THE DEVELOPMENT AND APPLICATION OF QUANTITATIVE APPROACHES TO INVESTIGATE SPATIAL PROCESSING IMPROVEMENT AND COGNITIVE CONTROL

Alexander Lawson Provost

B. Psychology (Hons)

This thesis is submitted for the degree of Doctor of Philosophy

University of Newcastle, NSW, Australia

Submitted: 26th November 2014
Statements by the candidate

Statement of originality

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository**, subject to the provisions of the Copyright Act 1968. **Unless an Embargo has been approved for a determined period.

Statement of Collaboration

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers. I have here included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

Statement of Authorship

I hereby certify that the work embodied in this thesis contains a published paper/s/scholarly work of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publication/s.

Alexander Provost

Date: 26th November 2014
Acknowledgements

I would like to thank my supervisors Andrew Heathcote, Blake Johnson and Frini Karayanidis. Without your help, guidance, contributions, assistance and patience this thesis would not exist. I owe all three of you a great debt of gratitude for your support during my candidature and look forward to potential collaborations in the future. Although not directly supervising me a huge thank you to Bryan Paton, Sharna Jamadar and Scott Brown for your enormous contributions throughout the process as well.

To my participants, thank you for your assistance and time. To the School of Psychology and the FSCIT and all of the support staff and administrative officers for facilitating my progress and funding contributions, special mention for Jeff Drummond, Lynne Brunt and Sandra, you are all awesome.

I owe another huge debt of gratitude to the technical staff at Macquarie University: Graciela Tesan, Chris Sewell and Melanie Reid as well as others involved in the lab. This was a great lab to collaborate with!

I also thank, Tony Kemp, David Elliot, Gavin Cooper and Damien Mannion for various programming support along the way, without your patience in the face of my stupid questions I would not be as competent as I am now.

FNL members past and present, thanks for your help, listening to me swear at the computer and complain while I processed my neural data, especially Lisa Whitson and Elise Mansfield. The FNL is a great facility and I appreciate every one of the friends I have made in the dungeon. An additional thank you goes out to Rebecca Nicholson who was involved in data collection and similarly thank you to various honours students throughout the years.

To the Cog Lab members, thank you, especially Guy and Babette for helping me through the early days over in aviation, as a group you guys are so productive and I feel very honoured to work with such motivated and dedicated cognitive researchers.

A very special thanks to my employers and collaborators over the years: Bill, Janette, Frances, Frini, Andrew, Stuart and Juanita. I have been very fortunate to have the support of you all at different stages of this thesis, and I thank you all sincerely for your help, guidance and understanding while I finished this thesis off. I hope you don’t mind, but I consider all of you friends and hope that by finalising this process I have made everyone of you proud (or at least happy).

To all the lads and ladies: surfing, football, golf, tennis and elsewhere that have helped me keep my body active while my mind atrophied thank you all. I’m keen for a wave/game/hit/swim/9/anything now.

To my immediate and extended family, I love you all for the support and kindness you have bestowed on me while I worked on this.
Dedication

I dedicate this thesis to my wife and daughter; our little family means the world to me.
Table of Contents

Statements by the candidate
Acknowledgements
Dedication
Table of Contents
Abstract
Publications and Conferences
 Publications arising from this thesis
 Conference presentations arising from this thesis
 Other conference presentations
Attainment of Permission to Reproduce Copyright Material.
Statement of Contribution
List of Figures
List of Abbreviations

CHAPTER 1: Introduction
1.1 Thesis Overview
1.2 Mental Rotation Parity Task
1.3 Measuring Mental Transformation
1.4 Mental Rotation Practice
1.5 Models of Mental Rotation
1.6 Dynamic ERP Signals
1.7 Introduction Summary

CHAPTER 2: Mental Rotation Learning
2.1 Mental Rotation Learning - Overview
2.2 Experiment 1 - Introduction
 Participants
 Procedure
2.3 Experiment 1 - Results
 Accuracy and Mean RT.
 Event Related Potentials.
2.4 Experiment 1 - Discussion
2.5 Experiment 2 - Introduction
2.6 Experiment 2 - Methods
 Participants
 Stimuli
 Procedure
2.7 Experiment 2 - Results
 Accuracy and Mean RT.
 Event Related Potentials.
2.8 Experiment 2 - Discussion
 Reversed Associations
2.9 General Discussion

CHAPTER 3: Mental Rotation Modeling
3.1 Quantitative Approach to Mental Rotation
3.2 Introduction – A Cognitive Model of Mental Rotation
 The Process of Mental Rotation
 Strategies Used in Mental Rotation Tasks
Explaining Matching vs. Mismatching Differences | 63
Larsen’s (2014) Model | 65

3.3 Model Specification | 72
3.4 Model Evaluation | 77
 Rotation Models | 84
 Mirror Slowing | 90
 Mental Rotation without Rotation | 95
3.5 General Discussion | 100
 Models of Mental Rotation | 101
 Mirror Slowing | 105
 Beyond Linear Rotation Effects | 106

CHAPTER 4: Modeling Proactive Cognitive Control | 111
4.1 Modeling Cognitive Control | 112
4.2 Proactive Control - Background | 113
 Variation in ERP Components with RT | 116
4.3 Proactive Control modeling - Methods | 118
 Participants | 118
 Paradigm | 119
 EEG Recording and Data Analysis | 120
 OPTA Analysis | 120
 Data Analysis | 122
4.3 Proactive Control modeling - Results | 123
 Centroparietal positivity (300-400ms) | 128
 Pre-target negativity (500-600ms) | 129
 Cue-locked waveforms for switch and repeat trials with equivalent RT | 130
 Comparing OPTA findings against conventional averaging | 132
4.4 Proactive Cognitive Control - Discussion | 132

CHAPTER 5: Reactive Cognitive Control | 138
5.1 Reactive Control and Interference | 139
 Trial-by-trial variation in proactive control | 140
 Target-related interference in task switching | 141
 Effect of preparation on target-related interference | 144
5.2 Reactive Control modeling - Methods | 146
 Paradigm | 146
 EEG Recording | 147
 OPTA Analysis | 148
 Statistical Analysis | 149
5.3 Reactive Control modeling - Results | 150
 Reaction Time | 150
 Target-locked ERP data | 151
 Early N2 | 153
 Late N2 | 153
 P3b - Amplitude | 154
 P3b - Latency | 155
5.4 Reactive Control modeling - Discussion | 156
 Effect of trial-by-trial variability in preparation on residual switch cost | 156
 Effect of trial-by-trial variability in preparation on target-driven interference | 158
 Effect of target congruence on residual switch cost | 159

CHAPTER 6: Wavelet Orthogonal Polynomial Trend Analysis | 161
Abstract

This thesis uses quantitative approaches to process behavioural and neural data in order to understand spatial cognition learning and cognitive control. Quantitative measurement was used to clearly identify two distinct strategies for improvement in the mental rotation task, one a departure from mental transformation, the other improvement of mental rotation. Using data from an experiment on learning in mental rotation, a quantitative model of mental rotation was developed. The model was able to account for the RT distribution and error rates using an LBA decision model and a scale adjusted gamma distribution to account for rotation time.

The following two chapters apply a modified version of a previously established signal processing technique to model the change in cued task-switching ERPs as a function of RT. Using this approach we modeled a switch-specific ERP component that increases with RT prior to target onset, providing evidence for switch-specific proactive control. We then used the same approach to investigate how interference following target onset is dealt with, reporting ERPs that suggest reactive control is actively used to resolve both target conflict and cue related processing.

The final chapter extends the modeling approach used in the previous two chapters, by making modifications to the algorithm. This new method was evaluated on a simulated dataset, and then applied to neural data from the mental rotation experiment to demonstrate its utility. Although results were encouraging, more testing and development is necessary to optimise this new technique.
Publications and Conferences

Publications arising from this thesis

Conference presentations arising from this thesis

Abstracts of 2010 Australian Psychology Conferences (pp. 33). Melbourne, Vic: The Australian Psychological Society.

Other conference presentations

Attainment of Permission to Reproduce Copyright Material.

I declare that where appropriate, all permissions have been obtained to reproduce my work where the copyright is held by another party. Copyright was retained by authors for Cognitive Science, and Psychophysiology allow reproduction for the purpose of a thesis.
Statement of Contribution

I attest that Research Higher Degree candidate Alexander Lawson Provost made the following contributions to each of the papers that are submitted as part of his PhD thesis. Papers are listed below in the order they appear in this thesis, followed by an outline of co-author contribution.

A/Prof Frini Karayanidis
Date: 24/11/14

A/Prof Blake Johnson
Date: 20/11/14

Prof Andrew Heathcote
Date: 20/11/14

A/Prof Scott Brown
Date: 24/11/14

Dr Bryan Paton
Date: 20/11/14

Dr Sharna Jamadar
Date: 24/11/14

Endorsed by A/Prof Jenny Cameron
Date: 25/11/14

A. Provost collected the data, analysed the behavioral and neural data. He also presented the data and took a lead role in manuscript presentation. B. Johnson contributed to research design, supervised data collection on site at Macquarie University, contributed to neural data processing and contributed to manuscript preparation. S. Brown and F. Karayanidis contributed to research design and manuscript preparation. A. Heathcote contributed to research design, data analysis and manuscript preparation.

A. Provost collected the data, analysed behavioral data, presented findings and contributed to prepared manuscript. A. Heathcote and A. Provost designed and fit models and prepared manuscript.

A. Provost reprocessed and analysed the neural data, presented findings and contributed to manuscript preparation. F. Karayanidis contributed to research design, analysed behavioural data and took the lead role in manuscript preparation. S. Brown and B Paton were involved in research design and manuscript preparation and A. Heathcote contributed to research design, data analysis and manuscript preparation.

A. Provost reprocessed and analysed the neural data and behavioral data, presented findings and took a lead role in manuscript preparation. S. Jamadar contributed to analysis and manuscript preparation. S. Brown and A. Heathcote were involved in research design and manuscript preparation and F. Karayanidis contributed to research design, data analysis and manuscript preparation.
List of Figures

FIGURE 2.1. EXAMPLE STIMULI FOR EXPERIMENT 1 AND 2 ...29
FIGURE 2.2. EXPERIMENT 1 AND 2 MEAN RT. ..31
FIGURE 2.3. GRAND AVERAGE ERP WAVEFORMS FOR SAME AND DIFFERENT PAIRS35
FIGURE 2.4. MEAN AMPLITUDE AT PZ EXPERIMENT 1 ..36
FIGURE 2.5. MEAN AMPLITUDE AT PZ EXPERIMENT 2 ..44
FIGURE 2.6. STATE TRACE PLOT OF EEG MEASURES VS THE LINEAR ANGLE EFFECT49
FIGURE 3.1. EXAMPLES OF STIMULI USED IN CHAPTER 2, EXPERIMENT 263
FIGURE 3.2. THE STAGES OF THE LBA MENTAL ROTATION MODEL ...73
FIGURE 3.3. OBSERVED RT QUANTILES FOR CORRECT RESPONSES WITH FITS79
FIGURE 3.4. OBSERVED ERROR RATES WITH FITS ..81
FIGURE 3.5. OBSERVED RT QUANTILES INDIVIDUAL FITS ..83
FIGURE 3.6. OBSERVED ERROR RATES INDIVIDUAL FITS ...84
FIGURE 3.7. ROTATION TIME DISTRIBUTIONS FROM THREE ROTATION MODELS86
FIGURE 3.8. CORRECT RT AND ERROR FITS OF THE DETERMINISTIC ROTATION MODEL89
FIGURE 3.9. OBSERVED RT MEDIAN FITS OF THE LOGNORMAL SINGLE-ROTATION MODEL91
FIGURE 3.10. GLOBAL-FIELD POWER COMPARISON OF MIRROR NORMAL CONDITIONS93
FIGURE 3.11. TOPOGRAPHICAL PLOTS OF PLANAR MR AND FLIP-EFFECT94
FIGURE 3.12. CORRECT RT FITS OF THE DETERMINISTIC-ROTATION MODEL FOR EXP 196
FIGURE 3.13. INDIVIDUAL ERROR RATES AND FITS OF THE NO-ROTATION MODEL EXP 197
FIGURE 3.14. INDIVIDUAL RT DISTRIBUTION AND FITS OF THE NO-ROTATION MODEL EXP 198
FIGURE 4.1. MEAN RT AND MEAN AMPLITUDE OPTA PROACTIVE CONTROL125
FIGURE 4.2. CUE-LOCKED AVERAGE WAVEFORMS FOR OPTA PROACTIVE CONTROL127
FIGURE 4.3. OPTA EXAMPLE SINGLE PARTICIPANT ...131
FIGURE 5.1. MEAN RT AND MEAN AMPLITUDE OPTA REACTIVE CONTROL150
FIGURE 5.2. TARGET LOCKED AVERAGE WAVEFORMS FOR OPTA REACTIVE CONTROL152
FIGURE 5.3. MEAN AMPLITUDE MEASURES, PEAK AMPLITUDE AND LATENCY155
FIGURE 6.1. MEAN RT ANALYSIS SESSION 1 EXPERIMENT 1 ...175
FIGURE 6.2. ERPS PROCESSED BY BINNING, OPTA AND WOPTA ...178
FIGURE 6.3. MEAN AMPLITUDES BINNED ANALYSIS ..180
FIGURE 6.4. MEAN AMPLITUDES OPTA ANALYSIS ...181
FIGURE 6.5. MEAN AMPLITUDES WOPTA ANALYSIS ...182
List of Abbreviations

EEG - Electroencephalogram
ERP – Event related potential
RRN- Rotation Related Negativity
FFT – Fast Fourier transform
OPTA- Orthogonal Polynomial Trend analysis
WOPTA – Wavelet Orthogonal Polynomial Trend analysis
SNR – Signal-to-noise ratio
LBA- Linear Ballistic Accumulator
fMRI – functional Magnetic Resonance Imaging