Investigation of the mechanisms of respiratory infection-induced lung disease

Richard Yong Hoon Kim

B. Biomed Sci (Hons)

Discipline of Immunology and Microbiology

School of Biomedical Sciences and Pharmacy

Faculty of Health

The University of Newcastle

Newcastle, NSW, Australia

Submitted in the fulfilment of the requirements for the award of a Doctor of Philosophy
Statement of Originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository**, subject to the provisions of the Copyright Act 1968.

**Unless an Embargo has been approved for a determined period.

Richard Yong Hoon Kim

September 2014
Acknowledgements

As is universal with endeavours of this nature, individuals other than the author contribute a great deal of time and support. I would like to briefly acknowledge these individuals and express my sincerest gratitude. Firstly I would like to thank my primary supervisor and mentor Prof. Phil Hansbro, whose encouragement, support and supervision made this Thesis possible. Thank you also to my co-supervisors Laureate Prof. Paul Foster and Dr. Jay Horvat. Your expertise, knowledge and advice have proven invaluable during my studies.

Thank you also to all the staff and students in the Microbiology, Asthma and Airways Research Group, the discipline of Immunology and Microbiology, the School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute who have provided their assistance and friendship throughout the last several years. Special thanks are extended to Dr. Jay Horvat, Dr. Malcolm Starkey, Dr. Ama-Tawiah Essilfie and James Pinkerton for their support and friendship.

Finally, I would like to thank my family, especially my father Anthony, who inspired, encouraged and supported me throughout my studies, and also my beautiful partner, Erin, who I have been blessed to share my life with and who has provided unconditional love, support and encouragement from the day we met. To these people I dedicate my Thesis.
Table of Contents

Synopsis 11
Publications arising from this Thesis 14
Abbreviations 22
List of Figures 27
List of Tables 30

Chapter 1: Introduction

1.1 Asthma 33
1.1.1 Epidemiology 33
1.1.2 Asthma pathophysiology 33
1.1.3 Immunology of allergic asthma 34
 1.1.3.1 Early Phase 35
 1.1.3.2 Late Phase 36
1.2 Severe asthma 37
 1.2.1 Heterogeneity of asthma: Differentiating endotypes of disease 37
 1.2.2 Steroid-based therapy in asthma 39
 1.2.3 Mechanisms of steroid insensitivity in asthma 40
1.3 Chlamydia respiratory infections 42
 1.3.1 Developmental cycle of Chlamydiae 42
 1.3.2 Immune responses to Chlamydia respiratory infection 45
1.4 Chlamydia respiratory infections and asthma 46
 1.4.1 Early-life respiratory infections and asthma 46
 1.4.1.1 Early-life Chlamydia respiratory infections and asthma 48
 1.4.2 Chlamydia respiratory infections and severe asthma in adults 51
1.5 MicroRNAs (miRNAs) 54
 1.5.1 miRNA biogenesis 54
 1.5.2 miRNA mechanism of action 56
 1.5.3 Role of miRNAs in immune function 58
 1.5.4 Role of miRNAs in asthma and respiratory infections 61
1.6 Emerging factors in severe, steroid-insensitive asthma 65
 1.6.1 PI3K 65
 1.6.1.1 Class I PI3K signalling 66
1.6.1.2 PI3K, asthma and steroid insensitivity 67
1.6.1.3 PI3K, respiratory infections and miRNAs 69
1.6.2 NLR proteins and the inflammasome 70
1.6.2.1 Inflammasomes 71
1.6.2.2 The NLRP3 inflammasome 72
1.6.2.3 Role of the NLRP3 inflammasome in asthma and respiratory infection 74
1.7 Study rationale and hypothesis 77

Chapter 2: Microarray-based miRNA and gene (mRNA) expression profiling in *Chlamydia* respiratory infection at different ages

2.1 Introduction 80

2.2 Methods 83
2.2.1 Ethics statement 83
2.2.2 Neonatal, infant and adult *C. muridarum* respiratory infection 83
2.2.3 Lung sample collection, storage and total RNA extraction 83
2.2.4 Bioanalysis of whole lung RNA samples 84
2.2.5 Microarray-based miRNA expression profiling 85
2.2.6 Microarray-based gene (mRNA) expression profiling 86
2.2.7 Quantification of lung miRNAs by custom miRNA real-time quantitative PCR (qPCR) 88
2.2.8 Statistics 89

2.3 Results 90
2.3.1 *Chlamydia* respiratory infection alters the expression of miRNAs in the lung that are unique and common to neonatal, infant and adult infections 90
2.3.2 Validation of miRNAs with altered expressions that are unique to neonatal *Chlamydia* infection and common across all ages of infection 94
2.3.3 *Chlamydia* respiratory infection alters the expression of genes in the lung that are unique and common to neonatal, infant and adult infections 98

2.4 Conception of studies 102
Chapter 3: Neonatal *Chlamydia* respiratory infection induces five miRNAs that drive severe lung disease in later life.

3.1 Abstract 107
3.2 Introduction 108
3.3 Methods 111
3.3.1 Ethics statement 111
3.3.2 Neonatal *C. muridarum* respiratory infection 111
3.3.3 *In vivo* administration of miRNA inhibitors (antagomir) 111
3.3.4 Quantification of miRNA and mRNA expression by real-time qPCR 113
3.3.5 Airway inflammation, histopathology and alveolar enlargement 116
3.3.6 Lung function 116
3.3.7 Statistics 117
3.4 Results 118
3.4.1 Neonatal *Chlamydia* respiratory infection increases the expression of miR-155, miR-21, miR-223, miR-146b and miR-203 in the lungs during the first 14dpi 118
3.4.2 *In vivo* inhibition of miRNAs during neonatal *Chlamydia* respiratory infection reduces infection-induced lung inflammation and histopathology 121
3.4.3 Neonatal *Chlamydia* respiratory infection-induced increases in the expression of miR-155, miR-21, miR-223, miR-146b and miR-203 have differential effects on several lung function parameters in later life. 129
3.4.4 Neonatal *Chlamydia* respiratory infection-induced miR-155 expression, but not miR-21, miR-223, miR-146b or miR-203 expression, promotes emphysema-like alveolar enlargement in later life. 133
3.4.5 Inhibition of miR-155, miR-21 and miR-203, but not of miR-223 and miR-146b, during neonatal *Chlamydia* respiratory infection prevents infection-induced increases in the severity of AAD in later life. 137
3.5 Discussion 141
Chapter 4: MicroRNA-21 promotes steroid insensitivity in infection-induced, severe, steroid-insensitive asthma by amplifying PI3K-mediated suppression of HDAC2

4.1 Abstract

4.2 Introduction

4.3 Methods

4.3.1 Ethics statement

4.3.2 Murine model of established AAD

4.3.3 C. muridarum and H. influenzae respiratory infections

4.3.4 Treatment with dexamethasone during AAD

4.3.5 In vivo administration of miRNA inhibitor (antagomir)

4.3.6 In vivo administration of LY294002; PI3K inhibition

4.3.7 Airway inflammation

4.3.8 Lung function

4.3.9 Quantification of mRNA and miRNA expression by real-time qPCR

4.3.10 Immunoblot analysis

4.3.11 Statistics

4.4 Results

4.4.1 Chlamydia respiratory infection induces severe, neutrophilic, steroid-insensitive AAD

4.4.2 Chlamydia infection induces a persistent increase in miR-21 expression in severe, steroid-insensitive AAD

4.4.3 Chlamydia infection primes steroid-insensitive responses in AAD

4.4.4 MiR-21 increases pAkt and reduces HDAC2 levels in Chlamydia-induced, severe, steroid-insensitive AAD

4.4.5 Inhibition of miR-21 restores steroid sensitivity in Chlamydia-induced, severe, steroid-insensitive AAD

4.4.6 PI3K-dependent signalling regulates pAkt and HDAC2 levels in Chlamydia-induced, severe, steroid-insensitive AAD

4.4.7 Inhibition of PI3K-dependent signalling reinstates steroid sensitivity in Chlamydia-induced, severe, steroid-insensitive AAD

4.4.8 Inhibition of miR-21 suppresses hallmark features of Haemophilus-induced, severe, neutrophilic, steroid-insensitive AAD
Chapter 5: NLRP3 inflammasome activation by bacterial respiratory infections promotes steroid insensitivity in experimental asthma

5.1 Abstract

5.2 Introduction

5.3 Methods

5.3.1 Ethics statement

5.3.2 Murine model of established AAD, *C. muridarum* and *H. influenzae* respiratory infections, and treatment with dexamethasone

5.3.3 *In vivo* neutralisation of IL-1β and administration of caspase and NLRP3 inhibitors during infection-induced, severe, steroid-insensitive AAD

5.3.4 Airway inflammation

5.3.5 Lung function

5.3.6 Quantification of mRNA expression by real-time qPCR

5.3.7 Immunoblot analysis

5.3.8 Enzyme linked immunosorbent assay (ELISA) for IL-1β

5.3.9 Statistics

5.4 Results

5.4.1 *Chlamydia* respiratory infection induces severe, steroid-insensitive AAD that is associated with increased IL-1β expression and production of Caspase-1 in the lungs

5.4.2 Inhibition of *Chlamydia*-induced IL-1β suppresses cardinal features of *Chlamydia*-induced, severe, steroid-insensitive AAD

5.4.3 Treatment with the pan-Caspase inhibitor z-VAD-fmk (ZVAD) at 1mg/kg decreases IL-1β levels and suppresses steroid-insensitive AHR in *Chlamydia*-induced, severe, steroid-insensitive AAD

5.4.4 Treatment with the Caspase-1 inhibitor Ac-YVAD-cho (YVAD) at 1mg/kg decreases IL-1β levels and suppresses steroid-insensitive airway inflammation and AHR in *Chlamydia*-induced, severe, steroid-insensitive AAD

5.4.5 Treatment with a novel NLRP3 inhibitor MCC950 at 1mg/kg
suppresses steroid-insensitive airway inflammation in *Chlamydia*-induced, severe, steroid-insensitive AAD

5.4.6 Treatment with MCC950 at 10mg/kg decreases IL-1β levels and suppresses steroid-insensitive airway inflammation and AHR in *Chlamydia*-induced, severe, steroid-insensitive AAD

5.4.7 Inhibition of *Haemophilus*-induced IL-1β suppresses cardinal features of *Haemophilus*-induced, severe, steroid-insensitive AAD

5.4.8 Treatment with the Caspase-1 inhibitor YVAD at 1mg/kg decreases IL-1β levels and suppresses steroid-insensitive airway inflammation and AHR in *Haemophilus*-induced, severe, steroid-insensitive AAD

5.4.9 Treatment with MCC950 at 10mg/kg suppresses steroid-insensitive airway inflammation and AHR in *Haemophilus*-induced, severe, steroid-insensitive AAD

5.5 Discussion

Chapter 6: General Discussion and Conclusions

6.1 Significance of research

6.2 *C. muridarum* and *H. influenzae* respiratory infections in mice

6.3 A key subset of five miRNAs modulate the severity of neonatal *Chlamydia* respiratory infection

6.3.1 miRNAs promote more severe neonatal *Chlamydia* respiratory infection

6.3.1.1 Increased miR-155 expression during neonatal *Chlamydia* infection promotes emphysema-like alveolar enlargement in later life

6.3.1.2 Increased miR-155, miR-21 and miR-203 in neonatal *Chlamydia* infection are critical mediators of infection-induced AHR and increased severity of AAD in later life

6.4 *Chlamydia* and *Haemophilus* respiratory infections induce severe, neutrophilic, steroid-insensitive AAD

6.4.1 Infection-induced miR-21 promotes severe, steroid-insensitive, neutrophilic AAD

6.4.2 Infection-induced increases in NLRP3 inflammasome activity and
IL-1β responses promote severe, steroid-insensitive, neutrophilic AAD

6.5 Future directions

6.5.1 Elucidating the mechanisms that underpin the effects of miR-155, miR-21, miR-223, miR-146b and miR-203 on neonatal Chlamydia respiratory infection-induced chronic lung disease

6.5.2 Further investigation into the role of miR-21/PI3K/pAkt/HDAC2 signalling in Chlamydia and Haemophilus respiratory infection-induced, severe, steroid-insensitive AAD

6.5.3 Further investigation into the role of NLRP3 inflammasome/Caspase-1/IL-1β signalling in Chlamydia and Haemophilus respiratory infection-induced, severe, steroid-insensitive AAD

6.5.4 Targeting Chlamydia and Haemophilus infections in order to prevent severe lung disease

6.5.5 Investigation of the role of miR-155 in the pathogenesis of Chlamydia respiratory infection-induced, severe, steroid-insensitive AAD and investigation of other infections

6.6 Conclusion

7. References
Synopsis

Asthma is a chronic allergic inflammatory disease of the airways that affects over 300 million people worldwide. The disease is driven predominantly by aberrant immune responses to normally harmless environmental stimuli. Upon encountering these stimuli, numerous immune and structural cells within the airways of the asthmatic lung release a wide range of inflammatory mediators that cause injury to the airway mucosa and surrounding tissues and leads to mucosal swelling, mucous secreting cell (MSC) hyperplasia and metaplasia and oedema. These inflammatory processes are also accompanied by an increase in bronchial smooth muscle tone in response to non-specific stimuli, a key pathological feature of asthma referred to as airways hyper-responsiveness (AHR), which results in bronchoconstriction. Together, these processes result in widespread but variable airflow obstruction in the asthmatic lung that give rise to the characteristic features of the disease, including difficulty breathing, wheezing, chest tightness and cough. In severe cases, the airflow obstruction can be so extreme that it can result in death via asphyxiation.

The majority of asthmatics can effectively control their disease through the use of bronchodilators (β2 adrenergic receptor agonists) and inhaled corticosteroids (ICS). However, these treatments do not cure disease and, importantly, a significant proportion of moderate to severe asthmatics exhibit persistent airflow obstruction and frequent exacerbations of disease despite high dose long-acting β2 agonist (LABAs) and ICS treatment. These treatment-refractory asthmatics represent a significant health burden and urgently require improved therapeutic options. An increased understanding of the mechanisms that underpin the development of asthma, particularly the pathogenesis of severe, treatment-refractory forms of the disease, may
inform novel targets for the development of improved therapeutic strategies for preventing the development of asthma and/or improving treatment outcomes.

Numerous clinical studies have demonstrated a link between certain respiratory infections and the development of asthma. Significantly, increasing clinical and experimental evidence has shown an association between a number of respiratory infections and the development of more severe, steroid-insensitive forms of asthma. In particular, a large body of evidence associates *Chlamydia* respiratory infection with the development and exacerbation of asthma, particularly severe forms of disease, in both children and adults. However, the mechanisms that underpin the association remain unknown. Our laboratory has developed a research program to investigate the link between *Chlamydia* infection and asthma using murine models of disease. We have shown that a prior neonatal and infant, but not adult, *Chlamydia* respiratory infection results in persistent AHR, emphysema-like alveolar enlargement and increased severity of allergic airways disease (AAD) in later life. We have also shown that ongoing adult *Chlamydia* respiratory infection during AAD suppresses Type 2 T helper (T\(_{H2}\)) lymphocyte and eosinophilic responses but drives a T\(_{H1}/T_{H17}\) and neutrophil-dominated form of disease that recapitulates many of the features of severe forms of asthma in humans. In this Thesis I have extended these findings by identifying key factors and signalling pathways that play important roles in neonatal *Chlamydia* respiratory infection-induced chronic lung disease and severe asthma in later life, and adult *Chlamydia* respiratory infection-induced, severe, steroid-insensitive asthma. The studies described hereafter have made important and novel observations that demonstrate roles of key microRNAs (miRNAs) and immune factors and signalling pathways that underpin *Chlamydia*-induced, severe asthma.
Initially, I used microarray analyses as a discovery tool to identify key miRNAs and genes that are altered by early life and adult *Chlamydia* respiratory infections (Chapter 2). I then conceived and designed novel studies to identify the functional roles of combinations of these factors in neonatal *Chlamydia* respiratory infection-induced severe lung disease in later life (Chapter 3) and adult respiratory infection-induced, severe, steroid-insensitive asthma (Chapters 4 and 5).

I demonstrate that 5 miRNAs (miR-155, miR-21, miR-223, miR-146b and miR-203) induced during neonatal *Chlamydia* respiratory infection promote infection-induced lung inflammation and histopathology, and drive reduced lung function, emphysema-like alveolar enlargement and increased severity of asthma in later life.

I also demonstrate that *Chlamydia* respiratory infection in established AAD induces: 1) a miR-21/phosphoinositide-3-kinase (PI3K)/phosphorylated Akt (pAkt)/histone deacetylase (HDAC)2 signalling axis, and 2) a NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome/Caspase-1/interleukin (IL)-1β signalling axis, to promote severe, neutrophilic, steroid-insensitive AAD. Additionally, I show that miR-21 and the NLRP3 inflammasome/IL-1β signalling axis also drive *Haemophilus* respiratory infection-induced, severe, neutrophilic, steroid-insensitive AAD in order to demonstrate that these factors/signalling pathways may be broadly applicable to infection-induced severe asthma.

These studies have identified potential mechanisms that drive respiratory infection-induced severe asthma. Importantly, these studies demonstrate that therapeutically targeting key respiratory infection-induced factors in the lung, including miRNAs and factors involved in key immune signalling pathways, may be effective for the prevention and/or treatment of severe forms of asthma.
Publications arising from this Thesis

Refereed publications

Submitted publications from this Thesis:

Publications in preparation for submission from this Thesis:

Kim RY, Horvat JC, Essilfie AT, Starkey MR, Mattes J, Foster PS, Hansbro PM. MicroRNA-155 translates neonatal respiratory infection into chronic lung disease. In preparation for submission as an original research article.

Kim RY, Pinkerton JW, Essilfie AT, Robertson AA, Mayall JR, Starkey MR, Cooper MA, Horvat JC, Hansbro PM. NLRP3 inflammasome activation by bacterial respiratory infections promotes steroid insensitivity in experimental asthma. In preparation for submission as an original research article.

Publications that I have contributed to during my PhD:

* denotes equal contribution to manuscript (i.e. co-first author)
Conference publications, presentations and awards

Conference publications:

Schilter HC, Shim D, Maslowski K, Tsai L, Shum B, Kim RY, Hansbro NG, Rolph M, Hansbro PM, Sewell WA, Mackay CR. A role for fatty acid binding proteins in respiratory inflammation. Australasian Society for Immunology 38th Annual Scientific Meeting: Delegate Book, Canberra, ACT 2008 [E3]

Schilter HC, Shum B, Shim D, Maslowski K, Tsai L, Kim RY, Hansbro NG, Hansbro PM, Sewell WA, Mackay CR. Fatty acid binding proteins: A link between metabolism and airway inflammation? Respirology, Darwin, NT 2009 [E3]

Conference presentations/contributions:

Oral presentation (block symposia) at the 4th Annual Newcastle Asthma Meeting, Newcastle, Australia 2008. Title: Molecular signatures in early life chlamydial infection.

Oral presentation in the School of Biomedical Sciences and Pharmacy RHD seminar series, The University of Newcastle, Australia 2012. Title: The functional role of microRNAs in Chlamydia lung infection-induced pathologies.

Oral presentation (block symposia) at the 8th Annual Newcastle Asthma Meeting, Newcastle, Australia 2012. Title: Functional roles of microRNAs in lung infection-induced pathologies.
Oral presentation in the Vaccines, Infection, Viruses & Asthma (VIVA) Seminar Series, Hunter Medical Research Institute (HMRI) 2013. Title: MicroRNAs in *Chlamydia* lung infection-induced pathologies

Oral presentation in the Vaccines, Infection, Viruses & Asthma (VIVA) Seminar Series, Hunter Medical Research Institute (HMRI) 2014. Title: MicroRNA-21 promotes steroid insensitivity in experimental asthma by amplifying PI3K-mediated suppression of HDAC2

Awards:

Australian Post Graduate Award (APA) PhD Scholarship. February 2007

Cooperative Research Centre for Asthma and Airways (CRCAA) Travel Award. January 2008

School of Biomedical Sciences PhD Top-up Scholarship, The University of Newcastle, Australia. March 2007

Thoracic Society of Australia & New Zealand (TSANZ) Travel Grant
Abbreviations

AAD: Allergic airways disease

adu: Adult

AHR: Airways hyper-responsiveness

AIM2: Absent in melanoma 2 (also termed PYHIN4)

Akt: Protein kinase B

alum: aluminium hydroxide

AP-1: Activator protein

APC: Antigen presenting cell

ASC: Apoptosis-associated speck-like protein containing a CARD

ATP: Adenosine triphosphate

α-IL-1β: Anti-IL-1β neutralising antibody

BAL: Bronchoalveolar lavage

BALF: BAL fluid

BCG: Bacillus Calmette-Guerin

BSA: Bovine serum albumin

cAMP: Cyclic adenosine monophosphate

CARD: Caspase-recruitment domain

CBP: cAMP response element-binding (CREB)-binding protein

CCL: Chemokine (C-C motif) ligand

CEBPB: CCAAT/enhancer-binding protein-β

COPD: Chronic obstructive pulmonary disease

COX-2: Cyclooxygenase-2

Cmu: C. muridarum

cRNA: Complementary RNA

CXCL: Chemokine (C-X-C motif) ligand

C. muridarum: Chlamydia muridarum

C. pneumoniae: Chlamydia pneumoniae

C. trachomatis: Chlamydia trachomatis

DAMP: Damage-associated molecular pattern

DAVID: Database for Annotation, Visualization and Integrated Discovery

DC: Dendritic cell

DC-SIGN: DC-specific Intercellular adhesion molecule-3-Grabbing Non-integrin

DGCR8: DiGeorge syndrome critical region gene 8
DEX: Dexamethasone
DMSO: Dimethyl sulfoxide
dpi: Days post infection
DR: Death receptor
dsDNA: Double-stranded DNA
EAE: Experimental autoimmune encephalomyelitis
EB: Elementary body
ELISA: Enzyme linked immunosorbent assay
FADD: Fas-associated death domain protein
FccRI: High affinity IgE receptors
FEV₁: Forced expiratory volume in one second
FGF: Fibroblast growth factor
F. novicida: Francisella novicida
geomean: Geometric mean
GR: Glucocorticoid receptor
GRE: Glucocorticoid response element
HDAC: Histone deacetylase
HDM: House dust mite
hASMC: Human airway smooth muscle cell
Hinf: H. influenzae
HPRT: Hypoxanthine-guanine phosphoribosyl transferase
H. influenzae: Haemophilus influenzae
H. pylori: Helicobacter pylori
H&E: Hematoxylin and eosin
HRP: Horseradish peroxidase
IBD: Inflammatory bowel disease
IC: Inspiratory Capacity
ICS: Inhaled corticosteroids
IFN: Interferon
IFU: Inclusion-forming units
Ig: Immunoglobulin
IL-1R: IL-1 receptor
inf: Infant
Iso: Isotype control antibodies
i.n.: Intranasally
i.p.: Intraperitoneally
i.t.: Intratracheally
IKKε: IkappaB kinase epsilon
IL-13R: IL-13 receptor
iNOS: Inducible nitric oxide synthase
IL: Interleukin
IRAK: Interleukin-1 receptor-associated kinase

JNK: c-Jun N-terminal kinase

KGF: Keratinocyte growth factor

LABA: Long-acting β2 agonist

LM: Mean linear intercept

LPS: Lipopolysaccharide

LRR: Leucine-rich repeat

LY29: LY294002

L. monocytogenes: Listeria monocytogenes

MAPK: Mitogen-activated protein kinase

MCC950: Novel NLRP3 inhibitor

Mech: Methacholine

MDDC: Monocyte-derived DC

miRNA: MicroRNA

MSC: Mucous secreting cell

MyD88: Myeloid differentiation primary response gene 88

NBD: NACHT nucleotide-binding domain

ncRNA: Non-coding RNA

neo: Neonatal

NF-κB: Nuclear factor κB

NLR: NOD leucine-rich repeat-containing receptor

NLRP: NOD-like receptor family, pyrin domain containing

NOD: nucleotide-binding oligomerisation domain

nt: nucleotide

NTHi: Non-typeable *H. influenzae*

Ova: Ovalbumin

pAkt: Phosphorylated Akt

PAMP: Pathogen-associated molecular pattern

PB: Persistent body

PBMC: Peripheral blood mononuclear cell

PBS: Phosphate-buffered saline

PBS-T: PBS and Tween 20

PDK: Phosphoinositide-dependent kinase

PGE2: Prostaglandin E2

PH: Pleckstrin-homology domain

PIP2: Phosphatidylinositol 4,5-bisphosphate

PIP3: Phosphatidylinositol 3,4,5-bisphosphate
PI3K: Phosphoinositide-3-kinase

pol II: Polymerase II

poly(I:C): Polyriboinosinic:polyriboctidylic acid

Pre-miRNA: Precursor-miRNA

Pri-miRNA: Primary miRNA

PRR: Pattern recognition receptors

PTEN: Phosphatase and tensin homologue

PVDF: Polyvinylidene difluoride

PYD: Pyrin domain

P2X7R: Purinergic receptor P2X, ligand-gated ion channel, 7

qPCR: Quantitative PCR

RB: Reticulate body

RIG-I: Retinoic acid-inducible gene 1

RIN: RNA integrity number

RIPK: Receptor-interacting serine-threonine kinase

RISC: RNA-induced-silencing-complex

Rn: Airways resistance

RSV: Respiratory syncytial virus

RT: Room temperature

RNAi: RNA interference

SAA3: Serum amyloid A 3

Sal: Saline (sham-sensitised, non-allergic)

Scram: Scrambled antagonir

SERPINE: Serpin peptidase inhibitor, clade E

SH: Src-homology

SHIP: SH2 domain containing inositol phosphatase

snRNA: Small nuclear RNA

snoRNA: Small nucleolar RNA

SOCS: Suppressor of cytokine signalling

SPG: Sucrose phosphate glutamate buffer

siRNA: Short-interfering RNA

STAT: Signal transducer and activator of transcription

S. typhimurium: Salmonella typhimurium

TAR: Trans-activating response

TBP: TATA binding protein

TBS: Tris-buffered saline

TBS-T: TBS and Tween 20

TGF: Transforming growth factor
\(T_H \): T helper lymphocyte

TLR: Toll-like receptor

TNF: Tumour necrosis factor

TRAIL: Tumour necrosis factor-related apoptosis-inducing ligand

TRAF: TNF receptor-associated factor

TRBP: Trans-activating response (TAR) RNA-binding protein

UTR: Untranslated region

WT: Wild-type

YVAD: Ac-YVAD-cho

ZVAD: z-VAD-fmk
List of Figures

Figure 1.1: The developmental cycle of *Chlamydia*

Figure 1.2: MicroRNA (miRNA) biogenesis

Figure 1.3: MicroRNA (miRNA)-mediated post-transcriptional gene silencing

Figure 2.1: Experimental protocol. Investigation of microRNA (miRNA) and gene (mRNA) expression profiles in neonatal, infant and adult *Chlamydia* respiratory infections

Figure 2.2: MicroRNA (miRNA) expression profiles that are induced by neonatal, infant and adult *Chlamydia* respiratory infections

Figure 2.3: qPCR-validated microRNAs (miRNAs) that are uniquely altered by neonatal *Chlamydia* respiratory infection

Figure 2.4: qPCR-validated microRNAs (miRNAs) that are commonly altered by neonatal, infant and adult *Chlamydia* respiratory infections

Figure 2.5: Gene (mRNA) expression profiles that are induced by neonatal, infant and adult *Chlamydia* respiratory infections

Figure 3.1: MicroRNA (miRNA) antagonir administration regime during neonatal *Chlamydia* respiratory infection

Figure 3.2: Neonatal *Chlamydia* respiratory infection increases the expression of microRNA (miR)-155, miR-21, miR-223, miR-146b and miR-203 in the lungs during infection

Figure 3.3: Inhibition of microRNAs (miRNAs) *in vivo* during neonatal *Chlamydia* respiratory infection
Figure 3.4: Neonatal *Chlamydia* respiratory infection-induced microRNA (miR)-155 and miR-223 expression promote reduced weight gain

Figure 3.5: Neonatal *Chlamydia* respiratory infection-induced microRNA (miR)-155, miR-21, miR-223, miR-146b and miR-203 expression promotes infection-induced airway inflammation and lung histopathology during the peak of inflammation

Figure 3.6: Neonatal *Chlamydia* respiratory infection-induced microRNA (miR)-155, miR-21, miR-223, miR-146b and miR-203 expression have differential effects on several lung function parameters in later life

Figure 3.7: Neonatal *Chlamydia* respiratory infection-induced microRNA (miR)-155 expression promotes emphysema-like alveolar enlargement

Figure 3.8: Neonatal *Chlamydia* respiratory infection-induced microRNA (miR)-155, miR-21 and miR-203 expression promote the key features of the infection-induced allergic airways disease (AAD) phenotype in later life

Figure 4.1: Experimental protocol. Investigation and treatment of *Chlamydia*- and *Haemophilus*-induced, severe, neutrophilic, steroid-insensitive allergic airways disease (AAD)

Figure 4.2: *Chlamydia* infection induces severe, neutrophilic, steroid-insensitive allergic airways disease (AAD)

Figure 4.3: *Chlamydia* respiratory infection induces microRNA (miR)-21 expression in severe, steroid-insensitive allergic airways disease (AAD)

Figure 4.4: *Chlamydia* respiratory infection promotes steroid-insensitive responses in severe, allergic airways disease (AAD)

Figure 4.5: *Chlamydia*-induced microRNA (miR)-21 increases PI3K signalling and decreases HDAC2 levels in severe, steroid-insensitive allergic airways disease (AAD)
Figure 4.6: Inhibition of microRNA (miR)-21 reinstates steroid sensitivity in *Chlamydia*-induced, severe, steroid-insensitive allergic airways disease (AAD)

Figure 4.7: *Chlamydia*-induced PI3K signalling suppresses HDAC2 levels in severe, steroid-insensitive allergic airways disease (AAD)

Figure 4.8: Inhibition of *Chlamydia*-induced PI3K signalling reinstates steroid sensitivity in severe, steroid-insensitive allergic airways disease (AAD)

Figure 4.9: Inhibition of microRNA (miR)-21 reinstates steroid sensitivity in *Haemophilus*-induced, severe, steroid-insensitive allergic airways disease (AAD)

Figure 4.10: Mechanisms and potential treatment of severe, steroid-insensitive asthma

Figure 5.1: Experimental protocol. Investigation and treatment of *Chlamydia* and *Haemophilus*-induced, severe, neutrophilic, steroid-insensitive allergic airways disease (AAD)

Figure 5.2: *Chlamydia* infection induces severe, steroid-insensitive, neutrophilic allergic airways disease (AAD) that is associated with increased Caspase-1 and IL-1β responses

Figure 5.3: Inhibition of IL-1β suppresses cardinal features of *Chlamydia*-induced, severe, steroid-insensitive allergic airways disease (AAD)

Figure 5.4: Pan-caspase inhibition with z-VAD-fmk (ZVAD) decreases IL-1β levels and suppresses airways hyper-responsiveness (AHR) in *Chlamydia*-induced, severe, steroid-insensitive allergic airways disease (AAD)

Figure 5.5: Inhibition of Caspase-1 with Ac-YVAD-cho (YVAD) decreases IL-1β levels and suppresses cardinal features of *Chlamydia*-induced, severe, steroid-insensitive allergic airways disease (AAD)
Figure 5.6: Treatment with a novel NLRP3 inhibitor MCC950 at 1mg/kg suppresses neutrophilic airway inflammation in *Chlamydia*-induced, severe, steroid-insensitive allergic airways disease (AAD)

Figure 5.7: Treatment with a novel NLRP3 inhibitor MCC950 at 10mg/kg suppresses cardinal features of *Chlamydia*-induced, severe, steroid-insensitive allergic airways disease (AAD)

Figure 5.8: Inhibition of IL-1β suppresses cardinal features of *Haemophilus*-induced, severe, steroid-insensitive allergic airways disease (AAD)

Figure 5.9: Inhibition of Caspase-1 with Ac-YVAD-cho (YVAD) decreases IL-1β levels and suppresses cardinal features of *Haemophilus*-induced, severe, steroid-insensitive allergic airways disease (AAD)

Figure 5.10: Treatment with a novel NLRP3 inhibitor MCC950 at 10mg/kg suppresses cardinal features of *Haemophilus*-induced, severe, steroid-insensitive allergic airways disease (AAD)

Figure 5.11: Mechanisms and potential treatment of severe steroid-insensitive asthma

List of Tables

Table 2.1: Oligonucleotide sequences used to validate microRNA (miRNA) microarray data by real-time quantitative PCR

Table 2.2: MicroRNAs (miRNAs) with altered expression that are uniquely induced by neonatal *Chlamydia* respiratory infection

Table 2.3: MicroRNAs (miRNAs) with altered expression that are commonly induced by neonatal, infant and adult *Chlamydia* respiratory infections
Table 2.4: MicroRNAs (miRNAs) with altered expression that are commonly induced by combinations of neonatal, infant and adult *Chlamydia* respiratory infections

Table 2.5: Genes (mRNAs) with altered expression that are commonly induced by neonatal, infant and adult *Chlamydia* respiratory infections

Table 3.1: MicroRNA (miRNA)-specific antagomirs used for *in vivo* inhibition

Table 3.2: Oligonucleotide sequences used for qPCR analyses

Table 4.1: Oligonucleotide sequences used for qPCR analyses

Table 5.1: Oligonucleotide sequences used for qPCR analyses