Roles of Post-Transcriptional Gene Silencing in the Functional Regulation of Neuronal Gene Expression and Plasticity

Belinda Jane Goldie
BBiomedSci (Hons)

Doctor of Philosophy (Medical Biochemistry)
University of Newcastle, Australia

August 2014
DECLARATION

Statement of Originality
This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Statement of Collaboration
I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers, or carried out in other institutions. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

Statement of Authorship
I hereby certify that the work embodied in this thesis contains published papers of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publications.

Thesis by Publication
I hereby certify that this thesis is submitted in the form of a series of published papers of which I am a joint author. I have included as part of the thesis a written statement from each co-author; and endorsed by the Faculty Assistant Dean (Research Training), attesting to my contribution to the joint publications.

________________________ ____________________
Belinda J Goldie Date
ABSTRACT

The phenomenon of synaptic plasticity in neurons is poorly understood, but is known to rely on appropriate temporo-spatial availability of mRNA. The complexity of neuronal cytoarchitecture necessitates an exquisite regulatory matrix that begins with the establishment of subcellular compartments during differentiation, however the molecular mechanisms that support trafficking and translational control are not well defined. The class of short, non-coding RNA molecules known as microRNA (miRNA) have well-established roles in neuronal differentiation and development, and growing evidence suggests that miRNA-mediated post-transcriptional gene silencing (PTGS) may be an important mediator of synaptic plasticity. To investigate this in a human genetic context, techniques were established for isolating distinct subcellular fractions of the SH-SY5Y neuroblastoma cell line and examining genome-wide miRNA and mRNA responses to neuronal cues such as differentiation and depolarisation. These studies identified a pattern of activity-associated miRNA expression changes unique to the neurites that was revealed to be connected to the release of exosomes from this compartment. Interestingly, some miRNA were found to be preferentially enriched in the nucleus. A motif detected within these sequences lead to the unexpected identification of putative transcription factor binding elements within their precursors, showing support for novel roles of miRNA outside PTGS. Connecting these findings was the unanticipated contribution of primate-specific miRNA, resulting in significant ontological enrichment of neuronal functionality. This demonstrates the importance and relevance of these cells as a vehicle for explicating the mechanisms underlying higher brain functions. Ultimately, substantial evidence was obtained to support a role for miRNA and the components of PTGS in the functional compartmentalisation of neurons and the response to activity, though further methodological developments are required to elaborate the novel mechanisms of miRNA function and investigate the direct contribution of miRNA-mediated PTGS to enabling real-time, activity-driven synaptic modification.
ACKNOWLEDGEMENTS

I am very proud of what I have achieved in the (just over) 3 years of my candidature, but I could not have accomplished so much without the help and support of some very important people and for which I am incredibly grateful.

Most importantly, I would like to thank my supervisor A/Prof Murray Cairns for giving me the right combination of freedom, guidance and support to pursue my scientific agenda. It is his unwavering belief in my abilities that has given me the confidence to ask bold questions and follow my instincts into uncharted territories. My thanks also to my co-supervisor Dr Chris Dayas for providing an alternative point of view and grounded career advice, as well as the opportunity for collaboration.

I must also acknowledge the support, both scientific and psychological, of my colleagues and friends Dr Adam Carroll and Sharon Hollins and, in particular, Dr Jude Weidenhofer who has also been a great mentor for my professional development. Thanks to all members, past and present, of the molecular neurobiology lab for their contributions, whether large or small.

Finally, I thank my parents Sheryn and Col and my brother Colin and his beautiful family, my partner Angus, and my irreplaceable friends Melissa and Selina for their love and understanding in supporting me through this very challenging period of my life. I could not have made it through without them.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>I</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>II</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>III</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>IV</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>VIII</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>THESIS OVERVIEW</td>
<td>2</td>
</tr>
<tr>
<td>RATIONALE AND HYPOTHESIS</td>
<td>5</td>
</tr>
<tr>
<td>RESEARCH AIMS</td>
<td>6</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS INCLUDED AS PART OF THESIS</td>
<td>9</td>
</tr>
<tr>
<td>LIST OF ADDITIONAL PUBLICATIONS THROUGHOUT CANDIDATURE</td>
<td>10</td>
</tr>
<tr>
<td>CHAPTER 2: LITERATURE REVIEW</td>
<td>11</td>
</tr>
<tr>
<td>STATEMENT OF CONTRIBUTION OF OTHERS</td>
<td>12</td>
</tr>
<tr>
<td>POST-TRANSCRIPTIONAL TRAFFICKING AND REGULATION OF NEURONAL GENE EXPRESSION</td>
<td>13</td>
</tr>
</tbody>
</table>
CHAPTER 3: METHODOLOGICAL CONSIDERATIONS FOR IN-VITRO NEURONAL MODELLING

STATEMENT OF CONTRIBUTION OF OTHERS

BDNF AND THE MATURATION OF POST-TRANSCRIPTIONAL REGULATORY NETWORKS IN HUMAN NEUROBLAST DIFFERENTIATION

CHAPTER 4: INVESTIGATION OF ACTIVITY-ASSOCIATED SUBCELLULAR MIRNA DYNAMICS

STATEMENT OF CONTRIBUTION OF OTHERS

ACTIVITY-ASSOCIATED MIRNA ARE PACKAGED IN MAP1B-ENRICHED EXOSOMES RELEASED FROM DEPOLARISED NEURONS

CHAPTER 5: A PUTATIVE NOVEL ASPECT OF MIRNA BIOLOGY IN NEURONS

STATEMENT OF CONTRIBUTION OF OTHERS

A CONSENSUS MIRNA SEQUENCE MOTIF IS ASSOCIATED WITH AGO2-SPECIFIC NUCLEAR LOCALISATION OF NEURONAL MRNAS IN HUMAN NEUROBLASTS

CHAPTER 6: THESIS DISCUSSION

INTRODUCTION

THE IMPORTANCE OF SH-SY5Y AS AN IN-VITRO MODEL OF HUMAN NEURONAL FUNCTION

NEURONAL COMPARTMENTALISATION OF MIRNA: THE IMPORTANCE OF LOCATION

ACTIVITY-ASSOCIATED MIRNA DYNAMICS AND IMPLICATIONS FOR SCHIZOPHRENIA
EXPECT THE UNEXPECTED: THE FUTURE OF MIRNA RESEARCH 85
CONCLUSIONS 87

APPENDIX I: CHAPTER 3 ADDITIONAL FILES 89

ADDITIONAL FILE 1 90
ADDITIONAL FILE 2 91
ADDITIONAL FILE 3 92
ADDITIONAL FILE 4 93

APPENDIX II: CHAPTER 4 ADDITIONAL FILES 109

ADDITIONAL FILE 1 110
ADDITIONAL FILE 2 111
ADDITIONAL FILE 3 112
ADDITIONAL FILE 4 113
ADDITIONAL FILE 5 114
ADDITIONAL FILE 6 116
ADDITIONAL FILE 7 117
ADDITIONAL FILE 8 118
ADDITIONAL FILE 9 125

APPENDIX III: CHAPTER 5 ADDITIONAL FILES 129

ADDITIONAL FILE 1 130
ADDITIONAL FILE 2 131
ADDITIONAL FILE 3 132
LIST OF ABBREVIATIONS

3' UTR 3' Untranslated Region
AChE acetylcholinesterase
AEBSF 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride
Ago argonaute
ALS amyotrophic lateral sclerosis
ANOVA Analysis of Variance
ATRA all-trans retinoic acid
BDNF brain-derived neurotrophic factor
Ca2+ Calcium
cAMP cyclic adenosine mono-phosphate
CNS central nervous system
co-IP co-immunoprecipitation
CRM1 exportin-1 (XPO1)
CV coefficient of variability
DABG detection above background
DAVID Database for annotation, visualization and integrated discovery
DCt change in cycle threshold value (delta Ct)
DE differential expression
DGCR8 DiGeorge syndrome critical region 8
DLPFC dorso-lateral pre-frontal cortex
DMEM Dulbecco’s modified eagle medium
DTT dithiothreitol
EDTA ethylenediaminetetraacetic acid
eIF4b elongation initiation factor 4b
ES enrichment score
FAC functional annotation clustering
FCS fetal calf serum
FDR false discovery rate
FOS FBJ murine osteosarcoma viral oncogene homolog
GAP43 growth-associated protein 43
GATHER gene annotation tool to help explain relationships
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPCR</td>
<td>g-protein coupled receptor</td>
</tr>
<tr>
<td>GRIA3/4</td>
<td>glutamate receptor, ionotopic, AMPA 3/4</td>
</tr>
<tr>
<td>GUSB</td>
<td>glucuronidase, beta</td>
</tr>
<tr>
<td>IPA</td>
<td>Ingenuity pathway analysis</td>
</tr>
<tr>
<td>iPSC</td>
<td>induced pluripotent stem cell</td>
</tr>
<tr>
<td>K+</td>
<td>Potassium</td>
</tr>
<tr>
<td>kDa</td>
<td>kiloDaltons</td>
</tr>
<tr>
<td>LAMP1</td>
<td>lysosome-associated membrane protein 1</td>
</tr>
<tr>
<td>LC-MS/MS</td>
<td>liquid chromatography-mass spectrometry</td>
</tr>
<tr>
<td>LDCV</td>
<td>large dense core vesicle</td>
</tr>
<tr>
<td>LE</td>
<td>localisation element</td>
</tr>
<tr>
<td>LTD</td>
<td>long-term depression</td>
</tr>
<tr>
<td>LTP</td>
<td>long-term potentiation</td>
</tr>
<tr>
<td>MAP1b</td>
<td>microtubule-associated protein 1b</td>
</tr>
<tr>
<td>MASCOT</td>
<td>Matrix Software program for protein identification from peptide mass</td>
</tr>
<tr>
<td>MAZ</td>
<td>myc-associated zinc finger protein</td>
</tr>
<tr>
<td>MEME</td>
<td>multiple EM for motif elicitation</td>
</tr>
<tr>
<td>miRNA</td>
<td>microRNA</td>
</tr>
<tr>
<td>MRE</td>
<td>miRNA recognition element</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>NGF</td>
<td>nerve growth factor</td>
</tr>
<tr>
<td>NPC</td>
<td>neural progenitor cell</td>
</tr>
<tr>
<td>NPY</td>
<td>neuropeptide Y</td>
</tr>
<tr>
<td>NTRK2</td>
<td>neurotrophic tyrosine kinase, receptor, type 2</td>
</tr>
<tr>
<td>p</td>
<td>p-value</td>
</tr>
<tr>
<td>P-body</td>
<td>processing body</td>
</tr>
<tr>
<td>PBMC</td>
<td>peripheral blood mononuclear cell</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCIAA</td>
<td>phenol chloroform isoamyl alcohol</td>
</tr>
<tr>
<td>PFC</td>
<td>pre-frontal cortex</td>
</tr>
<tr>
<td>pre-miRNA</td>
<td>precursor miRNA</td>
</tr>
<tr>
<td>pri-miRNA</td>
<td>primary miRNA</td>
</tr>
<tr>
<td>PSD</td>
<td>post-synaptic density</td>
</tr>
<tr>
<td>PTGS</td>
<td>post-transcriptional gene silencing</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>qPCR/qRT-PCR/RT-PCR</td>
<td>quantitative real-time PCR</td>
</tr>
<tr>
<td>RAR</td>
<td>retinoic acid receptor</td>
</tr>
<tr>
<td>RARE</td>
<td>retinoic acid response element</td>
</tr>
<tr>
<td>RBM4/10</td>
<td>RNA binding motif protein 4/10</td>
</tr>
<tr>
<td>RIN</td>
<td>RNA integrity number</td>
</tr>
<tr>
<td>RIP</td>
<td>RNA co-immunoprecipitation</td>
</tr>
<tr>
<td>RIP-seq</td>
<td>RNA co-immunoprecipitation followed by RNAseq</td>
</tr>
<tr>
<td>RISC</td>
<td>RNA-induced silencing complex</td>
</tr>
<tr>
<td>RMA</td>
<td>robust multichip algorithm</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>RNAPII</td>
<td>RNA polymerase II</td>
</tr>
<tr>
<td>RNAseq</td>
<td>mRNA next-generation sequencing</td>
</tr>
<tr>
<td>RNP</td>
<td>ribonucleoprotein</td>
</tr>
<tr>
<td>ROBO1/2</td>
<td>roundabout, axon guidance receptor, homolog 1/2</td>
</tr>
<tr>
<td>RRM</td>
<td>RNA recognition motif</td>
</tr>
<tr>
<td>rRNA</td>
<td>ribosomal RNA</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecylsulfate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>snoRNA</td>
<td>small nucleolar RNA</td>
</tr>
<tr>
<td>STG</td>
<td>superior temporal gyrus</td>
</tr>
<tr>
<td>SYP</td>
<td>synaptophysin</td>
</tr>
<tr>
<td>TPA</td>
<td>phorbolester</td>
</tr>
<tr>
<td>TRBP/TARBP</td>
<td>trans-activation-responsive region RNA-binding protein</td>
</tr>
<tr>
<td>trkB</td>
<td>tyrosine receptor kinase B, encoded by NTRK2 gene</td>
</tr>
</tbody>
</table>