Distributed load management supporting power injection and reactive power balancing

Sonja Stüdli (BSc ETH, MSc ETH)

Thesis submitted for the degree of
Doctor of Philosophy (PhD)

Main supervisor: Prof. R. H. Middleton
Co-supervisors: Prof. R. Shorten and Dr. J. H. Braslavsky

The University of Newcastle

June 2015
Statement of Originality

I hereby certify that this thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

__________________________ __________________________
Sonja Stüdli Date

Statement of Collaboration

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers, or carried out in other institutions. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

__________________________ __________________________
Sonja Stüdli Date

Statement of Authorship

I hereby certify that the work embodied in this thesis contains published papers of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publications.

__________________________ __________________________
Sonja Stüdli Date
I would like to use this opportunity to express my gratitude to the wonderful people and professionals who supported me throughout my PhD studies. Their guidance, friendly advice and constructive criticism were invaluable to me during the pursuit of this work.

First and foremost I would like to thank my supervisors R. Middleton, R. Shorten, and J. Braslavsky, who with a lot of patience helped me to achieve my goals. Without you I would have never been able to achieve this. I express my thanks to C. Kellett, who also took the role as my supervisor. Even though the time was short, he aid me to pursuit the thesis with his patience, valuable advice, and fruitful ideas and discussions. My special thanks go to the amazing people with whom I had the luck to collaborate. Thank you E. Crisostomi, W. Griggs, M. Liu, M. Corless, R. Khan, F. Wirth, and J. Yuan Yu for your guidance and help throughout our collaboration. Thank you for your patience and effort throughout the work.

I would like to thank S. & F. Knorn and F. Lopez-Caamal for your friendship. You made me feel home here in Australia when I first moved here. Further, to all the people I met at the University and at CSIRO, let me thank you all for your support and friendship. You made my life here in Australia richer.

This study was partly supported by Science Foundation Ireland under grant number 11/PI/1177.

Last but not least I would like to thank my parents S. & R. Stüdli and my partner E. Peters. Thank you for your endless love. There were countless occasions where your patience, support and understanding encouraged me to continue.
Contents

Acknowledgement iii
Contents v
Abstract ix
Acronyms xi
Symbols xiii
Math Notation xv

1 Introduction
1.1 Motivation .. 1
1.2 Load Management 2
 1.2.1 Electric Vehicles 5
 1.2.2 Thermostatically Controlled Loads 9
 1.2.3 Existing and Proposed Load Management Schemes ... 10
1.3 Our Goals and our Contributions 16
1.4 Closely Related Work 19
1.5 Thesis Organisation 20
1.6 Published Papers 21

2 Problem and System Description
2.1 Constraints 27
 2.1.1 Power Constraint 27
 2.1.2 Controller Ability of the Agents 30
2.2 Basic Load Management Objectives 31
 2.2.1 Fairness Notions 33
2.3 Reverse Power Flows Allowed 37
 2.3.1 Revised Fairness Notions for V2G Operations ... 38
2.4 Reactive Power Balance 40
2.5 Management System 41
Contents

3 Binary Controllable Power Consumption
 3.1 Description of the BA Algorithm ... 46
 3.2 Analysis Using an Automata Game ... 48
 3.3 Analysis for Large Scale Systems ... 55
 3.3.1 Local Stability .. 57

4 Continuously Controllable Power Consumption 61
 4.1 The Basic AIMD Algorithm ... 63
 4.1.1 Description of the AIMD Algorithm 63
 4.1.2 The AIMD Algorithm in Different Scenarios 65
 4.2 Expansion to Handle Reverse Power Flows 72
 4.2.1 Description of the Expanded AIMD Algorithm 72
 4.2.2 Behaviour of the Modified AIMD System 73
 4.2.3 Application in Different Scenarios 75
 4.3 Active and Reactive Power Management 79
 4.3.1 Description of the dual additive increase multiplicative decrease (DAIMD) Algorithm .. 79
 4.3.2 The DAIMD Algorithm Illustrated 81

5 Analysis of the AIMD Algorithm .. 85
 5.1 Convergence of AIMD .. 85
 5.1.1 Discrete Time AIMD ... 89
 5.1.2 Varying Available Power and Aggregated Power Consumption of Uncontrollable Loads ... 94
 5.1.3 Upper Bounds on the Power Consumption of each Agent 96
 5.2 Optimisation with the AIMD Algorithm 104
 5.2.1 Convergence Analysis ... 105
 5.3 Behaviour of the Aggregated Demand 118
 5.3.1 The Total Increase during the AI Phase 118
 5.3.2 Decrease during the MD Phase ... 119
 5.3.3 Time between Two Consecutive CEs 121

6 Towards a More Realistic Load Management Scheme 123
 6.1 Network Simulations .. 123
 6.1.1 IEEE 37 Bus Test Network .. 124
 6.1.2 Network with Two Transformers 131
 6.2 Lower Bound on the Power Consumption for Continuously Controllable Loads ... 139

7 Challenges .. 145
 7.1 Fairness Notions ... 145
 7.2 The Available Power ... 146
 7.3 Failure of Components ... 147
 7.4 Security ... 149
 7.5 Communication Aspects .. 150
7.6 Power Grid Structures ... 151
7.7 Expanding the Possibilities .. 153

8 Conclusion .. 155

A Reasoning and Proofs ... 159
A.1 The BA Algorithm as a Markov Chain 159
A.2 Proof of Lemma 3.10 ... 160
A.3 Proof of Lemma 3.11 ... 161
A.4 Proof of Theorem 3.13 .. 162
A.5 Reasoning behind Section 4.1.2.4 164
A.6 Proof of Lemma 5.1 ... 166
A.7 Proof of Theorem 5.3 .. 166
A.8 Proof of Lemma 5.5 ... 167
A.9 Proof of Lemma 5.6 ... 168
A.10 Proof of Lemma 5.7 .. 168
A.11 Proof of Lemma 5.9 .. 171
A.12 Proof of Theorem 5.15 .. 172
A.13 Proof of Theorem 5.16 .. 174
A.14 Proof of Lemma 5.17 .. 177
A.15 Proof of Lemma 5.19 .. 177
A.16 Proof of Lemma 5.22 .. 179
A.17 Proof of Theorem 5.24 .. 179
A.18 Proof of Corollary 5.25 ... 182
A.19 Proof of Theorem 5.29 .. 183
A.20 Proof of Lemma 5.31 .. 186
A.21 Proof of Lemma 6.2 ... 188
A.22 Proof of Theorem 6.4 .. 189
A.23 Proof of Theorem 6.5 .. 192

Bibliography .. 197
Abstract

In recent years active control over selected electric loads has become increasingly important to reduce the peak demand and allow integration of intermittent renewable generation into the power grid. Two groups of loads are especially interesting in this regard due to their expected numbers and large freedom in scheduling: electric vehicles and so called thermostatically controlled loads, such as refrigerators, hot water heaters, or air conditioners. These electric loads allow their power consumption to be adapted depending on the needs of the distribution grid with a minimal impact on the customers. We consider two types of load power control abilities: binary and continuously controllable power.

In this project we propose a load management scheme to deal with such electric loads. The load management scheme allows the usage of two algorithms: one for binary and one for continuously controllable loads. The proposed load management scheme relies on broadcast signals that are sent by a central management unit to all the agents connected. This means that the communication load is low and that simultaneous management over different load types is possible, due to the identical set up. Further, as there is no data transmitted from the controllable loads to the central management unit, there are no data protection or privacy issues present.

For loads participating with binary controllable power consumption, we propose a binary automaton algorithm that uses stochastic decisions made by the agents to govern the power consumption. This algorithm’s behaviour is analysed and shows promising behaviour in simulations. The algorithm we propose for handling continuously controllable loads is the additive increase multiplicative decrease (AIMD) algorithm. This algorithm is commonly used for congestion control in communications networks and has shown to be very flexible and reliable. Its behaviour has been investigated in detail. While there are some adaptations needed to apply this algorithm in a load management case, we can apply many of the existing results found for the AIMD algorithm as it is applied in congestion control. We extend the analysis where necessary for our case.
Acronyms

AI additive increase.
AIMD additive increase multiplicative decrease.
AINMD additive increase non-linear multiplicative decrease.

BA binary automaton.

CCCV constant current constant voltage.
CE capacity event.
CRF Charge Rate Fairness.
CTF Charge Time Fairness.

DAIMD dual additive increase multiplicative decrease.

EV electric vehicle.

FEV full electric vehicle.

G2V grid to vehicle.
GOF Global Optimum Fairness.

HEV hybrid electric vehicle.

IFS iterated function system.

KKT Karush-Kuhn-Tucker.

MD multiplicative decrease.

NAIMD non-linear additive increase multiplicative decrease.
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>turn off.</td>
</tr>
<tr>
<td>ON</td>
<td>turn on.</td>
</tr>
<tr>
<td>PHEV</td>
<td>plug-in hybrid electric vehicle.</td>
</tr>
<tr>
<td>PO</td>
<td>prioritised optimisation.</td>
</tr>
<tr>
<td>REF</td>
<td>Required Energy Fairness.</td>
</tr>
<tr>
<td>RET</td>
<td>Renewable Energy Target.</td>
</tr>
<tr>
<td>SWER</td>
<td>single-wire earth return.</td>
</tr>
<tr>
<td>TCL</td>
<td>thermostatically controlled load.</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol.</td>
</tr>
<tr>
<td>V2G</td>
<td>vehicle to grid.</td>
</tr>
</tbody>
</table>
Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta^{(1)}$</td>
<td>The first multiplicative factor used in the AIMD algorithm.</td>
</tr>
<tr>
<td>$\beta^{(2)}$</td>
<td>The second multiplicative factor used in the AIMD algorithm.</td>
</tr>
<tr>
<td>E</td>
<td>The energy that is required by an EV to fully charge its battery.</td>
</tr>
<tr>
<td>L</td>
<td>The number of priorities in the Charge Time Fairness scenario.</td>
</tr>
<tr>
<td>N</td>
<td>The number of controllable agents.</td>
</tr>
<tr>
<td>T</td>
<td>The time step at which an agent connects to the grid.</td>
</tr>
<tr>
<td>Ψ</td>
<td>The time duration an EV is connected to the grid.</td>
</tr>
<tr>
<td>α</td>
<td>The individual additive factor in the AIMD algorithm.</td>
</tr>
<tr>
<td>\bar{P}</td>
<td>The available power.</td>
</tr>
<tr>
<td>β</td>
<td>The actual multiplicative factor used in the AIMD algorithm.</td>
</tr>
<tr>
<td>γ</td>
<td>The priority that is assigned to an EV in the Charge Time Fairness scenario.</td>
</tr>
<tr>
<td>\hat{p}</td>
<td>The desired active power consumption of a controllable agent.</td>
</tr>
<tr>
<td>κ</td>
<td>The time an EV remains in the same priority group in the Charge Time Fairness scenario.</td>
</tr>
<tr>
<td>λ</td>
<td>The probability to choose the first multiplicative factor during the AIMD algorithm.</td>
</tr>
<tr>
<td>S</td>
<td>The set in which the active power consumption of the controllable load can lie.</td>
</tr>
<tr>
<td>μ</td>
<td>The probability to turn off when using the BA algorithm.</td>
</tr>
<tr>
<td>ν</td>
<td>The probability to turn on when using the BA algorithm.</td>
</tr>
<tr>
<td>π</td>
<td>The global additive factor in the AIMD algorithm.</td>
</tr>
<tr>
<td>$\bar{\vartheta}$</td>
<td>The maximum inside temperature allowed of a controllable refrigerator.</td>
</tr>
<tr>
<td>π</td>
<td>The global additive factor for the reactive power AIMD.</td>
</tr>
<tr>
<td>\bar{p}</td>
<td>The maximum active power consumption a controllable agent can handle.</td>
</tr>
<tr>
<td>$\bar{\pi}$</td>
<td>The maximum apparent power a controllable agent can draw.</td>
</tr>
<tr>
<td>ρ</td>
<td>The average active power consumption of controllable loads, either it is a long term average since connection or a short term average over a period with predefined length.</td>
</tr>
<tr>
<td>\tilde{E}</td>
<td>The battery capacity of an EV.</td>
</tr>
<tr>
<td>\bar{p}</td>
<td>The aggregated active power consumption of uncontrollable agents.</td>
</tr>
<tr>
<td>\bar{q}</td>
<td>The aggregated reactive power consumption of uncontrollable agents.</td>
</tr>
<tr>
<td>β</td>
<td>The minimum decrease enforced during the MD phase.</td>
</tr>
</tbody>
</table>
Symbols

\(\vartheta \) \hspace{1em} The minimum inside temperature allowed of a controllable refrigerator.

\(p \) \hspace{1em} The minimum power consumption a controllable agent draws.

\(v \) \hspace{1em} The indicator whether an agent is in G2V or V2G operation for the active power when applying the extended AIMD algorithm.

\(\theta \) \hspace{1em} The temperature inside a controllable refrigerator.

\(\xi \) \hspace{1em} The probability to choose the first multiplicative factor during the reactive power AIMD.

\(\zeta \) \hspace{1em} The indicator whether an agent is in G2V or V2G operation for the reactive power when applying the DAIMD algorithm.

\(a \) \hspace{1em} The individual additive factor for the reactive power AIMD.

\(b^{(1)} \) \hspace{1em} The first multiplicative factor used in the reactive power AIMD algorithm.

\(b^{(2)} \) \hspace{1em} The second multiplicative factor used in the reactive power AIMD algorithm.

\(b \) \hspace{1em} The expected multiplicative factor in the AIMD algorithm.

\(g \) \hspace{1em} The individual cost function of an EV in the Global Optimum Fairness scenario.

\(m \) \hspace{1em} The number of steps used for the turn off probability during the BA algorithm.

\(n \) \hspace{1em} The number of steps used for the turn on probability during the BA algorithm.

\(p \) \hspace{1em} The active power consumption of controllable loads.

\(q \) \hspace{1em} The reactive power consumption of controllable loads.
Math Notation

A, B, \ldots Sets.
\mathbb{R} The set of real numbers.
\mathbb{R}_+ The set of non-negative real numbers.
\mathbb{N} The set of natural numbers.
$\text{conv } X$ The convex hull of a set X, it may be defined as the smallest convex set containing X.
$|x|$ The absolute value of $x \in \mathbb{R}$.
$\lfloor x \rfloor$ The integer part of $x \in \mathbb{R}$.
$(x \mod y)$ The modular operation of two integers x and y, i.e. x modulo y.
x A column vector with elements in \mathbb{R}.
x_i The i-th element of the vector x.
e_i The i-th canonical basis vector.
1 The column vector of all ones.
$x \neq y$ There exists an index i with $x_i \neq y_i$.
A A matrix A with elements in \mathbb{R}.
I_n The identity matrix of dimension $n \times n$.
$||x||_1$ The l_1 norm of the vector x, i.e. $\sum_{i=1}^{n} |x_i|$.
$\text{dist}_{l_1}(x, X)$ The distance of a point x to a set X with respect to the l_1 norm, i.e. $\min_{z \in X} (||x - z||_1)$.
$B_1(x, \delta)$ The closed ball of radius δ around x with respect to the l_1 norm.
$||x||_{H_T}$ The norm of a vector $x = [x_1^T \cdots x_T^T]^T$ defined by $\min_{i=1, \ldots, T} ||x_i||_{1}$.
$\text{dist}_{H}(x, y)$ The Hilbert metric between two vectors, i.e. $\max_i \log \frac{x_i}{y_i} - \min_j \log \frac{x_j}{y_j}$.
$e^{\mathcal{H}}(x, y)$ The Hilbert metric with the logarithm removed, i.e. $\max_i \frac{x_i}{y_i} - \min_j \frac{x_j}{y_j}$.
$A \otimes B$ The Kronecker product of the matrices A and B.
$A \oplus B$ The Kronecker sum of two square matrices A and B, i.e. $A \otimes I_n + I_n \otimes B$ if the dimensions of A and B are $n \times n$ and $m \times m$, respectively.
A^T, x^T The transpose of the matrix A or the vector x.
A^{-1} The inverse of the matrix A.
$\Pr [A]$ The probability that event A occurs.
$E [X]$ The expected value of a random variable X.