Mechanisms of Increased Susceptibility to Influenza Infection in Mouse Models of Chronic Lung Diseases

Irwan Hanish bin Warsanah

B.Sc. (Hons.)

Submitted for the degree of

Doctor of Philosophy

Priority Research Centre for Asthma and Respiratory Diseases,

Discipline of Immunology and Microbiology,

Faculty of Health and Medicine,

The University of Newcastle

NSW, Australia

January 2015
Acknowledgements

First of all, I would like to thank my primary supervisor, Prof. Phil Hansbro, who has made this incredible opportunity of pursuing a PhD in Australia even possible. His patience and commitment towards excellence have inspired me, not just to be a better student of science, but a better person as well. I would also like to thank my co-supervisors, Prof. Peter Wark, Laureate Prof Paul Foster and Dr. Malcolm Starkey for their ongoing advice and encouragement throughout my study.

My deepest and sincerest gratitude also goes to my mentors and close friends, especially Dr. Malcolm Starkey, as well as Dr. Alan Hsu, Dr. Linda Howland and Ms. Emma Beckett. Over the years, they have kindly given me their valuable time, energy, guidance, and encouragements; more than they are ever expected to. I would have never reached this far without them.

I also would like to thank all past and present members of Hansbro Group and Wark Group, and everyone at DMB and HMRI who I have had the pleasure of meeting over the years. Their friendships are what I will remember the most during my experience in Australia. My special thanks go to Prema Nair and Haw Tatt Jhong, who have been my family away from home, who have been with me during the difficult times in my PhD.

I would very much like to thank my siblings for reminding me to laugh and not taking work too seriously. Finally, my love and gratitude goes to my parents in that village in Johor (who because of my poor translation, understand less about my PhD than before I explained it to them), for keeping me in their prayers.
Statement of originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

The works presented in this thesis have been done in collaboration with other researchers. I have included the Statement of Collaboration which clearly outlines the extent of the collaborations.

Irwan Hanish bin Warsanah
Statement of collaboration

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers. I have included below a statement clearly outlining the extent of collaboration, with whom and under what auspices.

For many of the results included in Chapters 3.3 and 3.4, I would like to acknowledge Dr. Malcolm Starkey, Dr. Kamal Dua, Miss Prema Mono Nair and Mr Tatt Jhong Haw as collaborators. In the study, I was the major contributor to experimental design; implementation of experimental procedures; collection, processing and analysis of samples; and interpretation of data. Dr. Starkey was significantly involved in experimental design, analysis of samples and interpretation of data. Dr. Dua, Miss Nair and Mr Haw provided important contributions in collection, processing and analysis of samples.
List of figures

74 Figure 1. Antigenic drift and antigenic shift in influenza viruses...............................23
75 Figure 2. Structure of influenza virus. ..27
76 Figure 3. Influenza virus replication cycle in host epithelial cells.................................29
77 Figure 4. Viral detection by RIG-I leads to the production of Type I and III IFNs.........34
78 Figure 5. Pathogenesis of COPD. ...42
79 Figure 6. PI3K catalytic and regulatory subunits...49
80 Figure 7. Influenza virus utilises PI3K signalling pathways to increase infection.......53
81 Figure 8. Pathophysiological features of asthma ...60
82 Figure 9. IL-13 and its receptors ...69
83 Figure 10. Mice with experimental COPD are predisposed to more severe influenza virus infection ..91
84 Figure 11. Experimental COPD predisposes to exaggerated airway inflammation during influenza virus infection ...95
85 Figure 12. Influenza virus infection in experimental COPD leads to further impairment of lung function ..98
86 Figure 13. Influenza virus infection in experimental COPD had no effect on emphysema-like alveolar enlargement ...100
87 Figure 14. Mice with experimental COPD have impaired antiviral IFN responses during influenza virus infection ...103
88 Figure 15. Experimental COPD leads to impaired antiviral cytokine and chemokine responses but increased pro-inflammatory cytokine responses during influenza virus infection ..106
Figure 16. PI3K activity is increased during influenza virus infection in experimental COPD, and its inhibition enhances antiviral responses and suppresses viral titres.

Figure 17. Inhibition of PI3K in experimental COPD leads to increased inflammatory cell responses and improved lung function during influenza infection.

Figure 18. Administration of rIL-13 to naïve mice promotes more severe influenza virus infection.

Figure 19. Administration of rIL-13 impairs antiviral responses to influenza virus infection.

Figure 20. Administration of rIL-13 increases airway inflammatory cell influx in response to influenza virus infection.

Figure 21. Administration of rIL-13 promotes increased AHR during influenza virus infection.

Figure 22. Administration of rIL-13 leads to more severe histopathology during influenza virus infection.

Figure 23. Administration of rIL-13 leads to increased MSCs during influenza virus infection.

Figure 24. Administration of rIL-13 leads to increased levels of IL-13 and IL-13Rα1 during influenza virus infection.

Figure 25. AAD promotes more severe influenza virus infection.

Figure 26. AAD impairs antiviral IFN responses to influenza virus infection.

Figure 27. Influenza virus infection leads to exaggerated airway inflammatory cell influx in AAD.

Figure 28. Influenza virus infection leads to increased AHR in AAD.

Figure 29. Influenza virus infection leads to more severe histopathology in AAD.

Figure 30. Influenza virus infection leads to increased numbers of MSCs in AAD.
Figure 31. Influenza virus infection in AAD increased IL-13Rα1.

Figure 32. Inhibition of IL-13 in AAD leads to reduced influenza virus infection.

Figure 33. Inhibition of IL-13 in AAD leads to improved antiviral responses to influenza virus infection.

Figure 34. Inhibition of IL-13 in AAD leads to decreased eosinophil infiltration during influenza virus infection.

Figure 35. Inhibition of IL-13 in AAD lead to improved lung function during influenza virus infection.

Figure 36. Inhibition of IL-13 in AAD lead to increased histopathology during influenza virus infection.

Figure 37. Inhibition of IL-13 in AAD leads to decreased numbers of MSCs during influenza virus infection.

Figure 38. Inhibition of IL-13 in AAD lead to reduced levels of IL-13 protein and IL-13Rα1 mRNA expression following influenza infection.

Figure 39. Interaction of influenza virus infection with experimental COPD.

Figure 40. Interaction of influenza virus infection with AAD.

Figure 41. Influenza virus infection is more severe in experimental COPD.

Figure 42. Antiviral responses to influenza infection are reduced in COPD.

Figure 43. Inhibition of exaggerated PI3K activity during influenza virus infection in experimental COPD improves infection outcomes.

Figure 44. Influenza virus infection in either combination with rIL-13 administration or in AAD.

Figure 45. Influenza virus infection in AAD is suppressed by IL-13 inhibition.
List of tables

Table 1. GOLD classification of COPD severity...40
Table 2. Histopathological scoring system for mouse lungs.82
List of abbreviations

AAD: Allergic airway disease

AHR: Airway hyperresponsiveness

Akt-in: Akt inhibitor NH(2)-AVTDHPDLWAEKF-COOH

APC: Antigen presenting cell

BALF: Bronchoalveolar lavage fluid

CD: Cluster of Differentiation

cDNA: Complementary DNA

CARD: Caspase-recruitment domain

CLDSI: Chronic lung disease severity index

COPD: Chronic obstructive pulmonary disease

DC: Dendritic cell

DMSO: Dimethyl sulfoxide

DNA: Deoxyribonucleic acid

Dpi: Days post infection

ELISA: Enzyme linked immunosorbent assay

FcεRI: Fc epsilon receptor I

FEV₁: Forced expiratory volume in 1 second
170 FVC: Forced vital capacity
171 GOLD: Global Initiative for Chronic Obstructive Lung Disease
172 GPCR: G protein-coupled receptor
173 GTP: Guanosine triphosphate
174 H₂O₂: Hydrogen peroxide
175 H&E: Haematoxylin and eosin
176 HDM: House dust mite
177 HEK293: Human embryonic kidney 293
178 HO-1: Heme oxygenase 1
179 HPRT: Hypoxanthine-guanine phosphoribosyltransferase
180 Ig: Immunoglobulin
181 IFN: Interferon
182 pfu: Plaque forming unit
183 IKKi: IκB kinase-i
184 IL: Interleukin
185 IL-13Rα1: Interleukin-13 receptor alpha 1
186 ILC: Innate lymphoid cell
187 ILC2: Group 2 innate lymphoid cell
<table>
<thead>
<tr>
<th>Page</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>188</td>
<td>i.n: Intranasal</td>
</tr>
<tr>
<td>189</td>
<td>i.p: Intraperitoneal</td>
</tr>
<tr>
<td>190</td>
<td>IP-10: IFN-γ-induced protein-10</td>
</tr>
<tr>
<td>191</td>
<td>IPS-1: IFN-β promoter stimulator 1</td>
</tr>
<tr>
<td>192</td>
<td>JAK: Janus kinase</td>
</tr>
<tr>
<td>193</td>
<td>KC: Keratinocyte-derived chemokine</td>
</tr>
<tr>
<td>194</td>
<td>MDA-5: Melanoma Differentiation-Associated protein-5</td>
</tr>
<tr>
<td>195</td>
<td>MDCK: Madin-Darby Canine Kidney</td>
</tr>
<tr>
<td>196</td>
<td>MHC: Major histocompatibility complex</td>
</tr>
<tr>
<td>197</td>
<td>MIP-1α: Macrophage inflammatory protein-1α</td>
</tr>
<tr>
<td>198</td>
<td>mRNA: Messenger ribonucleic acid</td>
</tr>
<tr>
<td>199</td>
<td>miRNA: MicroRNA</td>
</tr>
<tr>
<td>200</td>
<td>MSC: Mucus secreting cell</td>
</tr>
<tr>
<td>201</td>
<td>NF-κB: Nuclear factor kappa light chain enhancer of activated B cells</td>
</tr>
<tr>
<td>202</td>
<td>NK cell: Natural killer cell</td>
</tr>
<tr>
<td>203</td>
<td>NKT cell: Natural killer T cell</td>
</tr>
<tr>
<td>204</td>
<td>Nrf2: Nuclear factor (erythroid-derived 2)-like 2</td>
</tr>
<tr>
<td>205</td>
<td>NO: Nitric oxide</td>
</tr>
</tbody>
</table>
O$_2^-$: Superoxide

Ova: Ovalbumin

PAS: Periodic acid–Schiff

PAMP: Pathogen-associated molecular pattern

PBS: Phosphate-buffered saline

PC: Physical containment

PIP$_2$: Phosphatidylinositol 4,5–bisphosphate

PIP$_3$: Phosphatidylinositol 3,4,5-triphosphate

PIV-3: Parainfluenza virus type 3

PKB: Protein Kinase B

PRR: Pattern recognition receptor

PVDF: Polyvinylidene difluoride

qPCR: Quantitative real-time Polymerase Chain Reaction

RIG-I: Retinoic acid-inducible gene-I

ROS: Reactive oxidant species

rIL-13: Recombinant Interleukin-13

RIPA: radio-immunoprecipitation assay

RLR: RIG-I-like receptor
RNA: Ribonucleic acid

RSV: Respiratory syncytial virus

RV: Rhinovirus

SDS-PAGE: Sodium dodecyl sulphate polyacrylamide gel electrophoresis

SEM: Standard error of the mean

SPF: Specific pathogen free

SH: Src Homology

STAT6: Signal transducer and activator of transcription 6

TANK: TRAF family member-associated NF-κB activator

TBK1: TANK binding kinase-1

Th: T helper lymphocyte

TLC: Total lung capacity

TLR: Toll-like receptor

TNF: Tumour necrosis factor

TRAF: TNF receptor associated factor

VEGF: Vascular endothelial growth factor

VPg: Virion protein genome linked protein
Table of contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>242</td>
<td>Acknowledgements ... 2</td>
</tr>
<tr>
<td>243</td>
<td>Statement of originality .. 3</td>
</tr>
<tr>
<td>244</td>
<td>Statement of collaboration .. 4</td>
</tr>
<tr>
<td>245</td>
<td>List of figures .. 5</td>
</tr>
<tr>
<td>246</td>
<td>List of tables .. 8</td>
</tr>
<tr>
<td>247</td>
<td>List of abbreviations .. 9</td>
</tr>
<tr>
<td>248</td>
<td>Table of contents ... 14</td>
</tr>
<tr>
<td>249</td>
<td>Synopsis .. 20</td>
</tr>
<tr>
<td>250</td>
<td>CHAPTER 1: INTRODUCTION .. 22</td>
</tr>
<tr>
<td>251</td>
<td>1.1 Influenza ... 22</td>
</tr>
<tr>
<td>252</td>
<td>1.1.1 Epidemiology of influenza .. 22</td>
</tr>
<tr>
<td>253</td>
<td>1.1.2 Pathogenesis of influenza .. 26</td>
</tr>
<tr>
<td>254</td>
<td>1.1.3 Host immune responses to influenza virus infection 31</td>
</tr>
<tr>
<td>255</td>
<td>1.2 Influenza infection in COPD ... 37</td>
</tr>
<tr>
<td>256</td>
<td>1.2.1 Epidemiology of COPD .. 37</td>
</tr>
<tr>
<td>257</td>
<td>1.2.2 Pathogenesis of COPD ... 39</td>
</tr>
<tr>
<td>258</td>
<td>1.2.3 Influenza virus infection in COPD and the role of PI3K 45</td>
</tr>
<tr>
<td>259</td>
<td>1.3 Influenza infection in asthma .. 57</td>
</tr>
<tr>
<td>260</td>
<td>1.3.1 Epidemiology of asthma .. 57</td>
</tr>
</tbody>
</table>
1.3.2 Pathophysiology of asthma ... 59
1.3.3 Immunology of asthma ... 61
1.3.4 Influenza infection in asthma and the role of IL-13 63
1.4 Hypotheses and aims ... 73
CHAPTER 2: MATERIALS AND METHODS .. 75
2.1 Mice .. 75
2.2 Influenza virus infection ... 75
2.3 Induction of cigarette smoke-induced experimental COPD 75
2.4 PI3K inhibition .. 76
2.5 Induction of AAD .. 76
2.6 Administration of rIL-13 .. 77
2.7 Neutralisation of IL-13 ... 77
2.8 Bronchoalveolar lavage fluid (BALF) ... 78
2.9 Plaque assay ... 79
2.10 Lung function analysis in experimental COPD 79
2.11 Assessment of AHR in AAD .. 80
2.12 Lung histology ... 80
2.13 Cytokine concentrations in BALF .. 83
2.14 Immunoblotting ... 83
2.15 Total RNA extraction .. 84
2.16 Reverse transcription ... 85
2.14 Quantitative real-time Polymerase Chain Reaction (qPCR)86
2.15 Statistical analyses ..87
2.16 Study approvals ...88

CHAPTER 3: RESULTS ...89

3.1 Influenza virus infection in COPD ...89
 3.1.1 Experimental COPD predisposes to more severe influenza virus infection...89
 3.1.2 Experimental COPD predisposes to exaggerated airway inflammation following influenza virus infection ...93
 3.1.3 Influenza virus infection in experimental COPD alters lung function96
 3.1.4 Antiviral IFN responses to influenza virus infection are impaired in experimental COPD ...102
 3.1.5 Inflammatory cytokine production is increased in the lung during influenza virus infection in experimental COPD ..105

3.2 Experimental COPD increases PI3K activity in the lung and promotes more severe influenza infection and exacerbation of COPD107
 3.2.1 PI3K activity is increased during influenza virus infection in experimental COPD, and its inhibition enhances antiviral responses and decreased viral titre..107
 3.2.2 Inhibition of PI3K during influenza virus infection in experimental COPD enhances antiviral inflammatory cell responses and improves lung function111

3.3 Influenza infection and IL-13 ..114
 3.3.1 Administration of rIL-13 to naïve mice promotes more severe influenza virus infection ..114
3.3.2 Administration of rIL-13 impairs antiviral responses to influenza virus infection .. 116
3.3.3 Administration of rIL-13 increases airway inflammatory cell responses to influenza virus infection .. 118
3.3.4 Administration of rIL-13 promotes increased AHR during influenza virus infection ... 120
3.3.5 Administration of rIL-13 leads to more severe histopathology and increased MSCs following influenza infection .. 122
3.3.6 Administration of rIL-13 leads to increased levels of IL-13 and IL-13Rα1 during influenza virus infection ... 127
3.4 Influenza virus infection in AAD ... 129
3.4.1 AAD promotes more severe influenza virus infection ... 129
3.4.2 AAD impairs antiviral responses to influenza virus infection .. 133
3.4.3 Influenza virus infection leads to exaggerated airway inflammatory cell influx in AAD ... 135
3.4.4 Influenza virus infection leads to increased AHR in AAD ... 138
3.4.5 Influenza virus infection leads to more severe histopathology and increased MSCs in AAD ... 142
3.4.6 Influenza virus infection in AAD increases IL-13Rα1 .. 147
3.5 Inhibition of IL-13 in AAD during influenza infection protects against virus infection and prevents associated exacerbation of AAD .. 150
3.5.1 Inhibition of IL-13 in AAD leads to reduced influenza virus infection 150
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>328</td>
<td>3.5.2</td>
<td>Inhibition of IL-13 in AAD leads to improved antiviral responses to influenza virus infection</td>
</tr>
<tr>
<td>330</td>
<td>3.5.3</td>
<td>Inhibition of IL-13 in AAD leads to decreased eosinophil infiltration during influenza virus infection</td>
</tr>
<tr>
<td>332</td>
<td>3.5.4</td>
<td>Inhibition of IL-13 in AAD leads to improved lung function during influenza infection</td>
</tr>
<tr>
<td>334</td>
<td>3.5.5</td>
<td>Inhibition of IL-13 in AAD leads to more severe histopathology but decreased MSCs during influenza virus infection</td>
</tr>
<tr>
<td>336</td>
<td>3.5.6</td>
<td>Inhibition of IL-13 in AAD leads to reduced levels of IL-13 and IL-13Rα1 during influenza virus infection</td>
</tr>
<tr>
<td>338</td>
<td></td>
<td>CHAPTER 4: DISCUSSION</td>
</tr>
<tr>
<td>339</td>
<td>4.1</td>
<td>Overall Findings and Significance of Research</td>
</tr>
<tr>
<td>340</td>
<td>4.2</td>
<td>Influenza infection virus in COPD</td>
</tr>
<tr>
<td>341</td>
<td>4.2.1</td>
<td>Influenza infection is more severe in experimental COPD</td>
</tr>
<tr>
<td>342</td>
<td>4.2.2</td>
<td>Antiviral responses to influenza virus infection are reduced in COPD</td>
</tr>
<tr>
<td>343</td>
<td>4.2.3</td>
<td>Inhibition of exaggerated PI3K activity during influenza virus infection in COPD improves infection outcomes</td>
</tr>
<tr>
<td>345</td>
<td>4.3</td>
<td>Influenza virus infection in AAD</td>
</tr>
<tr>
<td>346</td>
<td>4.3.1</td>
<td>IL-13 plays an important role in promoting more severe influenza virus infection in AAD</td>
</tr>
<tr>
<td>348</td>
<td>4.3.2</td>
<td>AAD impairs antiviral responses to influenza virus infection, which can be improved by inhibition of IL-13</td>
</tr>
</tbody>
</table>
4.3.3 IL-13 plays an important role in pulmonary inflammation during influenza virus infection in AAD ... 195
4.3.4 IL-13 plays an important role in increased AHR during influenza virus infection in AAD ... 197
4.3.5 Influenza virus infection leads to increased numbers of MSCs in AAD, which is reduced by inhibition of IL-13 ... 199
4.3.6 IL-13 signalling is important in influencing the disease outcomes during influenza virus infection in AAD ... 200
4.4 Future Directions .. 201
4.4.1 Future directions in the study of influenza virus infection in COPD 201
4.4.2 Future directions in the study of influenza virus infection in AAD 202
4.5 Conclusions ... 205
References .. 206

350 351 352 353 354 355 356 357 358 359 360 361 362
Influenza infections are of major importance as they have a significant impact on
the health of individuals and impart substantial socio-economic ramifications on
society. Prevention and treatment of influenza infections are complicated by frequent
genetic mutations of the influenza virus. Patients with underlying chronic lung diseases,
such as chronic obstructive pulmonary disease (COPD) and asthma are more susceptible
to influenza infection, and infection with influenza exacerbates these diseases.
Therefore, elucidation of the mechanisms underpinning increased susceptibility to
influenza in these patients is vital. Here, we established an experimental mouse model
of COPD and utilised an existing ovalbumin-induced allergic airways disease (AAD)
model to investigate the effects of influenza infection in COPD and asthma,
respectively. Influenza infection in experimental COPD resulted in increased viral titre,
exaggerated airway inflammation and further impaired lung function. These effects
were accompanied by decreased neutrophil influx into the airways, reduced antiviral
interferon responses, and the suppression of a range of cytokines and chemokines,
including interferon (IFN)-γ, tumour necrosis factor (TNF)-α, IFN-γ-induced protein
(IP)-10, macrophage inflammatory protein (MIP)-1α, keratinocyte-derived chemokine
(KC, or IL-8 in humans) and interleukin (IL)-10, as well as increased IL-6. This
increased susceptibility was mediated by an increase in phosphoinositide 3-kinase
(PI3K) protein expression. The inhibition of PI3K effectively reduced viral titre,
enhanced antiviral IFNs and improved lung function.

Influenza infection in recombinant IL-13-treated or ovalbumin (Ova)-induced
AAD models led to increased viral titre, impaired antiviral responses and increased
airway hyper-responsiveness (AHR). It also resulted in exaggerated airway
inflammation, more severe histopathology, increased mucus secreting cell numbers and
increased IL-13. Importantly, we also showed that inhibition of IL-13 by administration
of anti-IL-13 (αIL-13) monoclonal antibody during influenza infection reduced viral
titre, AHR, eosinophil infiltration and MSCs, which were associated with improved
antiviral IFN responses.

In summary, these data highlight the important roles of PI3K and IL-13 in the
increased susceptibility to influenza infection in experimental models of COPD and
asthma, respectively. Such findings offer evidence for new and promising avenues for
influenza disease management in these chronic lung diseases. In fact, both PI3K
inhibitors and anti-IL-13 antibodies have already entered clinical trials and may be
utilised as novel therapeutic approaches for influenza infections in the future.