Whole-brain CTP in acute ischemic stroke

by

Longting Lin

Master (Medicine)

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Medicine and Public Health, Faculty of Health

The University of Newcastle, Australia

June 2015
PhD studying has never been an easy ride. Luckily, I have the most wonderful supervisors guiding me through ups and downs during the way. Therefore, I would like to pay my sincere thanks to my supervisors, Professor Mark Parsons and Professor Christopher Levi. Thank you, Mark, for sharing your precious time and knowledge with me. I have enjoyed very much our weekly meeting discussing new research ideas. Thank you, Chris, for helping me to stand on my own feet when I first came to Australia. For both my supervisors, your intelligence amazes me, your work ethic inspires me, and your charming personality makes it so easy to work for you.

I must acknowledge Dr. Andrew Bivard for inspiring me pursue higher in the research field. Thank you, Andrew, for showing me the true spirit of critical thinking and it has been a great pleasure working with you. I also want to acknowledge Dr. Tom Lillicrap for your help in thesis editing and pay my thanks to the stroke team of John Hunter Hospital and Huashan Hospital for your effort in patient recruitment.

Finally, much love and thanks goes to my partner, Dante Dangelo-Kemp, who supports my PhD study not only mentally but also physically by waking me up early in the morning and driving me to work every weekday.
DECLARATION

I Longting Lin hereby declare that the thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

I Longting Lin hereby certify that this thesis is in the form of a series of published papers of which I am a joint author. I have included as part of the thesis a written statement from each co-author, endorsed by the Faculty Assistant Dean (Research Training), attesting to my contribution to the joint publications.

Name: Longting Lin
Signature:
Date:
PUBLICATIONS, PRESENTATION, AND AWARDS

*Peer reviewed publications included in this thesis:

- Lin L, Bivard A, Krishnamurthy V, Levi CR, Parsons MW. Whole-brain CT perfusion measures the acute infarct core and penumbra accurately and precisely (Submitted to Radiology, RAD-15-0319)

- Lin L, Bivard A, Levi CR, Parsons MW. Reperfusion on Tmax Map Best Predicts Clinical Outcome of Stroke (submitted)
Conference presentations arising from this thesis:

Awards arising from this thesis:

Other publications and conference presentations:

Statement by co-authors for the paper:

As co-authors of the paper, we confirm that Longting Lin is the primary contributor to the publication. Longting Lin has made following contributions:

- 75% design of the research
- 75% analysis and interpretation of the data
- 75% writing the paper

Co-authors

Professor Mark W. Parsons,
Department of Neurology, John Hunter Hospital,
School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia

Signed:

Date:

Professor Christopher R. Levi,
Department of Neurology, John Hunter Hospital,
School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia

Signed:

Date:

Dr Andrew Bivard,
School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia

Signed:

Date:
Statement by co-authors for the paper:

Lin L, Bivard A, Levi CR, Parsons MW. Reperfusion of T max Predicts Good Clinical Outcome of Stroke (submitted)

As co-authors of the paper, we confirm that Longting Lin is the primary contributor to the publication. Longting Lin has made following contributions:

- 75% design of the research
- 75% analysis and interpretation of the data
- 75% writing the paper

Co-authors

Professor Mark W. Parsons,
Department of Neurology, John Hunter Hospital,
School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia

Signed

Date:

Professor Christopher R. Levi,
Department of Neurology, John Hunter Hospital,
School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia

Signed:

Date:

Dr Andrew Bivard,
School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia

Signed:

Date:
Statement by co-authors for the paper:

As co-authors of the paper, we confirm that Longting Lin is the primary contributor to the publication. Longting Lin has made following contributions:

- 80% design of the paper
- 80% analysis and interpretation of the data
- 80% writing the paper

Co-authors

| Professor Mark W. Parsons, |
| Department of Neurology, John Hunter Hospital, |
| School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia |

Signed:

Date:

| Dr Andrew Bivard, |
| Department of Neurology, John Hunter Hospital, |
| School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia |

Signed:

Date:
Statement by co-authors for the paper:

Lin L, Bivard A, Krishnamurthy V, Levi CR, Parsons MW. Whole-brain CT perfusion measures the acute infarct core and penumbra accurately and precisely (submitted)

As co-authors of the paper, we confirm that Longting Lin is the primary contributor to the paper. Longting Lin has made following contributions:

- 75% design of the research
- 75% analysis and interpretation of the data
- 75% writing the paper

Co-authors

Professor Mark W. Parsons,
Department of Neurology, John Hunter Hospital,
School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia

Signed:

Date:

Professor Christopher R. Levi,
Department of Neurology, John Hunter Hospital,
School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia

Signed:

Date:

Dr Andrew Bivard,
School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia

Signed:

Date:

Dr Venkatesh Krishnamurthy,
School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia

Signed:

Date:
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 1: Literature review</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Introduction of cerebral perfusion</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Technical knowledge of Perfusion imaging</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Application of Perfusion imaging in ischemic stroke</td>
<td>10</td>
</tr>
<tr>
<td>1.4 Limitations of CT perfusion in ischemic stroke application</td>
<td>24</td>
</tr>
<tr>
<td>1.5 Conclusion of literature review (gap of current knowledge)</td>
<td>30</td>
</tr>
<tr>
<td>1.6 Reference</td>
<td>31</td>
</tr>
<tr>
<td>Chapter 2: Research aims and hypotheses</td>
<td>48</td>
</tr>
<tr>
<td>2.1 Research aim</td>
<td>49</td>
</tr>
<tr>
<td>2.2 Hypothesis</td>
<td>49</td>
</tr>
<tr>
<td>2.3 Chapter overview</td>
<td>50</td>
</tr>
<tr>
<td>Chapter 3: Validating whole-brain CTP measurement for penumbra and infarct core</td>
<td>52</td>
</tr>
<tr>
<td>Introduction</td>
<td>52</td>
</tr>
<tr>
<td>Publication 1</td>
<td>53</td>
</tr>
<tr>
<td>Chapter 4: Validating whole-brain CTP measurement for reperfusion</td>
<td>80</td>
</tr>
<tr>
<td>Introduction</td>
<td>80</td>
</tr>
<tr>
<td>Publication 2</td>
<td>81</td>
</tr>
<tr>
<td>Chapter 5: Comparison of CTP and MRP measurements in acute ischemic stroke</td>
<td>105</td>
</tr>
<tr>
<td>Introduction</td>
<td>105</td>
</tr>
<tr>
<td>Publication 3</td>
<td>106</td>
</tr>
<tr>
<td>Chapter 6: Clinical application of whole-brain CTP: a case by case review</td>
<td>128</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Introduction</td>
<td>128</td>
</tr>
<tr>
<td>Publication 4</td>
<td>129</td>
</tr>
<tr>
<td>Chapter 7: Discussion</td>
<td>153</td>
</tr>
<tr>
<td>7.1 Overview</td>
<td>154</td>
</tr>
<tr>
<td>7.2 Main findings</td>
<td>156</td>
</tr>
<tr>
<td>7.3 Clinical application the findings</td>
<td>160</td>
</tr>
<tr>
<td>7.4 Where to now?</td>
<td>163</td>
</tr>
<tr>
<td>7.5 Reference</td>
<td>165</td>
</tr>
<tr>
<td>Appendices:</td>
<td>169</td>
</tr>
<tr>
<td>Copyright permission</td>
<td>169</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>171</td>
</tr>
</tbody>
</table>
ABSTRACT

Perfusion imaging technology not only enables stroke diagnosis by identifying the ischemic lesion earlier, but also helps the clinician to make treatment decisions by further classifying the ischemic lesion into salvageable tissue and non-salvageable tissue. The imaging of salvageable tissue, penumbra, provides a direct target for reperfusion treatment. However, the accuracy of penumbra measurement with perfusion imaging has been questioned, especially with CT perfusion (CTP). Perfusion images, acquired on earlier generation instruments such as the 16 or 64-detector scanners, have limited coverage of potentially ischemic brain, a factor recognised to reduce the accuracy of penumbra measurement. This limitation can be overcome by the advance in technology. The new generation “mega-detector” scanners, such as 320-detector Toshiba Aquilion One, provide whole brain coverage of 160mm from skull base to vertex. In this thesis, I presented a series of studies aiming to evaluate the utility of whole-brain CTP in acute ischemic stroke.

The first study was to derive the optimal penumbra measurement on whole-brain CTP with the reference of ischemic tissue outcome, and the second study was to test the penumbra measurement of whole-brain CTP in predicting clinical patient outcome. The two studies found that only with the threshold setting at Tmax>6s or DT>3s, did the whole-brain CTP achieve high accuracy (>99%) in delineating acute ischemic penumbra and good sensitivity (>80%) in predicting favourable clinical outcome. It was also confirmed that the accuracy of penumbra measurement was comprised when the brain coverage of CTP decreased from 160mm to 20mm.

Following two studies examined the utility of whole-brain CTP in the clinical setting. Firstly, CTP was compared to MRP, the perfusion modality that has already been well used in clinic. This work demonstrated that with whole brain coverage, CTP was as effective as MPR in
measuring the acute penumbra and in selecting patients for reperfusion treatment. Secondly, a case by case review was carried out to assist clinicians in the interpretation CTP output.

In conclusion, findings of this thesis support the usage of whole-brain CTP in acute ischemic stroke. Noticeably, the conclusion only applies to patients with anterior circulation stroke. Whole-brain CTP might also have advantage in detecting ischemic lesions in posterior circulation territory, which require studies to prove it in the future.