 Levels of chemokine and cytokine mRNA expression in resting sputum neutrophils from participants with eosinophilic asthma, and non-eosinophilic asthma compared to healthy controls .. 150
Table 7.4 Levels of chemokine and cytokine mRNA expression in resting blood neutrophils from participants with eosinophilic asthma and non-eosinophilic asthma compared to healthy controls .. 152
Table 7.5 Relative messenger RNA levels of IL-8, IL-1β and TNF-α of LPS stimulated blood neutrophils from participants with asthma compared to healthy controls .. 153
Table 7.6 Total MMP-9 release from blood neutrophils (10^6 cells/mL) isolated from participants with non-eosinophilic asthma, eosinophilic asthma and healthy controls .. 153
Table 7.7 Active MMP-9 release from blood neutrophils (10^6 cells/mL) isolated from participants with non-eosinophilic asthma, eosinophilic asthma and healthy controls .. 154
Table 7.8 Relative mRNA levels of TLR4 in sputum and blood neutrophils from subjects with non-eosinophilic asthma, eosinophilic asthma and healthy controls .. 155
Table 7.9 Relative mRNA levels of TLR2 in sputum and blood neutrophils from subjects with non-eosinophilic asthma, eosinophilic asthma and healthy controls .. 155
Table 7.10 Summary of results for the comparison between participants with non-eosinophilic asthma, eosinophilic asthma and healthy controls .. 156
Table 7.11 Clinical characteristics of neutrophilic asthma, eosinophilic asthma, paucigranulocytic asthma and healthy controls .. 158
Table 7.12 Inflammatory cell counts for subjects with eosinophilic asthma, non-eosinophilic asthma and healthy controls. ‡ p<0.004 versus healthy controls .. 159
Table 7.13 Relative messenger RNA levels of IL-8, IL-1β and TNF-α of resting sputum neutrophils in asthma subtypes and healthy controls .. 162
Table 7.14 Levels of chemokine and cytokine mRNA expression in resting blood neutrophils in asthma subtypes and healthy controls .. 165
Table 7.15 Levels of chemokine and cytokine mRNA expression in LPS stimulated blood neutrophils in asthma subtypes and healthy controls .. 167
Table 7.16 Total MMP-9 released from blood neutrophils (10^6 cells/mL) in asthma subtypes and healthy controls .. 168
Table 7.17 Active MMP-9 released from blood neutrophils (10^6 cells/mL) in asthma subtypes and healthy controls .. 168
Table 7.18 Relative mRNA levels of TLR4 in sputum and blood neutrophils in asthma subtypes and healthy controls .. 170
Table 7.19 Relative mRNA levels of TLR2 in sputum and blood neutrophils in asthma subtypes and healthy controls .. 170
Table 7.20 Summary of results for the comparison between EA, NA, PGA versus healthy controls .. 171
Table 7.21 Spearman correlations of innate immune mediators measured in resting sputum neutrophils and clinical parameters (*p<0.05) .. 172
Table 8.1 Clinical characteristics of neutrophilic and eosinophilic asthma subjects.... 181
Table 8.2 Induced sputum inflammatory cell counts for subjects with eosinophilic asthma, non-eosinophilic asthma and healthy controls...182
Table 8.3 OSM, TLR2 and IL-8 fold change increase with LPS stimulation from baseline for microarrays and real-time PCR ...185
Table 8.4 LPS regulated genes that are also upregulated in resting neutrophils from subjects with neutrophilic asthma versus eosinophilic asthma.................................189
Table 8.5 Upregulated genes in resting neutrophils from subjects with neutrophilic asthma versus eosinophilic asthma involved in signal transduction..............190
Table 8.6 Differentially regulated genes in resting neutrophils from subjects with neutrophilic asthma versus eosinophilic asthma related to cell motility.............190
Table 8.7 Genes that were altered in resting neutrophils from subjects with neutrophilic asthma versus eosinophilic asthma involved in apoptosis...............................191
Table 8.8 Genes that were upregulated in resting neutrophils from subjects with neutrophilic asthma versus eosinophilic asthma involved in the NF-κB cascade 191
Table 8.9 Selected genes with immune related function that were altered in resting neutrophils from subjects with neutrophilic asthma compared to eosinophilic asthma ..192
Table 8.10 Selected genes with immune related function that were altered in resting neutrophils from subjects with neutrophilic asthma compared to eosinophilic asthma ..195
Table 9.1 Summary of Results .. 202
Table 9.2 Level of IL-8 measured in sputum supernatant corrected for the number of neutrophils present in the sample ..192
TABLE OF FIGURES

Figure 1.1 Pathways of Inflammation in Asthma ...10
Figure 1.2 Induced sputum cytospins of the four inflammatory subtypes of asthma, including neutrophilic (a), eosinophilic (b), mixed granulocytic (c), and paucigranulocytic (d) [9]... 11
Figure 1.3 Important neutrophil functions ..15
Figure 1.4 Migration of neutrophils from the blood to the airways................................ 22
Figure 1.5 Contents of Neutrophil Granules... 28
Figure 1.6 Innate Immune Activation Pathway in Neutrophilic Asthma........................43
Figure 2.1 Neutrophil Elastase Standard Curve.. 55
Figure 3.1 Total MMP-9 release from stimulated blood granulocytes at 24 hours70
Figure 3.2 Total MMP-9 release from LPS stimulated granulocytes (A) and NE release from control granulocytes (B) over 24 hours (n=10).. 71
Figure 3.3 IL-8 release from granulocytes at 24 hours ...72
Figure 3.4 IL-8 release from LPS stimulated granulocytes over 24 hours72
Figure 3.5 Kinetics of TNF-α mRNA and protein levels over time73
Figure 3.6 TNF-α mRNA levels at 2 hours...74
Figure 4.1 Magnetic cell separation of peripheral blood eosinophils (A) and neutrophils (B) using CD16 microbeads, magnification 400x...84
Figure 4.2 Isolated Sputum Neutrophils, Magnification 1000x......................................85
Figure 4.3 Chemokine (A: IL-8) and cytokine (B: IL-1β, C: TNF-α, D: OSM) release from blood neutrophils (1 x 10^6 cell/mL) ...87
Figure 4.4 mRNA expression positively correlates with protein release88
Figure 4.5 Zymography gel confirms the presence of MMP-989
Figure 4.6 TLR4 and TLR2 mRNA expression in isolated blood neutrophils (1 x 10^6 cells/mL) ...89
Figure 4.7 Chemokine (A: IL-8) and cytokine (B: IL-1β and C: TNF-α) release from sputum neutrophils (1 x 10^5 cell/mL) isolated from participants under (n=5) and over 55 (n=4).. 90
Figure 4.8 TLR4 and TLR2 mRNA expression in sputum neutrophils (1 x 10^5 cells/mL) ..91
Figure 4.9 Chemokine (A: IL-8) and cytokine (B: IL-1β and C: TNF-α) release from resting sputum neutrophils compared to blood neutrophils (1 x 10^5 cell/mL) .. 92
Figure 4.10 Levels of TLR4 (A) and TLR2 (B) mRNA expression in resting sputum and blood neutrophils (1 x 10^5 cell/mL) ..93
Figure 4.11 Chemokine (A: IL-8) and Cytokine (B: IL-1β and C: TNF-α) release from LPS stimulated sputum neutrophils compared to LPS stimulated blood neutrophils (1 x 10^5 cell/mL) ..93
Figure 4.12 Levels of TLR4 (A) and TLR2 (B) mRNA expression in LPS stimulated sputum and blood neutrophils (1 x 10^5 cell/mL) ...94
Figure 4.13 DTT treatment of neutrophils had no effect on IL-8 production...............94
Figure 5.1 Level of IL-8 detected in sputum supernatant from participants under 55 (n=5) and over 55 (n=6) ..104
Figure 5.2 Chemokine (A: IL-8) and Cytokine (B: IL-1β, C: TNF-α) release from resting sputum neutrophils (10^5 cells/mL) isolated from participants under (n=5) and over 55 (n=4) ...105
Figure 5.3 Chemokine (A: IL-8) and Cytokine (B: IL-1β, C: TNF-α, D: OSM) release from LPS stimulated blood neutrophils (10^6 cells/mL) isolated from participants under (n=5) and over (n=8) years of age...107
Figure 6.1 Levels of IL-8 detected in sputum supernatant ..118
Figure 6.2 Chemokine (A: IL-8) and Cytokine (B: IL-1β, C: TNF-α) release from resting sputum neutrophils (10⁵ cells/mL) ..119
Figure 6.3 Chemokine (A: IL-8) and Cytokine (B: IL-1β, C: TNF-α D: OSM) release from LPS stimulated blood neutrophils (10⁶ cells/mL)121
Figure 6.4 Level of IL-8 in sputum supernatant from subjects with COPD compared to healthy controls ...126
Figure 6.5 Chemokine (A: IL-8) and Cytokine (B: IL-1β, C: TNF-α D: OSM) release from LPS stimulated blood neutrophils (10⁶ cells/mL) isolated from participants with COPD compared with healthy controls ...129
Figure 6.6 Total MMP-9 release from isolated blood neutrophils at rest (A) and stimulated with 100ng/mL LPS (B) in COPD compared with healthy controls...130
Figure 6.7 Chemokine (A:IL-8) and Cytokine (B: IL-1β, C: TNF-α) release from resting sputum neutrophils isolated from subjects with non-eosinophilic asthma, eosinophilic asthma and healthy controls ...150
Figure 7.1 Level of IL-8 detected in sputum supernatant ...149
Figure 7.2 Chemokine (A: IL-8) and Cytokine (B: IL-1β, C: TNF-α) release from resting sputum neutrophils isolated from subjects with non-eosinophilic asthma, eosinophilic asthma and healthy controls ...150
Figure 7.3 Enhanced IL-8 release from neutrophils in non-eosinophilic asthma151
Figure 7.4 Chemokine (A: IL-8) and Cytokine (B: IL-1β, C: TNF-α) release from LPS stimulated blood neutrophils (10⁶ cells/mL) from subjects with non-eosinophilic asthma, eosinophilic asthma and healthy controls ...152
Figure 7.5 Subjects with neutrophilic asthma have significantly higher levels of sputum supernatant IL-8 ..160
Figure 7.6 Chemokine (A: IL-8) and cytokine (B: IL-1β, C: TNF-α) release from resting sputum neutrophils (10⁵ cells/mL) asthma subtypes and healthy controls ...161
Figure 7.7 Zymography to assess levels of MMP-9 in culture supernatants of sputum neutrophils (10⁵ cells/mL) at 24 hours ..163
Figure 7.8 IL-8 release from resting blood neutrophils in asthma subtypes164
Figure 7.9 Chemokine (A: IL-8) and Cytokine (B: IL-1β, C: TNF-α) release from LPS stimulated blood neutrophils (10⁶ cells/mL) in asthma subtypes and healthy controls ...166
Figure 7.10 Zymography to assess levels of MMP-9 in culture supernatants of isolated blood neutrophils (10⁶ cells/mL) at 24 hours ...168
Figure 8.1 Gene expression profiles of resting versus LPS stimulated neutrophils......184
Figure 8.2 Gene expression profiles of resting neutrophils from subjects with eosinophilic asthma versus those with neutrophilic asthma187
Figure 8.3 Schematic representation of genes altered both by LPS and in neutrophilic asthma ...188
Figure 8.4 Gene expression profiles of LPS stimulated neutrophils from subjects with neutrophilic asthma versus those with eosinophilic asthma194
Figure 9.2 Relative cytokine production (IL-8 protein expressed as average fold change from resting blood neutrophils, 1 x 10⁵ cells/mL) ..203
Figure 9.3 Cycle of neutrophilic airway inflammation in neutrophilic asthma209
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHR</td>
<td>Airway Hyperresponsiveness</td>
</tr>
<tr>
<td>APCs</td>
<td>Antigen Presenting Cells</td>
</tr>
<tr>
<td>BAL</td>
<td>Bronchoalveolar Lavage</td>
</tr>
<tr>
<td>CAM</td>
<td>Cellular Adhesion Molecule</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complimentary Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>CF</td>
<td>Cystic Fibrosis</td>
</tr>
<tr>
<td>cRNA</td>
<td>Complimentary Ribonucleic Acid</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic Obstructive Pulmonary Disease</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EA</td>
<td>Eosinophilic Asthma</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular Matrix</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immuno Sorbent Assay</td>
</tr>
<tr>
<td>FEV₁</td>
<td>Forced Expiratory Volume in 1 Second</td>
</tr>
<tr>
<td>FVC</td>
<td>Forced Vital Capacity</td>
</tr>
<tr>
<td>GINA</td>
<td>Global Initiative for Asthma</td>
</tr>
<tr>
<td>G-CSF</td>
<td>Granulocyte – Colony Stimulating Factor</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte Macrophage - Colony Stimulating Factor</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hanks Balanced Salt Solution</td>
</tr>
<tr>
<td>ICAM</td>
<td>Intercellular Adhesion Molecule</td>
</tr>
<tr>
<td>ICS</td>
<td>Inhaled Corticosteroids</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IKK</td>
<td>IkB kinase</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IRAK</td>
<td>IL-1R associated kinase</td>
</tr>
<tr>
<td>IVT</td>
<td>In Vitro Transcription</td>
</tr>
<tr>
<td>JAM</td>
<td>Junction Adhesion Molecule</td>
</tr>
<tr>
<td>LBP</td>
<td>LPS Binding Protein</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>LTA</td>
<td>Lipoteichoic Acids</td>
</tr>
<tr>
<td>LTB₄</td>
<td>Leukotriene B₄</td>
</tr>
<tr>
<td>LTRAs</td>
<td>Leukotriene Receptor Antagonists</td>
</tr>
</tbody>
</table>
MACS Magnetic Cell Separation
MD-2 Myeloid Differentiation-2
MIP Macrophage Inflammatory Protein
mg Milligram
MGG May Grunwald Giemsa
mL Millilitre
mRNA messenger RNA
MMP Matrix Metalloproteinase
MPO Myeloperoxidase
NA Neutrophilic Asthma
NE Neutrophil Elastase
NEA Non-eosinophilic Asthma
NF-κB Nuclear Factor κB
NOD Nucleotide Binding Oligomerisation Domain
OCS Oral Corticosteroids
OD Optical Density
PAF Platelet Activating Factor
PBS Phosphate Buffered Saline
PAMPs Pathogen Associated Molecular Patterns
PBMCs Peripheral Blood Mononuclear Cells
PEF Peak Expiratory Flow
PCR Polymerase Chain Reaction
PGA Paucigranulocytic Asthma
PMA Phorbol Myristate Acetate
PRR Pattern Recognition Receptor
RANTES Regulated on Activation Normal T cell Expressed and Secreted
RNA Ribonucleic Acid
ROS Reactive Oxygen Species
RSV Respiratory Syncytial Virus
SP-A Surfactant Protein-A
TH T Helper
TIMP-1 Tissue Inhibitor of Metalloproteinases-1
TLR Toll-like Receptor
TNF-α Tumor Necrosis Factor-alpha
ABSTRACT

Asthma involves chronic inflammation of the airways that is heterogeneous in nature. Eosinophilic airway responses are well described in asthma, however non-eosinophilic subtypes of asthma have been recently reported, and can involve the influx of neutrophils into the airways (neutrophilic asthma). Neutrophils are important effector cells of the innate immune system. These cells are the first to migrate to inflammatory sites, where they contain and eliminate pathogenic microorganisms. Neutrophils also release cytokines and chemokines that initiate and amplify inflammatory responses.

The mechanisms of neutrophilic asthma remain largely unknown; however activation of the innate immune response is implicated, particularly increased levels of proinflammatory cytokines Interleukin (IL)-8 and IL-1β and gene expression of Toll Like Receptor (TLR)-4 and TLR2 have been demonstrated in induced sputum samples. This thesis examines innate immune responses of airway and circulating neutrophils, with a focus on neutrophilic asthma. Innate immune neutrophil activation occurs in response to exposure to Lipopolysaccharide (LPS), which activates TLR4. The activation response consists of the release of preformed granule associated mediators such as Matrix Metalloproteinase (MMP)-9 and Oncostatin M (OSM), new gene transcription and release of inflammatory cytokines such as IL-8, IL-1β and Tumor Necrosis Factor (TNF)-α, and new gene transcription of TLR2 & TLR4 which serve to amplify neutrophil responses. In addition, this thesis examines whole genome gene expression profiles of circulating neutrophils in neutrophilic and eosinophilic asthma. The aims of this thesis are based on the hypothesis that dysregulation of innate immune neutrophil responses occurs with ageing and airway disease, particularly neutrophilic asthma and chronic obstructive pulmonary disease (COPD).

With advancing age, there were alterations in the innate immune responses of neutrophils, which were characterised by enhanced spontaneous activation of both airway and circulating neutrophils, and a decreased response of circulating neutrophils to LPS. There was a decreased activation of airway neutrophils in airway disease that was most pronounced in neutrophilic asthma and COPD, with decreased production and release of proinflammatory cytokines most likely due to a downregulation of TLR4. TLR2 was downregulated in resting and LPS stimulated circulating neutrophils in
asthma, particularly neutrophilic asthma. Circulating neutrophils had a decreased spontaneous release of total MMP-9, and downregulation of OSM, TLR2 and TLR4 at rest in COPD. However when stimulated with LPS, subjects with COPD had an enhanced proinflammatory cytokine release, with increases in IL-8 and TNF-α compared to subjects with asthma or healthy controls. Analysis of whole genome gene expression of circulating neutrophils in asthma revealed distinct gene profiles relating to asthma subtype. There was upregulation of genes relating to cell motility, inhibition of apoptosis and the NF-κB in neutrophilic asthma, which would contribute to their accumulation in the airways.

The innate immune response is critical in controlling infections by bacteria and viruses. The reduced innate immune response of airway neutrophils in airway disease could contribute to impaired local defense, which may lead to an increased susceptibility to infection by invading pathogens. Systemically, the molecular mechanisms of neutrophilic asthma are distinct from eosinophilic asthma and may involve the enhancement of neutrophil chemotaxis and survival, contributing to their accumulation in the airways.