The influence of central nervous system depressant (CNS-D) drugs on driving performance and cognitive functions and recovery of cognitive functions following hospital treated deliberate self-poisoning (DSP) with CNS-D drugs.

Stewart Oxley

Bachelor of Business, Bachelor of Psychology (Honours)

Submitted to the School of Psychology at the University of Newcastle in partial fulfilment of the requirements for the degree of Doctorate in Clinical and Health Psychology

September, 2014
I hereby declare that the work submitted in this thesis is the result of original research and has not been submitted for a university degree or other similar qualification to any other University or Institution.

Stewart Oxley

September 2014
I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers, or carried out in other institutions. I have included as part of this thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

I hereby certify that the work in this thesis has been done in collaboration with the following researchers and carried out at Calvary Mater Newcastle Hospital and the University of Newcastle. My collaborators included:

Tharaka L. Dassanayake (MBBS, MPhil, PhD)1,6, Gregory Carter (FRANZCP, PhD)4,5, Ian Whyte (FRACP, FRCP (Edin), FAACT, FACMT)2,5, Alison Jones (MD, FRACP)3,5,7,8, 9, Gavin Cooper (B Mathematics, B Computer Science)1, Patricia T. Michie (PhD, FASSA)1,4.

1. School of Psychology, The University of Newcastle, NSW, Australia
2. Discipline of Clinical Pharmacology, School of Medicine and Public Health, Faculty of Health, The University of Newcastle, NSW, Australia
3. Graduate School of Medicine, University of Wollongong, NSW, Australia
4. Centre for Translational Neuroscience and Mental Health Research, University of Newcastle, NSW, Australia
5. Department of Clinical Toxicology and Pharmacology, Calvary Mater Newcastle, NSW, Australia
6. Department of Physiology, Faculty of Medicine, University of Peradeniya, Sri Lanka
7. Exec Dean Faculty of Science, Medicine and Health University of Wollongong
8. Researcher - Illawarra Health and Medical Research Institute
9. Conjoint professor, School of Medicine and Public Health, University of Newcastle

In particular, I would like to thank Ian Whyte, the Director of the Department of Clinical Toxicology and Pharmacology and Greg Cater, the Director of Consultant Liaison Psychiatry, Calvary Mater Newcastle for facilitating access to the patients.

Dr. Michael Downes and Dr. Geoffrey Isbister assisted in recruiting participants and Kim Colyvas and Patrick McElduff provided statistical support.
Acknowledgements

I would like to thank the institutions that made this project possible. In particular, the Toxicology and Consultant-Liaison departments of the Calvary Newcastle Hospital, the Psychology Department of the University of Newcastle, and Lakeside.

To my supervisor, Emeritus Professor Pat Michie, your unwavering support helped me to face the challenges that arose over the course of the research project. Thank you for help at every stage of the research project, through the implementation stages, analysis, and writing. To Professor Greg Carter, thank you for your composure, support, and guidance throughout the research project.

To Dr Tharaka Dassanayake, thank you for allowing me to continue your research. Your help, particularly in the earlier stages of the project, was fundamental to the success of this research project. Likewise, the support in implementation and writing of Professors Alison Jones and Ian Whyte was pivotal in the success of the research project.

This research project would not have been possible without the patients who agreed to participate at what I could only imagine was one of the most difficult times in their lives. For this, I cannot express sufficient gratitude. My appreciation goes to Dr. Michael Downes, Dr. Geoff Isbister and all members of the Clinical Toxicology Team and the Consultation-Liaison Psychiatry Team at Calvary Mater Newcastle that made data collection possible. Thank you to Kim Colyvas and Professor Patrick McElduff for their statistical support.

Finally, I would like to thank my family, my mother, Helen, and brothers, Darren and Gordon. I would not have made it without you. To my late father, John, you are in my thoughts and my heart always.
TABLE OF CONTENTS

Synopsis .. i

Thesis Structure... iv

Chapter 1: Extended Literature Review... 1
 Structure of the Literature Review ... 1
 Deliberate Self-Poisoning Literature .. 1
 A Model of Driving ... 3
 Deficits in Cognitive and Psychomotor Function that Underpin Driver Performance 4
 Driving Assessment Protocol .. 5
 Experimental evidence of exposure to CNS-D drugs and driving performance 8
 Study selection inclusion criteria were: ... 8
 Systematic review results: experimental studies ... 10
 Meta-analysis: experimental studies (z-drugs) ... 24
 Epidemiological evidence of exposure to CNS-D drugs and risk of MVA 27
 Study selection inclusion criteria were: .. 28
 Systematic review results: epidemiological studies ... 30
 Confound by indication ... 40
 Psychosocial risk factors for MVA .. 49
 Gaps in the research .. 50
 Conclusion ... 51

Chapter 2: Journal of Clinical Psychopharmacology Article ... 52

Chapter 3: Extended Discussion .. 98
 Aims .. 98
 Limitations .. 99
 Limited Post-DSP Covariates ... 99
 Social Desirability .. 101
 Self-assessment protocol .. 102
 Ecological validity .. 102
 Future Research ... 103
 Personality and Driving Style .. 103
 Insight .. 103
 Clinical/Legal implications ... 107
 Current regulations ... 107
 Duty of care ... 107
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidentiality</td>
<td>108</td>
</tr>
<tr>
<td>Conclusion</td>
<td>108</td>
</tr>
<tr>
<td>Appendices</td>
<td>119</td>
</tr>
<tr>
<td>Appendix 1: Glossary</td>
<td>119</td>
</tr>
<tr>
<td>Appendix 2: Supplementary data</td>
<td>121</td>
</tr>
<tr>
<td>Appendix 3: Instruments (questionnaires and measures)</td>
<td>144</td>
</tr>
<tr>
<td>Appendix 4: Ethics Variation</td>
<td>147</td>
</tr>
<tr>
<td>Appendix 5: Offsite Assessment form</td>
<td>154</td>
</tr>
<tr>
<td>Appendix 6: Staff Information Sheet</td>
<td>174</td>
</tr>
<tr>
<td>Appendix 7: Participant Information Sheet</td>
<td>176</td>
</tr>
<tr>
<td>Appendix 8: Consent Form</td>
<td>180</td>
</tr>
<tr>
<td>Appendix 9: Journal of Clinical Psychopharmacology Manuscript Instructions</td>
<td>181</td>
</tr>
<tr>
<td>Appendix 10: Private Facility Letter</td>
<td>189</td>
</tr>
</tbody>
</table>
TABLE OF TABLES

Chapter 1: Extended Literature Review

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cohort studies of CNS-D drugs that satisfied the inclusion criteria</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>Case-control studies of CNS-D drugs that satisfied the inclusion criteria</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>Case crossover studies of CNS-D drugs that satisfied the inclusion criteria</td>
<td>47</td>
</tr>
</tbody>
</table>

Chapter 2: Journal article for submission to Journal of Clinical Psychopharmacology

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Test schedule for self-assessment and neuropsychological tests</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>Demographic and Clinical Characteristics of the Study Groups</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>LMM analysis of Depression Anxiety Stress Scale Percentile Scores</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>Neuropsychological measures raw group means (unadjusted) and Linear Mixed Model results</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>Number of Moves and Mean Initial Thinking Time raw group means (unadjusted) as a function of difficulty</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>Subjective Appraisal of Driving and Cognitive Abilities</td>
<td>83</td>
</tr>
</tbody>
</table>
TABLE OF FIGURES

Chapter 1: Extended Literature Review

Figure 1. Driving Assessment Protocol - Interrelation of the pharmacological and toxicological, epidemiological and behavioural assessments proposed by the NHTSA panel (from Kay & Logan, 2011). ... 7
Figure 2. Selection process for experimental studies of exposure to drug followed by driving simulator or driving test. .. 9
Figure 3. Meta-analysis of healthy volunteers’ driving performance (SDLP) 10-hours after a single dose (nocte) of a z-drug. .. 26
Figure 4. Selection process for epidemiological studies of exposure and risk of MVA 29

Chapter 2: Journal article for submission to Journal of Clinical Psychopharmacology

Figure 1. Schematic of the method of development of three new versions of TMT-A and -B 63
Figure 2. Participant recruitment ... 69
Figure 3. Adjusted means ± SE on Neuropsychological outcomes for the CNS-ND and CNS-D groups at discharge, day-7, and day-28 .. 79
Figure 4. Adjusted means ± SE for the Number of Moves and Mean Initial Thinking Time as a function of task difficulty (2, 3, 4 or 5 move problems) .. 81
Figure 5. Percentage of individuals in the CNS-ND and CNS-D groups whose Trail-making Test-A and -B completion times fell in the bottom 10th percentile (according to age) at discharge, day-7, and day-28. .. 86
Synopsis

Background

Hospital treated deliberate self-poisoning (DSP) has become a major concern for developed countries as 90% of all deliberate self-harm is DSP (Carroll, Metcalfe, & Gunnell, 2014). A major concern for hospital treated DSP is the capacity of individuals to perform daily activities, such as driving, after being medically discharged. One study found that, at discharge, individuals admitted to hospital for DSP with central nervous system non-depressant (CNS-ND) drugs outperformed those admitted for DSP with CNS-D drugs across several neuropsychological measures (Dassanayake, Michie, et al., 2012). A self-controlled case series that linked the New South Wales (NSW) Roads and Traffic Authority CrashLink database and the NSW Admitted Patient Data Collection from 2001–2008 found that patients were at increased risk of motor vehicle accident (MVA) within 3-days, 7-days, and up to 1-month after ingestion of CNS-D drugs (Dassanayake, Jones, et al., 2012). Based on this evidence the authors were concerned that patients medically fit for discharge were still suffering cognitive and psychomotor impairments no longer attributable to pharmacological properties.

At present the experimental literature reviewed in this thesis suggests that single and multiple therapeutic doses of central nervous system depressant (CNS) drugs (benzodiazepines, z-drug, antidepressants, opioids, and antipsychotics) have the capacity to impair simulated or actual driving ability in both healthy volunteers and patients diagnosed with various psychiatric disorders (e.g., anxiety; van Laar, Volkerts, & van Willigenburg, 1992). Evidence of a dose-response relationship suggests that supratherapeutic doses of CNS-D drugs can result in greater impairment. Examination of the epidemiological literature, again reviewed in this thesis, into the influence of CNS-D drugs on risk of motor vehicle accident (MVA) found that receiving or dispensing a prescription of CNS-D drugs up to 1-month prior increased the risk of MVA. Again a dose-response relationship suggests increasing the dose of CNS-D drugs increases the risk of MVA (Chang et al., 2012).
Despite evidence suggesting that patients discharged from hospital after DSP with CNS-D drugs have impaired cognitive and psychomotor function, no longitudinal cohort study has been conducted to support this claim. However, other factors could account for extended risk of MVA (4-weeks). These factors include, personality (Schwebel, Severson, Ball, & Rizzo, 2006), insight (Anstey, Wood, Lord, & Walker, 2005), vocational, financial, and/or interpersonal concerns (Selzer, 1969).

Methodology

This thesis reports a longitudinal cohort study that included patients admitted to hospital for DSP with CNS-ND or CNS-D drugs. Both groups provided self-assessment information of their cognitive and driving capabilities and performed neuropsychological tests that examined cognitive flexibility, cognitive efficiency, working memory, visual attention and visuomotor skills, the capacity to inhibit responses, and decision-making at discharge, day-7 and day-28 after discharge. The aims of the present study was to: compare the neurocognitive impairment (difference in means) at baseline (at discharge from hospital) for CNS-D and CNS-ND ingestion groups; compare the recovery of neurocognitive function (difference in means over time) over three time points (discharge, day-7, and day-28), in both CNS-D and CNS-ND groups; and to develop explanatory models for the recovery of neurocognitive function over time.

Results

This study replicated Dassanayake, Michie, et al. (2012), finding that the CNS-ND drug group had significantly faster completion times at discharge than the CND-S drug group for the primary measure of cognitive flexibility (Trail-Making Test B [TMT-B]). CNS-D and CNS-ND groups did not significantly differ across cognitive efficiency, visual attention and visuomotor skills test, working memory, inhibition, and decision-making. TMT-B completion times by the CNS-ND group remained stable over time (day-7 and -28) while completion times of the CNS-D group significantly improved at each time point. Compared to discharge, the both CNS-ND and CNS-D group showed significant improvement in visual attention and visuomotor skills test, and inhibition.
The CNS-D showed significant improvement in cognitive efficiency and working memory. Finally, more pre-DSP covariates were significant in the first month after discharge. Pre-DSP covariates included: a psychiatric diagnosis of schizophrenia, schizoaffective disorder, or bipolar disorder; atypical antipsychotic medication; age; and intelligence.

Conclusion

The limited explanatory power of post-DSP variables could be explained by the lack of fidelity of information collected post-DSP. Additionally, there were concerns that ‘the right’ information was not collected, for example whether individuals were accessing psychological support in the month after discharge as such support has been shown to improve cognitive functions (Brewin & Smart, 2005). Based on the results from the present study, future research should examine whether personality and/or driving style (Poó, Taubman-Ben-Ari, Ledesma, & Díaz-Lázaro, 2013), using a measure such as the Multidimensional Driving Style Inventory (Taubman-Ben-Ari, Mikulincer, & Gillath, 2004), influences risk of MVA. Further research should also examine insight (self-awareness) using visual analogue scales that target specific behaviour related to driving and require individuals to consider the level of support that they may need to complete a task, such as driving (Toglia & Kirk, 2000).

Implications

The present study had several limitations related to data collection measures (e.g., personality, driving style, psychotherapy, and social support) and assessment protocol (e.g., self-assessment at each time point). Even still, this research has found supporting evidence (Dassanayake, Michie, et al., 2012) that DSP with CNS-D drugs impairs performance after the patient has been deemed medically fit to be discharged. Given this, medical professionals may need to reconsider discharge protocols and the information provided to patients about their capacity to perform daily activities, such as driving, and their period of risk to themselves and the community.
Thesis Structure

According to the instructions for the Clinical and Health Doctorate thesis as set out by the University, School of Psychology, the thesis has been structured as follows:

Thesis Abstract

Chapter 1 - Extended Literature Review

Chapter 2 – Journal article for submission to Journal of Clinical Psychopharmacology

Chapter 3 – Extended Discussion

Appendices:

1. Glossary

2. Supplementary data

3. Instruments (questionnaires and measures)

4 Ethics Variation

5. Offsite Assessment form

6. Staff Information Sheet

7. Participant Information Sheet

8. Consent Form

9. Journal of Clinical Psychopharmacology Manuscript Instructions

10. Private Facility Letter