Immunometabolism in Obese Asthma

Hashim Abdul Rahiman Periyalil

M.B;B.S, M.D

A thesis submitted for the degree of Doctor of Philosophy

The University of Newcastle, Australia

September 2015
STATEMENT OF ORIGINALITY
This thesis contains no material which has been accepted for the award of any
other degree or diploma in any other university or other tertiary institution and,
to the best of my knowledge and belief, contains no material previously
published or written by another person, except where due reference has been
made in the text. I give consent to this copy of my thesis, when deposited in the
University Library, being made available for loan and photocopying subject to
the provisions of the Copyright Act 1968.

ACKNOWLEDGEMENT OF AUTHORSHIP
I hereby certify that the work embodied in this thesis contains published papers
and scholarly work of which I am a first author. I have included as part of this
thesis a written statement, endorsed by my supervisor, attesting to my
contribution to the joint publications.

...

Hashim A Periyalil
"I acknowledge the traditional owners and custodians of the land on which we meet today, the Wurundjeri people of the Kulin Nation. I pay my respects to their Elders both past and present".
Acknowledgements

This thesis represents not only my work under the guidance of my supervisors; it is an achievement for our research group at HMRI, having established a new method for adipose tissue processing and analysis of adipose tissue macrophages. Undertaking this PhD had been truly a life-changing experience for me and it would not have been possible without the invaluable support and guidance that I received from many people.

I would like to first say a big thank you to my supervisors Peter Gibson and Lisa Wood for having the confidence in me to develop and establish the adipose tissue processing technique and for all their support and encouragement during the last 3 years. I am equally grateful to my lovely and dedicated study participants involved in this thesis. This thesis would not have been made possible without your generosity. I am indebted to Asthma Australia for recognising me with a National PhD Scholarship.

Peter Gibson has taught me, both consciously and sub-consciously, how to think, act and communicate as a good researcher. He has always persuaded me to stay focussed and develop lateral thinking. He has always made tasks easier for me with his systematic and evidence-based approach. As a mentor, you have enabled me to self-realise my potential to further pursue a career as a clinician and a researcher.

Lisa Wood, your incredible charisma and ever-smiling face has always held my spirits high during those tough times, to pursue my PhD and to finish within 3 years. The invaluable support and encouragement you have offered me, before and after each of our meetings, boosted my morale to achieve beyond my own expectations. Your expert advice and help with learning lab techniques has enabled me to produce good quality data in this thesis.

The projects involved in this thesis were outcomes of invaluable and effective collaborations with Dr Tim Wright and Dr Costa Karihaloo. Their passion to contribute their expertise and skills to clinical research is much appreciated. I would not have been able to achieve the sample size of participants involved in this thesis without my dedicated and hard working colleague, April Miu.
Thanks for helping me with those early morning sample collections and late night work at the lab. Hats off to my mentors Vanessa McDonald, Jodie Simpson and Fatemeh Moheimani. Your encouragement, suggestions and timely help made a significant difference in my stride towards this thesis. I greatly appreciate the help and support received from our Post-doctoral fellows: Katie Baines, Hayley Scott, Bronwyn Berthon and Megan Jensen; and my fellow PhD candidates: Netsanet Negewo, Laura Cordova and Rebecca Williams. I am grateful to the lab processing team: Michelle Gleeson, Kellie Fakes and Bridgette Ridewood for their dedication and providing technical expertise when and where needed. The setting up of FACS analysis would not have been made possible without the technical expertise of Andrew Lim, Nicole Cole, Malcolm Starkey and Ellen Marks. You guys made my life much easier!! My thanks also go out to the support I received from the ever-helping clinical team; Kelly Steel, Gabe LeBrocq, Amber Smith and Penny Baines for training me and offering unconditional help when I got stuck in the clinical pod. Clinical and scientific data would not be of any use without its proper interpretation; and it was made possible with the help of Heather Powell. Thank you for your assistance, advice and explanations whenever I was in need of help. Three cheers to my desk buddies Kate Morgan and Kelly Steel. Your companionship certainly helped me to keep going during those tough times.

Thank you to my sweet wife Fathima and son Ihsan for the immense love and affection you have offered, as always; and understanding my tasks involved during the last 3 years. I am grateful to my parents, my mother-in-law for your prayers, support and guidance. Thanks to my sister, Haseena for your encouragement. Fahd, my brother-in-law, who recently completed PhD, has always been an inspiration.

Thank God!!
Publications arising from this thesis to date

 Statement of contribution: Conceptualised the hypothesis, entered, analysed and interpreted the data; and wrote the manuscript.

 Statement of contribution: Researched the literature and drafted the manuscript.

Abstract list

2. Periyalil H.A.; Wright T.; Karihaloo C.; Wood L.G.; Gibson P.G. Characterisation of adipose tissue macrophage phenotypes in obese asthma. *(European Respiratory Society Annual Conference, Amsterdam, The Netherlands, September, 2015-Poster presentation).*

Invited seminar presentation

Table of Contents

- Table of Figures .. x
- Table of Tables ... xii
- Abbreviations .. xiii
- Synopsis ... 1
- Chapter 1: INTRODUCTION ... 4
 - 1.1 Asthma .. 5
 - 1.1.1 Definition .. 5
 - 1.1.2 Epidemiology .. 5
 - 1.1.3 Clinical Presentation .. 7
 - 1.1.4 Immunology of Asthma .. 9
 - 1.2 Obesity ... 17
 - 1.2.1 Definition .. 17
 - 1.2.2 Epidemiology .. 19
 - 1.2.3 Immunometabolism in Obesity ... 21
 - 1.2.4 Markers of macrophage activity ... 35
 - 1.2.5 Treatment approaches for obesity ... 40
 - 1.3 Asthma and Obesity .. 51
 - 1.3.1 Implications of obesity on asthma .. 51
 - 1.3.2 Proposed mechanisms of interaction between obesity and asthma ... 52
 - 1.3.3 Altered respiratory physiology in obesity 52
 - 1.4 Immunometabolism in obese asthmatics .. 56
 - 1.4.1 Adipokines ... 57
 - 1.4.2 Macrophages ... 59
 - 1.4.3 Mast cells ... 59
 - 1.5 Effects of immunometabolism on airway inflammation in obese asthmatics .. 60
 - 1.6 Therapeutic possibilities .. 64
- Chapter 2: GENERAL METHODS ... 72
 - 2.1 Clinical Information .. 73
 - 2.1.1 Questionnaires .. 73
 - 2.2 Body Composition Measurement .. 74
 - 2.2.1 Anthropometric Measurements ... 74
 - 2.2.2 Dual-Energy X-ray Absorptiometry ... 75
 - 2.3 Lung Function Measurement .. 77
 - 2.4 Saline Challenge/Sputum Induction .. 78
 - 2.5 Allergy Skin Prick Test ... 78
 - 2.6 Blood Collection and Processing ... 79
 - 2.7 Ethics Approval .. 80
 - 2.8 Laboratory Analysis .. 80
 - 2.8.1 Blood Sample ... 80
 - 2.8.2 Sputum Sample .. 80
 - 2.8.3 Adipose Tissue Sample .. 81
 - 2.8.4 Immunostaining for FACS analysis ... 83
 - 2.8.5 Immunohistochemistry Analysis of Adipose Tissue 84
Chapter 6: COMPARISON OF MARKERS OF SYSTEMIC INFLAMMATION WITH ADIPOSE TISSUE MACROPHAGE PHENOTYPES ... 161

6.1 Introduction .. 162
6.2 Methods ... 166
 6.2.1 Subjects .. 166
 6.2.2 Study design ... 167
 6.2.3 Collection and processing of blood sample 167
 6.2.4 Estimation of sCD163 ... 168
 6.2.5 Estimation of CRP ... 169
 6.2.6 Characterisation of Adipose Tissue Macrophage phenotypes ... 169
 6.2.7 Statistical analysis .. 169

6.3 Results ... 170
 6.3.1 Clinical characteristics ... 170
 6.3.2 Associations between systemic inflammation and BMI 171
 6.3.3 Relationship between markers of systemic inflammation and various adipose tissue macrophage phenotypes 172
 6.3.4 Associations between systemic and airway inflammation ... 175

6.4 Discussion ... 176

Chapter 7: GENERAL DISCUSSION ... 186

7.1 Introduction .. 187
7.2 Characterisation of systemic inflammation in obesity and asthma ... 187
7.3 Developmental effects of immunometabolism in obese asthma 188
7.4 Development of a methodology for isolation of adipose tissue macrophages ... 188
7.5 Characterisation of obese adipose tissue inflammometry 189
7.6 Identification of biomarkers for adipose tissue macrophage activation .. 190
 7.7 Strengths and Weakness ... 191
 7.8 Clinical and Scientific Implications .. 194
 7.9 Summary ... 196
 7.10 Future Directions ... 198
 7.11 Final Conclusion ... 201

REFERENCES .. 203
Table of Figure

Figure 1-1: Global prevalence of asthma ... 7
Figure 1-2: Percentage of asthmatics with characteristic features of various inflammatory phenotypes in stable adult asthma .. 11
Figure 1-3: Illustration of mechanistic pathways in eosinophilic and Th-2 asthma .. 12
Figure 1-4: Categorisation of asthmatics based on Th-2 cell cytokine gene expression in airways .. 16
Figure 1-5: A schematic representation of comparison of medium-sized healthy airway structure to structural effects of remodelling in an asthmatic airway... 17
Figure 1-6: Immunometabolism explores how immune changes are translated to metabolic effects in end organs ... 22
Figure 1-7: Obesity associated diseases as an effect of immunological hyperresponsiveness ... 24
Figure 1-8: Structural and functional changes of adipose tissue in obesity 25
Figure 1-9: Schematic diagram illustrating inflammatory cascade in obese adipose tissue ... 27
Figure 1-10: Inducers of macrophage activation pathways and functional properties of various macrophage phenotypes 34
Figure 1-11: Shedding of sCD163 induced by TLR4 activation and mediated by ADAM17/TACE ... 39
Figure 1-12: Example of DEXA total body composition image 48
Figure 1-13: Commonly used methods for bariatric surgery 50
Figure 1-14: Altered airflow dynamics in obesity: Flow volume loop in an obese individual ... 55
Figure 2-1: An example of total body DEXA scan .. 76
Figure 3-1: Systemic inflammation in obese asthmatics across age and sex. 94
Figure 3-2: Sex specific effects of central obesity on macrophage activation. 95
Figure 3-3: Association between macrophage activation and clinical aspects in obese female children with asthma... 96
Figure 4-1: Sampling of sub-cutaneous adipose tissue 109
Figure 4-2: Sampling of visceral adipose tissue .. 111
Figure 4-3: Adipose tissue digestion ... 112
Figure 4-4: Isolation of stromovascular fraction .. 115
Figure 4-5: Illustration of FACS and Cytospin analysis of SVF 116
Figure 4-6: Cytospin analysis of stromovascular fraction 118
Figure 4-7: Digital quantification of adipose tissue macrophages by immunohistochemistry ... 122
Figure 5-1 Side scatter and fluorescence to PerCP-Cy5-5-A 7-AAD as parameters to exclude dead cells ... 136
Figure 5-2 Identifying single cells using forward scatter area and height parameters ... 137
Figure 5-3: Adipose tissue macrophages identified based on high expression of both FITC Mouse Anti-Human CD45 and PE-Cy7 Mouse Anti-Human CD14

Figure 5-4: ATM Phenotypes

Figure 5-5: M2 ATMs having high fluorescence for APC Anti-Human CD206 and BV421 Mouse Anti-Human CD163 antibodies

Figure 5-6: Comparison of percentage of ATMs across adipose tissue depots, calculated from a population of live single cells in SVF

Figure 5-7: Comparison of ATM counts across SAT and VAT estimated by cytospin, from the population of ATMs and mast cells in SVF

Figure 5-8: Comparison of ATMs and M1 ATMs between obese asthmatics and controls

Figure 5-9: Association between BMI and ATM phenotypes

Figure 5-10: Association between ATM phenotypes and airway function and inflammation

Figure 5-11: Comparison of M1:M2 ATM ratio among asthmatics categorised according to asthma severity

Figure 6-1: Association between systemic inflammation and measures of obesity

Figure 6-2: Association between systemic inflammation and ATM phenotypes in obese asthmatics

Figure 6-3: Association between systemic and airway inflammation in obese females

Figure 7-1: Macrophage activation as a mechanistic link between obesity, airway function and obese asthma

Figure 7-2: Schematic representation of potential role of macrophage activation in obese asthma
Table of Tables

Table 1-1: Criteria for selection of interventional options according to various BMI categories ... 41
Table 2-1: Factors that decrease bronchial responsiveness 78
Table 3-1: Clinical characteristics of the asthmatic children and adults included in the study ... 92
Table 3-2: Systemic and airway inflammatory markers across age groups when categorised according to BMI ... 93
Table 4-1: Comparison of viability of ATMs in SAT and VAT measured by flow cytometry and cytospin techniques .. 119
Table 5-1: Clinical characteristics of subjects included in the study 144
Table 5-2: Markers of airway inflammation in obese asthmatics and controls ... 145
Table 5-3: Differential infiltration of ATM phenotypes across adipose tissue depots in obese male and female subjects 146
Table 5-4: Comparison of ATM count estimated by cytospin analysis 147
Table 5-5: Comparison of differential infiltration of ATM phenotypes across adipose tissue depots in obese asthmatics and controls 148
Table 6-1: Clinical characteristics of subjects when categorized according to sex ... 170
Table 6-2: Clinical characteristics of subjects when categorized according to presence of asthma ... 171
Table 6-3: Associations of ATM phenotypes in VAT of obese asthmatics and obese control group with CRP .. 173
Table 6-4: Associations of ATM phenotypes in SAT of obese asthmatics and obese control group with CRP .. 173
Table 6-5: Associations of ATM phenotypes in VAT of obese asthmatics and obese control group with sCD163 .. 174
Table 6-6: Associations of ATM phenotypes in SAT of obese asthmatics and obese control group with sCD163 .. 174
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACQ</td>
<td>Asthma Control Questionnaire</td>
</tr>
<tr>
<td>AHR</td>
<td>Airway hyperresponsiveness</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AT</td>
<td>Adipose tissue</td>
</tr>
<tr>
<td>ATM</td>
<td>Adipose tissue macrophage</td>
</tr>
<tr>
<td>AQLQ</td>
<td>Asthma Quality of Life Questionnaire</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>CDC</td>
<td>Centres for Disease Control</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CLS</td>
<td>Crown-like structures</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>DALY</td>
<td>Disability-adjusted life year</td>
</tr>
<tr>
<td>DEXA</td>
<td>Dual-energy x-ray absorptiometry</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dubelcco’s modified Eagle Medium</td>
</tr>
<tr>
<td>DPBS</td>
<td>Dulbecco’s Phosphate-Buffered Saline</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>eNO</td>
<td>Exhaled nitric oxide</td>
</tr>
<tr>
<td>FA</td>
<td>Fatty acid</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>ERV</td>
<td>Expiratory reserve volume</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence-activated cell sorting</td>
</tr>
<tr>
<td>FEV<sub>1</sub></td>
<td>Forced expiratory volume in one second</td>
</tr>
<tr>
<td>FFA</td>
<td>Free fatty acid</td>
</tr>
<tr>
<td>FRC</td>
<td>Functional residual capacity</td>
</tr>
<tr>
<td>FSC</td>
<td>Forward scatter</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>FVC</td>
<td>Forced vital capacity</td>
</tr>
<tr>
<td>GINA</td>
<td>Global Initiative for Asthma</td>
</tr>
<tr>
<td>hsCRP</td>
<td>High sensitivity C-reactive protein</td>
</tr>
<tr>
<td>ICS</td>
<td>Inhaled corticosteroid</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon gamma</td>
</tr>
<tr>
<td>IgE</td>
<td>Immunoglobulin E</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IQR</td>
<td>Interquartile range</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MFI</td>
<td>Mean fluorescence intensity</td>
</tr>
<tr>
<td>MGG</td>
<td>May-Grunwald-Giemsa staining</td>
</tr>
<tr>
<td>MCP</td>
<td>Monocyte chemotactic protein</td>
</tr>
<tr>
<td>MMP-9</td>
<td>Matrix metalloproteinase-9</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor-kappa B</td>
</tr>
<tr>
<td>NLRP3</td>
<td>Nucleotide-binding domain, leucine-rich-containing family, pyrin domain containing 3</td>
</tr>
<tr>
<td>ORO</td>
<td>Oil Red O</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral blood mononuclear cells</td>
</tr>
<tr>
<td>PD15</td>
<td>Provocation dose required to induce a drop in FEV$_1$ of 15%</td>
</tr>
<tr>
<td>PPAR</td>
<td>Peroxisome proliferator activated receptors</td>
</tr>
<tr>
<td>RV</td>
<td>Residual volume</td>
</tr>
<tr>
<td>SAT</td>
<td>Subcutaneous adipose tissue</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SDS</td>
<td>Standard deviation scores</td>
</tr>
<tr>
<td>SSC</td>
<td>Side scatter</td>
</tr>
<tr>
<td>SVF</td>
<td>Stromal vascular fraction</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>TACE</td>
<td>TNF-α converting enzyme</td>
</tr>
<tr>
<td>TAG</td>
<td>Triacylglycerol</td>
</tr>
<tr>
<td>T2DM</td>
<td>Type 2 Diabetes mellitus</td>
</tr>
<tr>
<td>Th</td>
<td>T-helper</td>
</tr>
<tr>
<td>TLC</td>
<td>Total lung capacity</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour necrosis factor-alpha</td>
</tr>
<tr>
<td>VAT</td>
<td>Visceral adipose tissue</td>
</tr>
<tr>
<td>WAT</td>
<td>White adipose tissue</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
Synopsis

The prevalence of asthma and obesity has risen significantly to epidemic proportions. Obese asthmatics represent a unique clinical phenotype, characterised by worse asthma control, increased risk of hospitalisation and treatment-related side effects. Despite a well-established association between obesity and asthma, the inflammatory mechanisms and consequences of asthma in obese individuals remain unclear. It is therefore essential to have a greater understanding of the multi-level interactions in the inflammometry of obese asthma to develop targeted treatment for a better outcome. This thesis aims to examine the altered immunometabolism in obese asthma, the potential role of CRP and sCD163 as biomarkers of systemic and adipose tissue inflammation and the inflammatory link between adipose tissue, systemic and airway inflammation in obesity and asthma.

Obesity is characterised by infiltration of adipose tissue by activated macrophages and mast cells, which further potentiate a pro-inflammatory microenvironment, systemic inflammation and negative clinical effects (immunometabolism). However, the role of macrophages and mast cells in obese asthma is unclear. Furthermore, the systemic inflammatory profile across age and sex in obese asthma is unknown. In chapter 3, soluble ectodomain of CD163 (sCD163) and CRP were utilised as biomarkers of macrophage and mast cell activation respectively, to examine age and sex-specific effects on these innate immune pathways in obese asthma. We noted a heterogeneous inflammatory profile in obese asthmatics with obese female children characterised by significantly higher levels of circulating sCD163 and obese
female adults having significantly higher levels of circulating CRP. In obese female children, we also noted associations between sCD163 and percentage of android fat, lung function and asthma control. These findings indicate macrophage activation is the predominant innate immune pathway in obese female children and has potential clinical implications in this cohort.

Obesity is associated with macrophage infiltration and functional polarisation in adipose tissue. The role of adipose tissue macrophage (ATM) phenotypes (ie M1 pro-inflammatory and M2 anti-inflammatory macrophages) in obese asthma is unclear. We developed a method to isolate and perform functional phenotyping of ATMs, as described in Chapter 4. In Chapter 5, we compared macrophage infiltration and functional phenotypes across subcutaneous and visceral adipose tissue depots. Obese asthmatics were characterised by a significantly higher macrophage infiltration in the visceral adipose tissue depot, particularly the pro-inflammatory M1 macrophage phenotype. In obese subjects, BMI and waist circumference were positively correlated with the ratio of M1:M2 ATMs in VAT. Furthermore, the negative relationship between M1:M2 ATM ratio in VAT and %FEV₁ highlights the potential clinical implication of this finding.

In Chapter 6, we explored the mechanistic basis of adipose tissue inflammometry-driven systemic inflammation in obese asthma, by examining the relationships between CRP and sCD163 and ATM phenotypes. CRP was positively associated with percentage of M1 ATMs in VAT of obese asthmatics. Furthermore, among all subjects, CRP was negatively associated with sputum macrophage count. These findings suggest CRP as a potential biomarker of macrophage activation in obese asthma and a plausible
relationship between systemic and altered airway inflammation in obese asthma.

The data presented in this thesis highlights the potential role of macrophage-mediated inflammatory pathways in obese asthma. Further work in this area may enable identification of newer therapeutic targets, which could facilitate better clinical outcomes, in terms of morbidity and mortality in obese asthma.