Finite Element Algorithms for Dynamic Analysis of Geotechnical Problems

by

Hassan Sabetamal

B.Sc., Civil Engineering
M.Sc., Geotechnical Engineering

A Thesis submitted for the Degree of

Doctor of Philosophy

at the University of Newcastle

Oct 2014
This page is blank
I hereby certify that the work embodied in this thesis is the result of original research and has not been submitted for a higher degree to any other University or Institute.

I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

(signed) ________________________
Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisors: Dr. Majid Nazem, Laureate Prof. Scott Sloan and Prof. John Carter. I have been fortunate to have the opportunity to work with these highly distinguished people.

I am indebted to Dr. Nazem for his interest and guidance. His commitment, encouragement and support have been unfailing and limitless throughout the period of this work, and it has been greatly appreciated.

I would like to express my sincere appreciation to Laureate Prof. Scott Sloan for his support, suggestions, help and provision of financial assistance during this research.

I have great respect for Prof. John Carter, whose invaluable contributions, suggestions and encouragement have been greatly appreciated.

I would like to thank all staff members at the ARC Center of Excellence for Geotechnical Science and Engineering (CGSE), particularly the Centre’s coordinator, Ms Kirstin Dunncliff, for their precious help and support.

I would like to thank my mother for her endless love, thoughtfulness, encouragement and prayers throughout this journey. I thank her for always being patient and positive.

I would like to express my sincere appreciation to my family—all of whom have been encouraging.
Abstract

The objective of this study is to document the development of a computational procedure for the analysis of coupled geotechnical problems involving finite deformation, inertia effects and changing boundary conditions. The procedure involves new finite element (FE) algorithms that were formulated and implemented into SNAC—a FE code developed by the geomechanics group at the University of Newcastle, Australia. The numerical scheme was then utilised to analyse some important offshore geotechnical problems.

The first development concerns the implementation of the governing equations of two-phase saturated porous media in a mixed form, allowing predictions of solid displacement, pore fluid pressure and Darcy velocity. The generalised-α method was chosen to integrate the governing equations in the time domain. The formulation was extended to consider geometrical nonlinearity within the framework of the Arbitrary Lagrangian–Eulerian approach. Suitable absorbing boundary conditions were also incorporated to model the radiation of bulk waves towards infinity at the truncated FE mesh boundaries. Some closed-form solutions were also developed, which are suitable to verify the implementation of dynamic consolidation algorithms.

The second development involves the formulation and implementation of a high-order contact algorithm for solid–fluid mixtures accounting for large deformations and inertia effects. The contact algorithm is based on a mortar segment-to-segment approach formulated for cases of frictionless and frictional interfaces. The node-to-segment approach was also employed to compare and highlight the merits of the mortar method when dealing with dynamic coupled problems.

The computational procedure was evaluated by modelling some numerical exercises and comparing the predicted results with alternative numerical and analytical solutions where possible.

In the last part of the thesis, the computational framework was employed to successfully model the problems of dynamically penetrating anchors and offshore pipeline-seabed
interactions. The analysis of dynamically penetrating anchors comprises the simulation of the penetration process and consolidation of the soil surrounding the penetrometer. The analysis of the pipeline-seabed interaction involves the simulation of the laying process and the large-amplitude lateral motion of the pipe.
Contents

Acknowledgements .. ii
Abstract ... iii
Contents .. v
Preface ... viii
List of Tables and Boxes .. xii
List of Figures ... xiii

Chapter 1: Introduction .. 1
1.1 General ... 1
1.2 Scope of Research .. 3
1.3 Organisation of the Thesis ... 5

Chapter 2: Soil as a Porous Medium - Governing Equations .. 6
2.1 Introduction .. 6
2.2 Governing Differential Equations: Balance Laws ... 7
 2.2.1 Balance of mixture mass ... 8
 2.2.2 Balance of momentum .. 12
 2.2.3 Boundary conditions ... 15
2.3 Variational Statement of the Balance Laws ... 15
2.4 Finite Element Discretisation ... 19
2.5 Arbitrary Lagrangian-Eulerian Method ... 21
2.6 Analytical Solution .. 24
2.7 Time Integration ... 24
 2.7.1 Generalised-\(\alpha \) method .. 26
 2.7.2 Discretisation in the time domain ... 28
2.8 Absorbing Boundary .. 31
 2.8.1 Adopted energy-absorbing boundary .. 34
 2.8.2 Cone energy-absorbing boundary ... 35
 2.8.2.1 Implementation .. 40
2.9 Summary .. 43

Chapter 3: Interface Modelling: Contact Mechanics of Two-phase Saturated Porous Media ... 45
3.1 Introduction .. 45
3.2 Formulation of Frictionless Contact ... 46
 3.2.1 Kinematics at the interface .. 48
 3.2.2 Contact interface constraints .. 50
 3.2.2.1 Displacement contribution ... 52
3.2.2.2 Pore pressure contribution ... 56
3.2.2.3 Darcy velocity contribution ... 58
3.2.3 Augmented Lagrangian regularisation .. 61

3.3 Formulation of Frictional Contact ... 64
3.3.1 Contact kinematic states and moving friction cone ... 65
3.3.2 Linearisation of contact virtual works ... 71
3.3.2.1 Displacement contribution ... 71
3.3.2.2 Darcy velocity contribution ... 75
3.3.2.3 Pore-pressure contribution ... 77

3.4 Contact Formulation for the U-P Scheme .. 78
3.4.1 Displacement contribution .. 79
3.4.2 Pore pressure contribution .. 82

3.5 Summary .. 83

Chapter 4: Numerical Evaluations ... 84
4.1 Introduction .. 84
4.2 Response of One-dimensional Deformable Porous Medium with Incompressible
Constituents ... 84
4.3 Response of One-dimensional Deformable Porous Medium with Compressible
Pore Fluid .. 88
4.4 Consolidation of Flexible Strip Footing ... 91
4.5 Undrained Analysis of a Strip Footing .. 95
4.6 Contact Patch Test and Verification in Unconfined Compression 98
4.7 Rapid Installation of a Pile .. 100
4.7.1 Installation into MC soil ... 102
4.7.2 Installation into MCC soil .. 110
4.7.3 Comparative study of the MC and MCC material models 114
4.7.4 Effects of frictional interface .. 119
4.8 Summary .. 121

Chapter 5: Numerical Analysis of Dynamically Penetrating Anchors 124
5.1 Introduction .. 124
5.2 Analysis Steps of a DPA and Literature Review .. 126
5.3 Simulation of a Free-falling Torpedo Anchor ... 130
5.3.1 Soil resistance profile during penetration .. 132
5.3.2 Deceleration of the anchor .. 134
5.3.3 Pore-pressure generation throughout the penetration .. 135
5.3.4 Set-up analysis ... 138
5.4 Free-falling of a Torpedo Anchor into a Normally Consolidated Clay Layer 140
5.4.1 Soil resistance profile during penetration .. 141
5.4.2 Deceleration of the anchor .. 144
5.4.3 Pore-pressure generation throughout the penetration .. 145
5.4.4 Setup analysis ... 150
5.5 Summary .. 153
Chapter 6: Pipeline Seabed Interaction Problems .. 156

6.1 Introduction .. 156
6.2 Dynamic Coupled Analysis of an Offshore Pipeline–Seabed System 158
6.3 Dynamic Laying Process of an Elastic Pipeline and Consolidation Settlements 163
6.4 Pipeline under Large Amplitude Lateral Movement ... 168
 6.4.1 Numerical simulation .. 170
 6.4.1.1 Vertical penetration ... 171
 6.4.1.2 Lateral movement ... 175
6.5 Summary .. 184

Chapter 7: Conclusions and Recommendations ... 187

7.1 Introduction .. 187
7.2 Governing Equations of Two-phase Saturated Porous Media 187
7.3 Contact Mechanics of Two-phase Saturated Porous Media 189
7.4 Numerical Evaluation of the Computational Scheme .. 190
7.5 Numerical Analysis of Dynamically Penetrating Anchors .. 191
7.6 Numerical Analysis of Pipeline–Seabed Interaction Problems 192
7.7 Recommendations for Future Research ... 193

References ... 196
Appendix A.I .. 212
Appendix A.II ... 214
Appendix A.III ... 217
ONE-DIMENSIONAL TEST PROBLEMS FOR DYNAMIC CONSOLIDATION 217
Appendix A.IV .. 231
Appendix B ... 232
Appendix C.I ... 233
Appendix C.II .. 235
Appendix C.III ... 237
Preface

The research work presented in this thesis was conducted in the Department of Civil, Surveying and Environmental Engineering at the University of Newcastle from July 2010 to August 2014. This work was performed under the supervision of Dr. Majid Nazem, Laureate Prof. Scott Sloan and Prof. John Carter.

The author claims originality for the entire work described in this thesis, except the information or ideas derived from the many references and sources which have been acknowledged in the text. In particular, originality of the following works is claimed:

Chapter 2

i. The field equations for two-phase porous media were derived in light of the mixture theory extended by the concept of a volume fraction. Although these equations may have been applied in earlier studies, the equivalent arrangement introduced in the derivation of the equation system facilitates the description of frictional contact in terms of the effective normal stress component on the contact interface.

ii. A numerical solution of the governing differential equations for the dynamics of saturated soils was obtained by the finite element method. A U-P-V formulation was selected to describe both incompressible and compressible fluids, in which the resulting mixed formulation predicted all field variables, including solid displacement U, pore-fluid pressure P and the Darcy velocity of the pore fluid V. This dynamic consolidation scheme was implemented by the author into the existing in-house finite element program, SNAC. The implemented scheme provided a rigorous solution to the governing differential equations considering the convective terms of the fluid acceleration.

iii. A simplified solution was also outlined in the form of the U-P approximation, which ignores the acceleration of the fluid component. This scheme was also implemented into SNAC by the author.
iv. The ALE operator split technique and the mesh refinement strategy presented by Nazem et al. (2009) was incorporated in this thesis to consider the effects of finite deformations and to avoid possible mesh distortions. Application of the ALE scheme within the dynamic consolidation framework is specifically claimed to be original.

v. A literature review was presented for some of the available boundary conditions for solving wave-propagation problems in an unbounded domain.

vi. The cone boundary of Kellezi (2000) was adopted and implemented in the U-P-V consolidation algorithm.

vii. Closed-form solutions were developed in collaboration with others (Carter et al. 2015) for some one-dimensional problems. These solutions were useful for validating FE codes for the dynamic consolidation of soil.

Chapter 3

A new contact algorithm based on the mortar method was formulated and implemented for solid-fluid mixtures in the spatial frame that can accommodate inertia effects together with finite deformation and contact sliding. Both frictionless and frictional contact formulations were addressed for two different forms of the dynamic consolidation formulations, including U-P-V and U-P schemes.

Chapter 4

A number of validation exercises were presented to evaluate the performance of the developed numerical scheme. These results are claimed as original.

Chapter 5

i. A brief literature review of the available computational methods and available model tests on Dynamically Penetrating Anchors (DPAs) was presented.

ii. The numerical scheme developed in this thesis was then employed to conduct coupled analysis of DPAs. These results are claimed as original.

Chapter 6

The computational scheme was utilised to analyse a few pipeline-seabed interaction problems. These results are claimed as original.
Chapter 7
The conclusions and recommendations for future work.

The candidate used the existing node-to-segment (NTS) contact algorithm in SNAC to analyse some problems and compare the results with the mortar contact algorithm. However, the modification of the NTS scheme and application of the method for dynamic coupled consolidation analyses is claimed to be original.

During the term of the candidature, a number of papers and reports were published and some awards were granted. These are listed below:

Awards:

Jun 2014
Australian Geomecanics Society (AGS) NSW research award.

Sep 2014

Sep 2013
The University of Newcastle, Faculty of Engineering and Built Environment Postgraduate Research Prize.
List of Tables and Boxes

Table 2.1: Damping and stiffness matrices for cone boundary ... 42
Table 3.1: Nested augmented Lagrangian scheme for frictionless contact problems of two-phase saturated porous media ... 63
Table 4.1: Material parameters .. 85
Table 4.2: Material parameters for the wave propagation analysis ... 89
Table 4.3: Mohr–Coulomb material parameters .. 92
Table 4.4: Material parameters .. 115
Table 5.1: MCC material parameters ... 141
Table 6.1: MCC material parameters ... 159

Box 3-1: Newton scheme for the update of $\bar{\xi}$ within time increment for frictionless contact ... 50
Box 3-2: Newton scheme for the update of ξ_s .. 71
Box 3-3: Newton scheme for the update of ξ_s for the U-P scheme .. 80
Table A.1: Soil properties ... 224
List of Figures

Figure 2.1: Evaluation of the various terms of the equation of motion in the generalised-\(\alpha \) scheme... 27
Figure 2.2: (a) Semi-infinite 1D conical rod model; (b) application of cone model for 2D problems... 39
Figure 2.3: Six-noded isoparametric element with cone boundary applied on its lateral edge.. 43
Figure 3.1: Geometrical description for the contact formulation .. 48
Figure 3.2: Definition of gap functions: (a) Darcy velocity and pore fluid pressure; (b) displacement ... 51
Figure 3.3: Minimal distance concept during frictionless sliding.. 54
Figure 3.4: Geometric interpretation of Coulomb friction law for 2D problems .. 67
Figure 3.5: Initial and current configuration of two contacting bodies in a stick case.. 68
Figure 3.6: Frictional sliding and movement of \(\xi \) with the moving cone: (a) initial configuration; (b) current configuration .. 69
Figure 3.7: Sliding and movement of the friction cone ... 69
Figure 4.1: One-dimensional dynamic wave propagation problem .. 85
Figure 4.2: Solid displacement response versus depth ... 86
Figure 4.3: Pore-water pressure response with time .. 86
Figure 4.4: Normal Darcy velocity versus depth .. 87
Figure 4.5: Normalised vertical settlements versus load level ... 88
Figure 4.6: Evolution of pore-water pressure at a depth of 0.2 m versus time .. 90
Figure 4.7: Pore-water pressure evolution at a depth of 0.2 m versus time .. 91
Figure 4.8: Flexible strip footing on elasto-plastic layer ... 91
Figure 4.9: Settlement versus time factor for the elasto-plastic strip footing ... 93
Figure 4.10: Evolution and dissipation of normalised pore pressure .. 94
Figure 4.11: Excess pore pressure contours and Darcy velocity vector maps ... 94
Figure 4.12: Rigid rough footing on a cohesive soil layer .. 95
Figure 4.13: Load-displacement curves .. 97
Figure 4.14: Deformed mesh at the end of the ALE analysis .. 98
Figure 4.15: Unconfined compression models: (a) model (i), two elastic layers with a contacting interface; (b) model (ii), equivalent case using a single elastic layer with no contact interface ... 99
Figure 4.16: Pore pressure at the interface of two layers normalised by applied pressure .. 100
Figure 4.17: FE meshes and boundary conditions: (a) dense mesh; (b) fine mesh ... 103
Figure 4.18: Deformed meshes at different times (\(\psi' = 10^{-2} \)): (a) \(t = 0.05 \) s; (b) \(t = 0.5 \) s; (c) \(t = 1.0 \) s.. 104
Figure 4.19: Normalised total dynamic soil resistance versus normalised penetration depth obtained for: (a) NTS method with smooth and non-smooth cone (\(\psi' = 10^{-2} \)); (b) non-smooth NTS and mortar methods (\(\psi' = 2^{-2} \)) .. 105
Figure 4.20: Excess pore-pressure response at depth \(d = 4D \) and radial distance of \(r = 2D \) (\(\psi' = 10^{-2} \)) .. 106
Figure 4.21: Normalised total dynamic soil resistance versus normalised penetration depth... 107
Figure 4.22: Excess pore-pressure response at depth 4D and $r = 0.15D$ ($\psi' = 10^-$): (a) time step $\Delta t = 5 \times 10^{-5} s$ for both analyses; (b) time step size increased to $\Delta t = 1 \times 10^{-4} s$ for the analysis with fine mesh only.
Figure 4.23: Excess pore-pressure counters for $\psi' = 2^-$
Figure 4.24: Evolution of normalised total dynamic soil resistance for various dilation angles
Figure 4.25: (a) Evolution of total dynamic soil resistance for various values of p_0'; (b) deformed dense mesh at the end of installation
Figure 4.26: Excess pore-pressure variation throughout penetration at depth 2.5D and different radial distances
Figure 4.27: Excess pore-water pressure contour at the end of installation
Figure 4.28: (a) Evolution of total dynamic soil resistance; (b) excess pore-water pressure at depth 6.25D
Figure 4.29: Undrained shear strength profile
Figure 4.30: Evolution of normalised total dynamic soil resistance predicted by three soil models
Figure 4.31: Evolution of total dynamic soil resistance for smooth and rough interfaces ($\mu = 0.25$), soil permeability $k = 10^8 m/s$
Figure 4.32: Evolution of total dynamic soil resistance for smooth and rough interfaces, soil permeability $k = 10^3 m/s$
Figure 4.33: Stresses on contact area, soil permeability $k = 10^3 m/s$, ($\mu = 0.25$)
Figure 5.1: (a) Deep penetrating anchor (taken from Deep Sea Anchors); (b) torpedo anchor with fins and without fins (after Medeiros 2002)
Figure 5.2: (a) FE model of torpedo anchor analysis; (b) Torpedo shape adopted for the analysis with the mortar contact
Figure 5.3: Total dynamic soil resistance profile
Figure 5.4: Total dynamic soil resistance profile obtained by the mortar and NTS algorithms (impact velocity = 15 m/s)
Figure 5.5: Velocity versus penetration
Figure 5.6: Velocity versus time
Figure 5.7: Excess pore-water pressure evolution at depth 5D throughout the installation phase
Figure 5.8: Excess pore-water pressure contours at two different penetration depths: (a) 5.0D; (b) end of installation (impact velocity = 15 m/s)—NTS results
Figure 5.9: Deformed meshes during the free-falling process (analysis with mortar contact)
Figure 5.10: Excess pore-water pressure dissipation versus time for elements at depth 5D
Figure 5.11: Total dynamic soil resistance profile
Figure 5.12: Deformed meshes during the free-falling process and gradual closure of the pathway
Figure 5.13: (a) Pore-pressure contours (corresponding to Figure 6.13(b)); (b) displacement vector plot
Figure 5.14: Velocity versus penetration
Figure 5.15: Velocity versus time
Figure 5.16: Excess pore-water pressure evolution at a depth of 5D throughout the installation phase
Figure 5.17: Excess pore-water pressure evolution at a depth of 13.4D throughout the installation phase
Figure 5.18: Excess pore-water pressure evolution at a depth of 14D throughout the installation phase