Brain Maturation in Chickens: Biochemical, Behavioural and Electrophysiological Investigations

Rebbekah Josephine Atkinson
BSc(Psych)(Hons)

A thesis submitted for the degree of Doctor of Philosophy

October 2007
This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

I hereby certify that with the exception of some assistance with data collection as specified in the Acknowledgements all work contained within this thesis was performed by me.

.. Date:......................

Rebbekah Atkinson
Acknowledgements

I would firstly like to express my thanks to my supervisors Associate Professor Mick Hunter and Professor John Rostas, for their helpful advice, assistance, suggestions and discussions.

Thanks also to my fellow researchers in Medical Biochemistry especially Virginia Migues and Lisa Fluetcher for aid in techniques and biochemical sample collection and in Psychology to Elly Huber who went above and beyond the call of duty in caring for the chickens. I am also grateful to Nicole Callen and Veronica Clipsham for assistance with the PPI data collection and to Laurenn Thomas, Joshua Hayes and Donna Tanchev for assistance with ERP data collection.

This process has been made easier by a supportive network of family and friends. Thanks particularly to Greg for his love and support and my colleagues and friends at the University of Newcastle. Sanity is a state of mind.

Finally I would like to dedicate this thesis to my parents, for their unwavering support, encouragement and confidence in me. Thanks for both the nature and the nurture.
Table of Contents

PUBLICATIONS BASED ON RESEARCH PRESENTED IN THIS THESIS: 6

LIST OF FIGURES 7

LIST OF TABLES 13

ABBREVIATIONS 14

ABSTRACT 17

CHAPTER 1 GENERAL INTRODUCTION 20

1.1 TWO PHASES OF SYNAPTIC NETWORK DEVELOPMENT 21
1.2 THE CHICKEN: AN IDEAL MODEL FOR INVESTIGATING NEURAL MATURATION 24
1.3 MATURATION CHANGES AT GLUTAMATERGIC SYNAPSES IN CHICKEN FOREBRAIN 29
1.4 AIMS AND OUTLINE OF THESIS 32

CHAPTER 2 BIOCHEMICAL CHARACTERISATION OF MATURATIONAL CHANGES IN COMPONENTS OF GLUTAMATERGIC SYNAPSES IN THE CHICKEN IMM 35

2.1 INTRODUCTION 35
2.2 METHODS 39
2.2.1 Materials 39
2.2.2 Animals 40
2.2.3 Preparation of Brain Tissue 40
2.2.4 Western Blotting 44
2.2.5 Data Presentation and Statistical Analysis 46
2.3 RESULTS 46
2.3.1 Distribution of receptor and signalling molecules in chicken forebrain changes little during maturation 46
2.3.2 Quantitative analysis in fractions from left and right IMM 52
2.3.3 Concentrations of some proteins associated with synaptic plasticity in the IMM change with maturation 56
2.4 DISCUSSION 63

CHAPTER 3 MOLECULAR CHANGES IN THE IMM AT VARIOUS TIMES AFTER A ONE TRIAL AVOIDANCE LEARNING IN IMATURE AND MATURE CHICKENS 67

3.1 INTRODUCTION 67
3.2 METHOD 74
3.2.1 Materials 74
3.2.2 Animals 74
3.2.3 Behavioural Experiment 75
3.2.4 Biochemical Experiment 79
3.2.5 Data Presentation and Statistical Analysis 81
3.3 RESULTS 82
3.3.1 Two-week and eight-week old chickens learn the Visual Taste Discrimination Task 82
3.3.2 DTAL training induced molecular changes in IMM from 2 week chickens 87
3.3.3 DTAL training induced molecular changes in IMM from 8 week chickens 103
3.4 DISCUSSION 117
3.4.1 Learning of the DTAL paradigm 118
3.4.2 Maturational differences in some synaptic plasticity associated proteins occurs in the IMM after DTAL training 119

CHAPTER 4 DETERMINATION OF PREPULSE INHIBITION OF THE STARTLE RESPONSE IN THE DOMESTIC CHICKEN 132

4.1 INTRODUCTION 132
CHAPTER 5 DETERMINATION OF MID TO LATE LATENCY AUDITORY EVENT RELATED POTENTIALS IN THE CHICKEN OVER NEURAL MATURATION 167

5.1 INTRODUCTION 167
5.2 METHODS 171
 5.2.1 Animals 171
 5.2.2 Apparatus 172
 5.2.3 Procedure 173
 5.2.4 Data analysis 174
5.3 RESULTS 175
 5.3.1 Response presence and morphology 175
 5.3.2 The initial positive peak 180
 5.3.3 The late negative peak 188
5.4 DISCUSSION 192
 5.4.1 Maturational changes in response magnitude 193
 5.4.2 Maturational changes in response latency 194
 5.4.3 Stimulus Intensity 196

CHAPTER 6 PERTURBED MATURATION IN THE CHICKEN FOREBRAIN BY THE INDUCTION OF LATE ONSET MILD HYPERTHYROIDISM: COMPARISON OF AUDITORY EVENT RELATED POTENTIALS AND BEHAVIOURAL CHARACTERISTICS 198

6.1 INTRODUCTION 198
6.2 METHODS 204
 6.2.1 Animals 204
 6.2.2 Induction of Hypothyroidism 205
 6.2.3 Monitoring of Hypothyroidism 206
 6.2.4 Apparatus 206
 6.2.5 Procedure 208
 6.2.6 Data analysis 209
6.3 RESULTS 210
 6.3.1 Physical characteristic of late onset mild hypothyroidism 210
 6.3.2 Serum blood levels of fT4 and fT3 212
 6.3.3 Auditory Event Related Potentials 216
 6.3.4 Pebble Floor Task 236
6.4 DISCUSSION 239
 6.4.1 Induction of Hypothyroidism 240
 6.4.2 Auditory Event Related Potentials 241

CHAPTER 7 GENERAL DISCUSSION AND CONCLUSIONS 250

7.1 FUTURE DIRECTIONS 253
7.2 CONCLUSION 256

REFERENCES 257
Publications based on research presented in this thesis:

Abstracts

List of Figures

Figure 1-1: Schematic showing influence of factors effecting neuronal maturation.. 22
Figure 1-2: Schematic of human neural development showing time windows of occurrences of the peak incidences of common neurological and psychiatric disorders.. 24
Figure 1-3: Comparison of the time course of synapse formation and synapse maturation phases of neuronal development in chicken and rat forebrain. Rostas et al 1991.. 25
Figure 2-1: Schematic drawing of chicken brain viewed from above.. 41
Figure 2-2: A: sagittal scheme showing size of brain slice; the IMM was dissected from the slice taken between points a and b. B: coronal MRI image of surface of forebrain brain slice from b, the dissected area is represented by the square. .. 42
Figure 2-3: Schematic of subcellular fractionation procedure. ... 43
Figure 2-4: Distribution patterns observed during maturation in GluR1, pS831 GluR1, PSD-95, CaMKII, pT286 CaMKII, ERK, phospho-ERK and CREB in chicken forebrain. Distribution across subcellular fractions: N (crude nuclei), C (cytosol), PSD (PSD-enriched) and Mem (non-junctional membrane) in 2 week (2) and 8 week (8) chicken forebrain. Rat whole brain (R) control is shown in far right lane to confirm antibody detection, bars on the left indicate standard molecular weight markers and arrows indicate protein of interest in chicken forebrain.. 49
Figure 2-5: Scatter plots of relative concentrations of GluR1, pS831 GluR1 and PSD-95 in the non-junctional membrane and PSD-enriched fractions. Values were converted to percent of mean values of the left hemisphere for each age. p > 0.05 ... 54
Figure 2-6: Scatter plots of relative concentrations of CaMKII, pT286 CaMKII, ERK and phospho-ERK in the cytosol, non-junctional membrane and PSD-enriched fractions at 2 and 8 weeks. CaMKII could not be reliably detected in the cytosol fraction at 8 weeks, pT286 CaMKII could not be reliably detected in the cytosol fraction at either age nor in the non-junctional membrane fraction at 8 weeks, phospho-ERK could not be detected in the PSD-enriched fraction at either age in chicken IMM. Values were converted to percent of mean values of the left hemisphere for each age. p > 0.05....... 55
Figure 2-7: Scatter plot of the concentration of CREB in the crude nuclei fraction. Values were converted to percent of mean values of the left hemisphere for each age. p > 0.05. ... 56
Figure 2-8: Representative Western blot and quantitation of A: GluR1 and B: pS831 GluR1 in non-junctional membrane and PSD-enriched fractions isolated from 2 and 8 week old IMM. Data are expressed as a percentage of the 2 week old group mean. Bars represent the relative mean +/- SEM, n = number of IMM. * p < 0.05. n = number of IMM. .. 58
Figure 2-9: Representative Western blot and quantitation of A: CaMKII in cytosol fraction, non-junctional membrane fraction and PSD-enriched fraction and B: pT286 CaMKII in non-junctional membrane fraction and PSD-enriched fraction isolated from 2 and 8 week-old IMM. Data are expressed as a percentage of the 2 week-old group mean. Bars represent the relative mean +/- SEM, n = number of IMM. * p < 0.05, *** p < 0.001.. 60
Figure 2-10: Representative Western blot and quantitation of A: ERK in cytosol fraction, non-junctional membrane fraction and PSD-enriched fraction and B: phospho-ERK in cytosol fraction and non-junctional membrane fraction isolated from 2 and 8 week-old IMM. Data are expressed as a percentage of the 2 week-old group mean. Bars represent the relative mean +/- SEM, n = number of IMM. *** p < 0.001.. 61
Figure 2-11: Representative Western blot and quantitation of PSD-95 in non-junctional membrane fraction and PSD-enriched fraction. Data are expressed as a percentage of the 2 week-old group mean. Bars represent the relative mean +/- SEM, n = number of IMM. p > 0.05.. 62
Figure 2-12: Representative Western blot and quantitation of CREB in the crude nuclei fraction. Data are expressed as a percentage of the 2 week-old group mean. Bars represent the relative mean +/- SEM, n = number of IMM. p > 0.05. .. 63
Figure 3-1: Schematic of experimental apparatus. .. 76
Figure 3-2: Diagram of the discriminative taste aversion learning protocol. Rectangles represent the pebble floor and ellipses represent the layout of pebbles and food for the various experimental sessions. Ellipses represent pebbles; N (normal), R (red) and Y (yellow) represent food. Expt. Day: experimental day... 77

Figure 3-3: Total pecks at red and yellow food crumbs/pellets made during the train session for 2 week (n=11) and 8 week (n=8) chickens trained on the Discriminative Taste Aversion task. Data are expressed as means +/- SEM, p > 0.05. .. 83

Figure 3-4: Total pecks made by Controls to red and yellow food crumbs/pellets at 2 weeks (n=35) and 8 weeks (n=34). Data are expressed as means +/- SEM. ** p < 0.01, for red versus yellow compared by paired samples t-test.. 84

Figure 3-5: Total pecks at red and yellow crumbs/pellets for chickens trained in the Discriminative Taste Aversion Task and tested A. 2 week old (n = 11) and B. 8 week old (n = 8). Data are expressed as means +/- SEM. * p< 0.05 for test versus train compared by paired samples t-test.......................... 86

Figure 3-6: Representative Western blot and quantitation of Glur1 in A: PSD-enriched fraction and B: non-junctional membrane fraction at 0, 45 and 120 min train. Data are expressed as a percentage of the control group mean. Bars represent the relative mean +/- SEM, n=number of IMM. p > 0.05. . 88

Figure 3-7: Representative Western blot and quantitation of pS831 Glur1 in A: PSD-enriched fraction and B: non-junctional membrane fraction at 0, 45 and 120 min train-sacrifice interval isolated from 2 week IMM for control and DTAL train groups. Data are expressed as a percentage of the control group mean. Bars represent the relative mean +/- SEM, n=number of IMM. * p < 0.05. .. 89

Figure 3-8: Proportion of Glur1 molecules in the PSD-enriched fraction affected by phosphorylation in the DTAL train groups, dotted line indicates control levels of phosphorylation, RSPI = Relative Stoichiometry of Phosphorylation Index... 91

Figure 3-9: Representative Western blot and quantitation of CaMKII in A: PSD-enriched fraction, B: non-junctional membrane fraction and C: cytosol fraction at 0, 45 and 120 min train-sacrifice interval isolated from 2 week IMM for control and DTAL train groups. Data are expressed as a percentage of the control group mean. Bars represent the relative mean +/- SEM, n=number of IMM. * p < 0.05. .. 92

Figure 3-10: Representative Western blot and quantitation of pT286 CaMKII in A: PSD-enriched fraction and B: non-junctional membrane fraction at 0, 45 and 120 min train-sacrifice interval isolated from 2 week IMM for control and DTAL train groups. Data are expressed as a percentage of the control group mean. Bars represent the relative mean +/- SEM, n=number of IMM. * p < 0.05, ** p< 0.01. .. 93

Figure 3-11: Proportion of CaMKII molecules in the PSD-enriched fraction affected by phosphorylation in the DTAL train groups, dotted line indicates control levels of phosphorylation, RSPI = Relative Stoichiometry of Phosphorylation Index... 94

Figure 3-12: Representative Western blot and quantitation of ERK in A: PSD-enriched fraction; B: non-junctional membrane fraction and C: cytosol fraction at 0, 45 and 120 min train-sacrifice interval isolated from 2 week IMM for control and DTAL train groups. Data are expressed as a percentage of the control group mean. Bars represent the relative mean +/- SEM, n=number of IMM. * p < 0.05, *** p < 0.001. ... 97

Figure 3-13: Representative Western blot and quantitation of phospho-ERK in A: non-junctional membrane fraction and B: cytosol fraction at 0, 45 and 120 min train-sacrifice interval isolated from 2 week IMM for control and DTAL train groups. Data are expressed as a percentage of the control group mean. Bars represent the relative mean +/- SEM, n=number of IMM. ** p < 0.01.......................... 98

Figure 3-14: Proportion of ERK molecules in the cytosol fraction affected by phosphorylation in the DTAL train groups, dotted line indicates control levels of phosphorylation, RSPI = Relative Stoichiometry of Phosphorylation Index... 99

Figure 3-15: Representative Western blot and quantitation of CREB in the nuclei fraction at 0, 45 and 120 min train-sacrifice interval isolated from 2 week IMM for control and DTAL train groups. Data are expressed as a percentage of the control group mean. Bars represent the relative mean +/- SEM, n=number of IMM. **p<0.01. ... 101
Figure 3-16: Representative Western blot and quantitation of PSD-95 in A: PSD-enriched fraction and B: non-junctional membrane fraction at 0, 45 and 120 min train-sacrifice interval isolated from 2 week IMM for control and DTAL train groups. Data are expressed as a percentage of the control group mean. Bars represent the relative mean +/- SEM, n=number of IMM. .. 102

Figure 3-17: Representative Western blot and quantitation of GluR1 in A: PSD-enriched fraction and B: non-junctional membrane fraction at 0, 45 and 120 min train-sacrifice interval isolated from 8 week IMM for control and DTAL train groups. Data are expressed as a percentage of the control group mean. Bars represent the relative mean +/- SEM, n=number of IMM. ** p < 0.01. .. 105

Figure 3-18: Representative Western blot and quantitation of pS831 GluR1 in A: PSD-enriched fraction and B: non-junctional membrane fraction at 0, 45 and 120 min train-sacrifice interval isolated from 8 week IMM for control and DTAL train groups. Data are expressed as a percentage of the control group mean. Bars represent the relative mean +/- SEM, n=number of IMM. ** p < 0.01. .. 105

Figure 3-19: Proportion of GluR1 molecules in the PSD-enriched fraction affected by phosphorylation in the DTAL train groups, dotted line indicates control levels of phosphorylation, RSPI = Relative Stoichiometry of Phosphorylation Index.. 106

Figure 3-20: Representative Western blot and quantitation of CaMKII in A: PSD-enriched fraction and B: non-junctional membrane fraction at 0, 45 and 120 min train-sacrifice interval isolated from 8 week IMM for control and DTAL train groups. Data are expressed as a percentage of the control group mean. Bars represent the relative mean +/- SEM, n=number of IMM. ** p < 0.01. .. 108

Figure 3-21: Representative Western blot and quantitation of pT286 CaMKII in the PSD-enriched fraction at 0, 45 and 120 min train-sacrifice interval isolated from 8 week IMM for control and DTAL train groups. Data are expressed as a percentage of the control group mean. Bars represent the relative mean +/- SEM, n=number of IMM. * p < 0.05. .. 109

Figure 3-22: Proportion of CaMKII molecules in the PSD-enriched fraction affected by phosphorylation in the DTAL train groups, dotted line indicates control levels of phosphorylation, RSPI = Relative Stoichiometry of Phosphorylation Index.. 110

Figure 3-23: Representative Western blot and quantitation of ERK in A: PSD-enriched fraction; B: non-junctional membrane fraction and C: cytosol fraction at 0, 45 and 120 min train-sacrifice interval isolated from 8 week IMM for control and DTAL train groups. Data are expressed as a percentage of the control group mean. Bars represent the relative mean +/- SEM, n=number of IMM. p > 0.05. 112

Figure 3-24: Representative Western blot and quantitation of phospho-ERK in A: non-junctional fraction and B: cytosol fraction at 0, 45 and 120 min train-sacrifice interval isolated from 8 week IMM for control and DTAL train groups. Data are expressed as a percentage of the control group mean. Bars represent the relative mean +/- SEM, n=number of IMM. * p < 0.05. .. 114

Figure 3-25: Proportion of ERK molecules in the non-junctional fraction affected by phosphorylation in the DTAL train groups, dotted line indicates control levels of phosphorylation, RSPI = Relative Stoichiometry of Phosphorylation Index.. 115

Figure 3-26: Representative Western blot and quantitation of CREB in the nuclei fraction at 0, 45 and 120 min train-sacrifice interval isolated from 8 week IMM for control and DTAL train groups. Data are expressed as a percentage of the control group mean. Bars represent the relative mean +/- SEM, n=number of IMM. .. 115

Figure 3-27: Representative Western blot and quantitation of PSD-95 in A: PSD-enriched fraction and B: non-junctional membrane fraction at 0, 45 and 120 min train-sacrifice interval isolated from 8 week IMM for control and DTAL train groups. Data are expressed as a percentage of the control group mean. Bars represent the relative mean +/- SEM, n=number of IMM. .. 116

Figure 3-28: Percentage difference in relative concentrations at 2 weeks (blue) and 8 weeks (red) for: pS831 GluR1 in the PSD-enriched fraction. Relative percentage = DTAL train mean % -control mean %, vertical arrows indicate the time at which the transient increase in phosphorylation was detected and the dashed arrow indicates the shift in time course due to maturation, ** p < 0.01, * p <0.05, comparison is between DTAL train v control. .. 121

Figure 3-29: Percentage difference in relative concentrations at 2 weeks (blue) and 8 weeks (red) for: CaMKII in the PSD-enriched fraction. Relative percentage = DTAL train mean % -control mean %, vertical arrows indicate the time at which the transient increase in concentration was detected and the
dashed arrow indicates the shift in time course due to maturation, ** p < 0.01, * p < 0.05, comparison is between DTAL train v control. ... 123

Figure 3-30: Percentage difference in relative concentrations at 2 weeks (blue) and 8 weeks (red) for: pT286 CaMKII in the PSD-enriched fraction. Relative percentage = DTAL train mean % -control mean %, vertical arrows indicate the time at which the increase in phosphorylation was detected and the dashed arrow indicates the shift in time course due to maturation, ** p < 0.01, * p < 0.05, comparison is between DTAL train v control. ... 124

Figure 3-31: Percentage difference in relative concentrations at 2 weeks (blue) and 8 weeks (red) for: A: ERK in the PSD-enriched fraction, B: phospho-ERK in the non-junctional membrane fraction, and C: ERK and D: phospho-ERK in the cytosol fraction (top to bottom). Relative percentage = DTAL train mean % -control mean %. *** p < 0.001, ** p < 0.01, * p < 0.05, comparison is between DTAL train v control. ... 127

Figure 3-32: Percentage difference in relative concentrations at 2 weeks (blue) and 8 weeks (red) for: CREB in the nuclei fraction. Relative percentage = DTAL train mean % -control mean %. ** p < 0.01, comparison is between DTAL train v control. ... 129

Figure 4-1: Mean startle amplitude (+/- SEM) for 8 week old chickens for each of the three startle stimuli presented. 83 dB noise pulse and light v 108 dB noise pulse, *** p < 0.001, n = 4. 142

Figure 4-2: Mean startle amplitude (+/- SEM) for 2 week old chickens for each of the three startle stimuli presented. 83 dB noise pulse v light and 108 dB noise pulse, ** p < 0.01, n = 4. 143

Figure 4-3: Representative EMG recordings for startle only response to 108 dB stimuli obtained from A: 2 week and B: 8 week chickens. Box represents startle stimulus presentation. Both recordings show approximately 800ms from startle pulse onset. .. 144

Figure 4-4: Typical responses to startle only pulses during PPI protocol undertaken during EMG recording for 8 week and 2 week old chickens. ... 144

Figure 4-5: Mean percent PPI (+/- SEM) at each ISI averaged across stimulus combination for 8 week and 2 week old chickens. n = 8 at both ages. ... 146

Figure 4-6: Mean percent PPI (+/- SEM) at each stimulus combination averaged across ISI for 8 week and 2 week old chickens. Stimulus combination: A) 71dB prepulse/108dB startle pulse, B) 77dB prepulse/108dB startle pulse, C) 26.72cd/m² light prepulse /108dB startle and D) 26.72cd/m² light prepulse/ 194.5cd/m² light startle pulse. n = 8 at both ages. ... 147

Figure 4-7: Mean startle responses (+/- SEM) to startle only pulses during the new PPI protocol for 3 and 6 week old male chickens. ... 154

Figure 4-8: Typical accelerometer recordings for startle only response for (A) rat and (B) 6 week chickens. Box represents startle stimulus presentation. Both recordings show 800ms from startle pulse onset. ... 156

Figure 4-9: Mean percent PPI (+/- SEM) exhibited at each ISI for rat and chicken using the new experimental design and apparatus. *** p < 0.001 comparison to 100ms ISI rat mean. n = 10 chickens, n = 4 rats. .. 157

Figure 4-10: Schematic of experimental apparatus. Cylindrical restraint was placed onto the spring-loaded floor so that the accelerometer was directly under the center. The chicken was then placed into the cylinder. .. 159

Figure 4-11: Mean percent PPI (+/- SEM) at each ISI using the cylinder with perch modified chicken restraint in 6 week chickens. n = 9 chickens. ... 160

Figure 4-12: Mean percent PPI (+/- SEM) at each ISI exhibited by the 2 week old chickens. n = 12 chickens. .. 161

Figure 5-1: Electrode placement on a 2-week animal. ... 174

Figure 5-2: Overall grand mean waveforms of chicken AERPs over the neural maturation period, collapsed over stimulus intensity. C1 = right side, C2= left side. ... 176

Figure 5-3: Average grand mean waveforms of chicken AERPs over the neural maturation period in response to a 50dB white noise burst. C1 = right side, C2= left side. ... 178
Figure 6-14: Mean (+/- SEM) peak amplitude of dB level for C1, C2 and E groups for the initial positive peak of chicken AERP collapsed over week.

Figure 6-15: Mean (+/- SEM) peak latency of the main effect of group, collapsed over week, dB level and side, for the initial positive peak of chicken AERP. ***p<0.001 for E v C2 group compared by pairwise comparisons.

Figure 6-16: Mean (+/- SEM) peak latency as a function of age for the initial positive component of chicken AERP collapsed over group.

Figure 6-17: Mean (+/- SEM) peak latency of the week by group interaction for the initial positive peak of chicken AERP.

Figure 6-18: Mean (+/- SEM) peak latency as a function of age for each group for the initial positive peak of chicken AERP.

Figure 6-19: Mean (+/- SEM) peak latency of the side by group interaction for the initial positive peak of chicken AERP.

Figure 6-20: Performance on the pebble-floor task during learning and retention tested 24 hrs post-training. Each point represents the mean number of errors (+/- SEM) made by the no-drug manipulation (C1; n= 9) group, PTU, MMI and T4 drug administered (C2; n=9) group and the hypothyroid, PTU and MMI administered (E; n=4) group in each block of 20 pecks during training and testing. + p<0.05 C1 v C2; ** p<0.01 C1 v E; *** p<0.001 C1 v C2 and E, pairwise comparisons.

12
List of Tables

Table 2-1: Percentage total protein obtained within each fraction................................. 47

Table 3-1: Mean and SEM for Relative Concentrations of AMPA subunit GluR1 and pS831 GluR1 in the PSD-enriched and Non-junctional membrane Fractions at 0, 45 and 120 min train-sacrifice interval from 2 week IMM for Peck Control and Train Groups... 90

Table 3-2: Mean and SEM for Relative Concentrations of CaMKII and pT286 CaMKII in the PSD enriched, Non-junctional membrane and Cytosol Fractions at 0, 45 and 120 min train-sacrifice interval from 2 week IMM for Peck Control and Train Groups.. 95

Table 3-3: Mean and SEM for Relative Concentrations of ERK and phospho-ERK in the PSD-enriched, Non-junctional membrane and Cytosol Fractions at 0, 45 and 120 min train-sacrifice interval from 2 week IMM for Peck Control and Train Groups.. 100

Table 3-4: Mean and SEM for Relative Concentration of CREB in the Nuclei Fraction at 0, 45 and 120 min train-sacrifice interval from 2 week IMM for Peck Control and Train Groups.. 101

Table 3-5: Mean and SEM for Relative Concentrations for PSD-95 in the PSD-enriched and Non-junctional membrane Fractions at 0, 45 and 120 min train-sacrifice interval from 2 week IMM for Peck Control and Train Groups.. 103

Table 3-6: Mean and SEM for Relative Concentrations of AMPA subunit GluR1 and pS831 GluR1 in the PSD-enriched and Non-junctional membrane Fractions at 0, 45 and 120 min train-sacrifice interval from 8 week IMM for Peck Control and Train Groups... 107

Table 3-7: Mean and SEM for Relative Concentrations for CaMKII in the PSD-enriched and Non-junctional membrane Fractions at 0, 45 and 120 min train-sacrifice interval from 8 week IMM for Peck Control and Train Groups... 111

Table 3-8: Mean and SEM for Relative Concentrations of ERK and phospho-ERK in the PSD enriched, Non-junctional membrane and Cytosol Fractions at 0, 45 and 120 min train-sacrifice interval from 8 week IMM for Peck Control and Train Groups.. 113

Table 3-9: Mean and SEM for Relative Concentration of CREB in the Nuclei Fraction and PSD-95 in PSD-enriched and Non-junctional Membrane Fractions at 0, 45 and 120 min train-sacrifice interval from 8 week IMM for Peck Control and Train Groups... 117

Table 5-1: Mean (+/−SEM) peak amplitude (μV) for the initial positive peak of chicken AERP........ 181

Table 5-2: Mean (+/−SEM) peak latency (msec) for the initial positive peak of chicken AERP. 187

Table 5-3: Mean (+/−SEM) peak amplitude (μV) for the late negative peak of chicken AERP........ 189

Table 5-4: Mean (+/−SEM) peak latency (msec) for the late negative peak of chicken AERP........ 191

Table 6-1: Mean (+/−SEM) peak amplitude (μV) for the initial positive AERP peak for each condition 220

Table 6-2: Mean (+/−SEM) peak latency (msec) for the initial positive AERP peak for each condition 230

Table 6-3: Mean duration (+/− SEM) (sec) to complete 60 pecks on the pebble floor task during train and test... 238
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABR</td>
<td>auditory brainstem response</td>
</tr>
<tr>
<td>ACEC</td>
<td>animal care and ethics committee</td>
</tr>
<tr>
<td>AERP</td>
<td>auditory event related potential</td>
</tr>
<tr>
<td>AMPA</td>
<td>α-amino-3-hydroxy-5-methyl-4-isoxazoleprionic acid</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>BCA</td>
<td>bicinchonic acid</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>CaMKII</td>
<td>calcium/calmodulin stimulated protein kinase</td>
</tr>
<tr>
<td>pT286 CaMKII</td>
<td>CaMKII phosphorylated at Thr 286</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic 3’,5’-adenosine monophosphate</td>
</tr>
<tr>
<td>CNQX</td>
<td>cianonitroquinoxaline</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CREB</td>
<td>cAMP response element binding protein</td>
</tr>
<tr>
<td>DNQX</td>
<td>6,7-dinitroquinoxaline-2,3-dione</td>
</tr>
<tr>
<td>DTAL</td>
<td>discriminative taste avoidance learning</td>
</tr>
<tr>
<td>ECL</td>
<td>enhanced chemiluminescence</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetraacetic acid</td>
</tr>
<tr>
<td>EEG</td>
<td>electroencephalogram</td>
</tr>
<tr>
<td>EGTA</td>
<td>ethylene glycol tetraacetic acid</td>
</tr>
<tr>
<td>EMG</td>
<td>electromyograph</td>
</tr>
<tr>
<td>ERK</td>
<td>extracellular-signal regulated kinase</td>
</tr>
<tr>
<td>ERP</td>
<td>event related potential</td>
</tr>
</tbody>
</table>
fT3 free serum T3
fT4 free serum T4
GluR1 glutamate receptor 1
pS831 GluR1 GluR1 AMPA subunit phosphorylated at Ser 831
IMM intermediate medial mesopallium
ISI inter stimulus interval
ITI inter trial interval
ITM intermediate term memory
LPO lobus parolfactorius
LTD long-term depression
LTM long-term memory
LTP long-term potentiation
m mean
MAPK mitogen-activated protein kinase
MeA methylantranilate
MK801 (+)-methyl-10,11-dihydro-5H dibenzo [a,d]cyclo hepten-5,10-imine malate
MMI methimazole
NaF sodium fluoride
PAL passive avoidance learning
PFT pebble floor task
PKA cAMP-dependent protein kinase
PKC protein kinase C
PPI prepulse inhibition
PSD post synaptic density
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTU</td>
<td>propylthiouracil</td>
</tr>
<tr>
<td>RSPI</td>
<td>relative stoichiometry of phosphorylation index</td>
</tr>
<tr>
<td>SB</td>
<td>sample buffer</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>SDS-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>STM</td>
<td>short term memory</td>
</tr>
<tr>
<td>SW-R</td>
<td>standard working reagent</td>
</tr>
<tr>
<td>T3</td>
<td>triiodothyronine</td>
</tr>
<tr>
<td>T4</td>
<td>thyroxine</td>
</tr>
<tr>
<td>TBS</td>
<td>tris buffered saline</td>
</tr>
<tr>
<td>TBST</td>
<td>TBS containing 0.1% Tween-20</td>
</tr>
<tr>
<td>TH</td>
<td>thyroid hormone</td>
</tr>
</tbody>
</table>
Abstract

This thesis investigates mechanisms of brain maturation by utilising the special advantages offered by the protracted maturation of neural circuits in chicken forebrain. Biochemical, behavioural and electrophysiological techniques are used in behaving animals to investigate the functional consequences of maturation changes at the molecular, behavioural and physiological levels.

Two issues are addressed: (1) do immature (2 week) and mature (8 week) chickens employ different molecular mechanisms to produce changes in neuronal function after learning a behavioural task; and (2) can quantitative non-invasive measures of neuronal function be used to monitor maturation changes in chicken forebrain?

Biochemical investigation of subcellular fractions using antibodies and western blots of chicken forebrain and intermediate medial mesopallium (IMM) revealed regional differences in expression levels of a number of components of the glutamatergic neurotransmitter system.

The discriminative taste aversion learning (DTAL) task was used to assess whether an animal learns the same task at different ages using different intracellular signalling pathways. The patterns of biochemical change seen in the IMM after DTAL training was very different at 2 weeks and 8 weeks. Two major differences were observed. Firstly, the same type of training induced changes occurred at both ages in GluR1 and CaMKII but they occurred faster at 8 weeks. Secondly the difference in ERK and CREB responses is consistent with a change in the relative contribution made by the ERK signalling pathway and CREB requirement to learning at these two ages. These results imply that the molecular changes induced by learning a behavioural task
are faster in mature than immature brain and may involve a different balance of intracellular signalling pathways.

In order to be able to investigate biological mechanisms controlling maturation and to use the chicken as an animal model in which pharmacological and/or environmental agents can be screened for potentially harmful effects on brain maturation two non-invasive measures of neuronal function were investigated. One was behavioural (prepulse inhibition: PPI) and the other was electrophysiological (auditory evoked related potentials: AERP).

PPI in the chicken was examined electromyographically and via whole body movement with a stabilimeter apparatus. In two strains of chicken (a meat breed and a laying breed) PPI was identified but shown to be small and variable compared to that in the rat. The results indicate that the phenomenon of PPI in the chicken is too small and variable to be used as a quantitative measure of neural circuit maturation.

Quantitative analysis of the chicken AERP revealed a significant decrease in amplitude of the positive AERP component and a decrease in latency of the negative AERP component with maturation. These maturation changes were comparable to developmental changes seen in human and other mammal AERPs. Such changes may reflect changes in the intracortical synaptic organisation of the auditory cortex. This technique allowed for repeated measures to be undertaken on the same animal over a number of weeks and enabled developmental changes to be monitored.

This technique was extended to investigate perturbed maturation via the induction of chemically induced hypothyroidism. Results from this study showed that the induction of late onset hypothyroidism produces measurable effects on the chicken AERP consistent with perturbation in maturation of neuronal circuits and synapses. This suggests that AERPs may be useful non-invasive functional measures of brain
maturation that can be used to study the effects of endogenous or exogenous factors on brain maturation in the chicken.

Since human brain also exhibits a protracted maturation period the availability of a well characterised animal model for protracted brain maturation provides an opportunity to identify molecules, genes and environmental factors that are important in the regulation of maturation. Such a model may provide the basis for developing rational therapies or prevention strategies for some neurodevelopmental disorders. The protracted maturation of neuronal circuits observed in chicken forebrain offers such a model.