Chemical Looping Air Separation for Oxy-fuel Power Plants

by

Hui Song

(B.Eng, M.Eng)

A Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

Discipline of Chemical Engineering

The University of Newcastle
Callaghan, New South Wales 2308
Australia

August, 2014
Declaration

I hereby certify that this thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

Signed:____________________

Hui Song

The University of Newcastle

August, 2014
Acknowledgements

I wish to express my greatest gratitude to my principal supervisor, Prof. Behdad Moghtaderi for his continuous encouragement, guidance, and tremendous support throughout my study. His patience and professional attitude towards research and teaching has left a deep impression on me. His support and inspiration have given me great confidence in my study and research. I would also like to thank my co-supervisor emeritus Prof. Terry Wall for his careful supervision. It has been an honour to complete my PhD studies under the supervision of both Professors Wall and Moghtaderi, and I am sincerely thankful to them for offering me the opportunity to study at the University of Newcastle.

I also gratefully acknowledge the help of Dr Kalpit Shah, who generously spent his time on the revision of all of my original writing. His help has been invaluable to the improvement of my writing. I have also benefitted from his valuable discussions, suggestions, and knowledge-sharing.

My previous advisor Prof. Jianglong Yu led me to the research of coal utilisation and catalysis during my master’s studies, which contributed a lot to my current research. His recommendation to Prof. Behdad Moghtaderi made it possible for me to work and study in Australia, for which I have always been deeply grateful.

I sincerely thank Dr Ron Roberts, Dr Elham Dorooodchi, Dr Zafar Zanganeh, Mr Neil Gardner, Mrs Jane Hamson, Dr Caimao Luo, Ms Farah Taqi, and other staff at the University of Newcastle for their assistance. I would also like to thank other members of the research group, in particular, Fengkui Yin, Cheng Zhou, Mohammad Ramezani, and Yongxing Zhang for their support during my experiments.

Finally, I am indebted to my dear parents, who are always very worried about me during my overseas study and have given me continuous encouragement. Also, I wish to sincerely thank my brother and sisters, who have looked after my parents in my absence. I owe a great debt to my wife and son. I cannot express how much I love them. Without their understanding and support, this research would not have been completed in time.
List of Publications

The following publications have arisen from the study presented in current thesis.

Song H., Shah K., Doroodchi E. and Moghtaderi B., *Development of a Cu-Mg-based oxygen carrier with SiO₂ as a support for chemical looping air separation*. Energy & Fuels, 2013. 28(1) P. 163-172

Song H., Shah K., Doroodchi E. and Moghtaderi B., *A spray dried CuO/MgAl₂O₄ oxygen carrier for chemical looping air separation*. (To be submitted to Energy & Fuels)

Song H., Shah K., Doroodchi E. and Moghtaderi B., *Reactivity of Cu-M/SiO₂ (M = Fe, Ni, Mg, Co and Mn) bimetallic oxygen carrier for chemical looping air separation* (Writing in Progress)

Song H., Shah K., Doroodchi E. and Moghtaderi B., *Demonstration of chemical looping air separation using an impregnated Cu-Mg/SiO₂ bimetallic oxygen carrier* (Writing in Progress)

The following papers, which are not related to this thesis, have also been published during my PhD study.

Song H., Doroodchi E. and Moghtaderi B., *Redox characteristics of Fe–Ni/SiO₂ bimetallic oxygen carriers in CO under conditions pertinent to chemical looping combustion*. Energy & Fuels, 2011. 26(1) P. 75-84

Executive Summary

Oxy-fuel combustion, which refers to the combustion of coal in the presence of oxygen rather than air, is one of the key technology options among the portfolio of carbon capture and storage (CCS) technologies. Oxy-fuel combustion captures carbon dioxide in-situ, producing a CO₂-enriched flue gas stream (95 vol% CO₂) ready for storage. The main shortcoming of the oxy-fuel combustion, however, is the high cost and energy intensity of its oxygen plant. At present, the main technology option for the oxygen plant is cryogenic air separation which typically consumes about 20% of the total electricity produced in oxy-firing mode and, thus significantly reduces the thermal efficiency of the oxy-fuel power plant. The oxygen plant also accounts for 30% of the total capital investment. In view of the above, a comprehensive program of study on alternative air separation technology - chemical looping air separation (CLAS), which offers a cost effective method for large-scale oxygen production, has been systematically conducted in the current study.

The present study aims to identify and characterise the suitable metal oxide oxygen carriers for CLAS applications. The broad objectives of the project have been achieved using a combined theoretical and experimental approach. A comprehensive review of the current state of oxygen carrier developments and utilisation was carried out. Other emerging air separation methods have also been reviewed in detail as part of this literature review. A thermodynamic method of identifying the feasible metal oxide oxygen carriers for high temperature air separation was developed in the present study. The energy cost associated with oxygen production using CLAS and its comparison with an advanced cryogenic air separation unit has been investigated in detail. The reaction mechanisms, underpinning the oxidation and oxygen release processes under conditions pertinent to CLAS, were also determined as one of the main objectives for the current study. The relevant experiments have been carried out using a variety of experimental setups, including thermogravimetric analysis (TGA), packed-bed, and interconnected circulating fluidised beds (ICFB) system.

Numerous oxides of metal elements from the periodic table were systematically investigated as potential oxygen carrier candidates for CLAS based on a thermodynamic
approach in the current study. The majority of the metal oxides exhibit the capability of releasing oxygen. However, most of them cannot be used in CLAS considering the oxygen equilibrium partial pressure (EPP) lower than 0.015, which may increase the use of sweep gas during the oxygen releasing process and correspondingly the energy consumption. Moreover, the likely carbonation and formation of hydrides on exposure to CO2/steam enriched conditions for metal oxides, such as the Ca and Na-based oxides, limit their application in the preparation of oxygen carriers. Only Mn3O4/Mn2O3, CoO/Co3O4, and Cu2O/CuO are found to be the most suitable oxidation pairs to transport oxygen in CLAS process. Furthermore, a special case for the integration of CLAS with oxy-fuel power plant, i.e., the direct use of clean CO2 flue gas as the sweep media during oxygen release for CLAS, was used for the operation optimisation based on these three systems. Results have shown CLAS has significant lower energy consumption for oxygen production, compared to the advanced cryogenic air separation.

Furthermore, oxygen carriers of Mn-, Co-, and Cu-based metal oxides with Al2O3 or SiO2 as a support were prepared by the dry impregnation method with an exception of the spray dried CuO/MgAl2O4. The reactivity of these prepared oxygen carriers was determined through TGA in the temperature range of 800-950°C. Among these studies, CuO/SiO2 and Co3O4/Al2O3 exhibit a very fast reaction rate in both oxidation and reduction processes. Co3O4/Al2O3 has shown a higher rate of oxygen transport (ROT) for the oxygen release than CuO/SiO2 at the same temperature, but a lower ROT of oxidation. It was also noted that the Mn and Co-based oxygen carriers on both Al2O3 and SiO2 have thermodynamic limitations in high temperature oxidation under air. The CuO/MgAl2O4 carrier was found to have a very stable performance and the highest oxygen transport capacity (OTC), however, very low mechanical strength after test, less than 0.8 N. Oxygen content attaining the equilibrium partial pressure was achieved from CuO/SiO2 and CuO/MgAl2O4 in a packed bed reactor at the temperature of 800, 850, 900, and 950°C.

The reduction and oxidation kinetics were determined for CuO/SiO2 and CuO/MgAl2O4. Avrami-Erofe'ev random nucleation and subsequence growth (A2) and phase boundary reaction (R2) mechanisms were found to fit the experimental results very well for both of these two oxygen carriers.
In response to the sinter issue of the mono-metallic CuO/SiO$_2$ oxygen carriers, attempts were made to add promoters to CuO/SiO$_2$ including MgO, Fe$_2$O$_3$, NiO, Mn$_2$O$_3$, and Co$_3$O$_4$. The results indicated that the agglomeration of CuO can be suppressed via the proper addition of secondary metal oxides, such as MgO, Fe$_2$O$_3$, NiO, and Co$_3$O$_4$. The best improvement was achieved by MgO with the added weight no less than 20.4 wt%.

In addition, an interconnected circulating fluidised beds (ICFB) system was designed, built, and operated for CLAS. The CLAS process has been successfully demonstrated using a Cu-Mg bimetallic oxygen carrier. Oxygen product at a level very close to the equilibrium concentration was continuously obtained in this rig.
Table of Contents

Declaration... i
Acknowledgements... ii
List of Publications.. iii
Executive Summary .. iv
Table of Contents ... vii
List of Figures .. x
List of Tables ... xvii
Abbreviations ... xviii
Nomenclature... xx

Chapter 1 Introduction .. 1
1.1 Background ... 1
1.2 Working principle of chemical looping air separation ... 4
1.3 Aims and objectives ... 5
1.4 Structure of the thesis .. 7

Chapter 2 Literature review ... 9
2.1 Air separation methods... 9
2.1.1 Cryogenic air separation .. 9
2.1.2 Pressure or vacuum swing adsorption (PSA/VSA) .. 11
2.1.3 Membrane air separation ... 12
2.1.4 Chemical air separation ... 14
2.2 Oxygen carrier developments .. 21
2.2.1 Inert material supported mono metal oxide oxygen carrier 22
2.2.2 Mixed metal oxides oxygen carrier .. 26
2.2.3 Reaction kinetics for oxygen carriers .. 30
2.2.4 Bench scale rig demonstration for chemical looping techniques 32

Chapter 3 Methods and techniques .. 36
3.1 Introduction ... 36
3.2 Preparation of oxygen carriers ... 37
3.2.1 Oxygen carrier via dry impregnation .. 37
3.2.2 Oxygen carrier via spray-drying ... 41
3.3 Characterization of oxygen carriers .. 42
3.3.1 Density measurement for fresh oxygen carriers ... 43
3.3.2 Determination of BET surface area ... 44
3.3.3 Quantification of chemical composition for fresh oxygen carriers 46

- vii -
Table of Contents

3.3.4 Mechanical strength assessment ... 47
3.3.5 Identification of crystalline phases ... 48
3.3.6 Surface morphology analysis ... 49
3.4 Experimental techniques .. 51
3.4.1 Thermogravimetric analysis .. 52
3.4.2 Packed-bed test .. 55
3.4.3 Interconnected circulating fluidised beds (ICFB) investigations 56
3.5 Data evaluation .. 59

Chapter 4 Thermodynamic assessment on potential metal oxide candidates 61
4.1 Introduction ... 61
4.2 Methodology .. 62
4.2.1 Thermodynamic analysis ... 62
4.2.2 Mass and energy balance analysis .. 65
4.3 Results and discussion ... 71
4.3.1 Selection of feasible metal oxide systems for CLAS 71
4.3.2 Evaluation of the energy consumption for oxygen production 82
4.4 Conclusions .. 93

Chapter 5 Reactivity of Mn-, Co-, and Cu-based oxygen carriers with inert material as a support ... 96
5.1 Introduction ... 96
5.2 Characterization of the prepared oxygen carriers ... 97
5.3 Results and discussion .. 98
5.3.1 Redox behavior for impregnated Mn$_2$O$_3$/Al$_2$O$_3$, Co$_3$O$_4$/Al$_2$O$_3$, and CuO/Al$_2$O$_3$... 98
5.3.2 Redox behavior for impregnated Mn$_2$O$_3$/SiO$_2$, Co$_3$O$_4$/SiO$_2$, and CuO/SiO$_2$.. 101
5.3.3 Redox behavior for spray dried CuO/MgAl$_2$O$_4$ 104
5.3.4 Evaluation of the oxygen transport ability for prepared oxygen carriers 104
5.3.5 Reactivity comparison for Co$_3$O$_4$/Al$_2$O$_3$, CuO/SiO$_2$ and CuO/MgAl$_2$O$_4$ 106
5.3.6 Oxygen yield for CuO/SiO$_2$ and CuO/MgAl$_2$O$_4$ 120
5.4 Conclusions .. 125

Chapter 6 An analysis on chemical reaction kinetics of Cu-based oxygen carriers using SiO$_2$ or MgAl$_2$O$_4$ as a support ... 127
6.1 Introduction .. 127
6.2 Physical properties of the prepared oxygen carriers 129
6.3 Reaction mechanism description .. 130
6.4 Results and discussion .. 132
6.4.1 Optimisation of the test conditions for reaction kinetics analysis 132
6.4.2 Reaction kinetics for Cu-based oxygen carrier with SiO$_2$ as a support 140
6.4.3 Reaction kinetics for spray dried oxygen carrier of CuO/MgAl$_2$O$_4$ 152
6.4.4 Comparison of reaction kinetics for C18S and CuO/MgAl2O4 162
6.5 Conclusions ... 163

Chapter 7 Development of bimetallic oxygen carriers with SiO2 as a support for CLAS .. 166

7.1 Introduction ... 166
7.2 Physical properties of the fresh oxygen carriers ... 167
7.3 Results and discussion ... 169
 7.3.1 Cu-Mg-based oxygen carrier with SiO2 as a support for CLAS 171
 7.3.2 Cu-Fe-based oxygen carrier with SiO2 as a support for CLAS 184
 7.3.3 Cu-Ni-based oxygen carrier with SiO2 as a support for CLAS 187
 7.3.4 Cu-Mn-based oxygen carrier with SiO2 as a support for CLAS 192
 7.3.5 Cu-Co-based oxygen carrier with SiO2 as a support for CLAS 195
7.4 Performance comparison for Cu-based bimetallic oxygen carriers 201
7.5 Conclusions ... 202

Chapter 8 Demonstration of CLAS in an interconnected circulating fluidised beds (ICFB) rig ... 204

8.1 Introduction ... 204
8.2 Data evaluation .. 205
8.3 The design of ICFB ... 207
8.4 Oxygen carrier properties .. 211
8.5 Experimental procedure .. 212
8.6 Results and discussion ... 213
 8.6.1 Thermogravimetric analysis for the oxygen carrier of CuMg3-2 213
 8.6.2 Operation of ICFB ... 218
8.7 Conclusions ... 227

Chapter 9 Conclusions and future recommendations .. 229

References ... 234

Appendix A External dimension of the interconnected circulating fluidised beds rig ... 251
List of Figures

Figure 1.1. Schematic of chemical looping air separation ... 4
Figure 2.1. Growth of single-train oxygen plant size .. 10
Figure 2.2. Progress in the reduction of specific power for low pressure gaseous oxygen production ... 11
Figure 2.3. Air separation market shared by cryogenics, adsorption and membrane, and hybrid systems .. 13
Figure 2.4. Estimated economic benefits of CAR versus cryogenic air separation units ... 16
Figure 2.5. Schematic of chemical looping air separation process 17
Figure 2.6. Two typical chemical looping combustion prototypes, (a) interconnected circulating fluidised beds with a single circulation loop (b) dual circulation fluidised beds .. 32
Figure 2.7. Schematic diagram for 10 kW th chemical looping combustor with two bubbling fluidised beds design .. 34
Figure 3.1. Plot of $\frac{p}{V_a(P_o-p)}$ versus $\frac{p}{P_o}$ built based on the N$_2$ adsorption and desorption experimental data for the fresh oxygen carrier of CuMg-1 ... 46
Figure 3.2. X-ray diffraction diagrams for Co$_3$O$_4$/Al$_2$O$_3$ and its corresponding reference patterns .. 49
Figure 3.3. SEM images at magnifications of 200×, 2000×, and 5000×, for the support materials of Al$_2$O$_3$ and SiO$_2$, respectively .. 50
Figure 3.4. Schematic of the TA Q50 thermogravimetric analyser 52
Figure 3.5. Reduction reactivity for C18S under the CO$_2$ and N$_2$ conditions 53
Figure 3.6. Weight fraction during the 5 redox cycles for the spray dried CuO/MgAl$_2$O$_4$ oxygen carrier at 850°C .. 54
Figure 3.7. Photograph of the packed-bed reactor .. 55
Figure 3.8. Schematic of the packed bed reactor .. 56
Figure 3.9. Photograph for the interconnected circulating fluidised beds (ICFB) rig ... 57
Figure 3.10. Schematic of the interconnected circulating fluidised beds (ICFB) rig 58
Figure 4.1. Schematic diagram of the layout for a typical oxy-fuel power plant integrated with CLAS ... 66
Figure 4.2. Schematic of the conservation of material and energy for the integrated CLAS ... 68
Figure 4.3. Simulation procedure for the mass and energy balance analysis for the CLAS integrated with an oxy-fuel power plant ... 70
Figure 4.4. Ellingham diagram for the oxidation reactions of different metal oxide systems containing the periods 2, 3, or 4 metal elements .. 71

Figure 4.5. Ellingham diagram for the oxidation reactions of different metal oxide systems containing the period 5 metal elements .. 72

Figure 4.6. Ellingham diagram for the oxidation reactions of different metal oxide systems containing the period 6 metal elements .. 73

Figure 4.7. Oxygen equilibrium partial pressure versus temperature for the metal oxide systems containing the periods 2, 3, or 4 metal elements .. 75

Figure 4.8. Oxygen equilibrium partial pressure versus temperature for the metal oxide systems containing the period 5 metal elements .. 76

Figure 4.9. Oxygen equilibrium partial pressure versus temperature for the metal oxide systems containing the period 6 metal elements .. 76

Figure 4.10. Ellingham diagram for the carbonates and hydroxides forming reactions for the metals of Ag and Pb, and the metal oxides containing Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba Ag, or Pt, respectively .. 78

Figure 4.11. Effect of the operating temperature on equilibrium oxygen partial pressure, CO2 requirement, and O2 recovery for the integrated CLAS using (a) Mn3O4/Mn2O3, (b) CoO/Co3O4, and (c) Cu2O/CuO, respectively .. 83

Figure 4.12. Comparison of the energy consumption for oxygen production between the two different oxygen supply options, i.e., CAS and CLAS, using Mn3O4/Mn2O3, CoO/Co3O4, and Cu2O/CuO metal oxide systems for oxy-fuel combustion .. 86

Figure 4.13. Effect of the oxygen carrier conversion on energy consumption for the integrated CLAS using (a) Mn3O4/Mn2O3, (b) CoO/Co3O4, and (c) Cu2O/CuO, respectively .. 88

Figure 4.14. Effect of the oxygen APP (1-25% lower and higher than oxygen EPP for reduction reactor and oxidation reactor, respectively) on energy consumption for the integrated CLAS using (a) Mn3O4/Mn2O3, (b) CoO/Co3O4, and (c) Cu2O/CuO, respectively .. 89

Figure 4.15. Effect of the oxygen APP in (a) reduction reactor and (b) oxidation reactor on energy consumption for the CLAS using Cu2O/CuO .. 91

Figure 4.16. Effect of the heat recovery on energy consumption for the CLAS using (a) Mn3O4/Mn2O3, (b) CoO/Co3O4, and (c) Cu2O/CuO, respectively .. 92

Figure 5.1. Weight fraction during the 5 continuous redox cycle tests for the oxygen carriers of Mn2O3/Al2O3, Co3O4/Al2O3, and CuO/Al2O3 at 800, 850, 900, and 950°C .. 99

Figure 5.2. Weight fraction during the 5 continuous redox cycle tests for the oxygen carriers of Mn2O3/SiO2, Co3O4/SiO2, and CuO/SiO2 at 800, 850, 900, and 950°C .. 103

Figure 5.3. Weight fraction during the 5 redox cycles for the spray dried CuO/MgAl2O4 oxygen carrier at 950°C .. 104

Figure 5.4. Conversion of Co3O4/Al2O3 during (a) reduction and (b) oxidation at 800, 850, 900, and 950°C for the fifth cycle .. 108
Figure 5.5. Conversion of CuO/SiO$_2$ during (a) reduction and (b) oxidation at 800, 850, 900, and 950°C for the fifth cycle ... 109

Figure 5.6. Conversion of CuO/MgAl$_2$O$_4$ during (a) reduction and (b) oxidation at 800, 850, 900, and 950°C for the fifth cycle ... 110

Figure 5.7. Weight fraction for Co$_3$O$_4$/Al$_2$O$_3$ during the continuous 41 redox cycle test at 880°C ... 111

Figure 5.8. Weight fraction for CuO/SiO$_2$ during the continuous 41 redox cycle test at 900°C .. 112

Figure 5.9. Weight fraction for CuO/MgAl$_2$O$_4$ during the continuous 41 redox cycle test at 900°C ... 113

Figure 5.10. Effect of the cycle number on the conversion of Co$_3$O$_4$/Al$_2$O$_3$ at 880°C during (a) reduction and (b) oxidation for the continuous 41 redox cycle test 114

Figure 5.11. Effect of the cycle number on the conversion of CuO/SiO$_2$ at 900°C during (a) reduction and (b) oxidation for the continuous 41 redox cycle test 115

Figure 5.12. Effect of the cycle number on the conversion of CuO/MgAl$_2$O$_4$ at 900°C during (a) reduction and (b) oxidation for the continuous 41 redox cycle test 116

Figure 5.13. SEM images of fresh and used (after the 41 redox cycle test in TGA) Co$_3$O$_4$/Al$_2$O$_3$ and CuO/SiO$_2$ oxygen carriers .. 118

Figure 5.14. SEM images of 5000× magnification for the spray dried oxygen carrier of CuO/MgAl$_2$O$_4$, (a) fresh sample and (b) the sample after 41 redox cycle test at 900°C in a TGA .. 119

Figure 5.15. Oxygen concentration profile at the outlet of the packed-bed reactor loaded with CuO/SiO$_2$ oxygen carriers at (a) 800, 850, and 900°C and (b) 950°C 122

Figure 5.16. Oxygen concentration profile for (a) oxygen release and (b) oxidation for CuO/MgAl$_2$O$_4$ at the temperatures of 800, 850, 900, and 950°C in the packed-bed reactor .. 124

Figure 6.1. Weight fraction for the oxygen carrier of C18S during five consecutive redox cycle test at 900°C .. 132

Figure 6.2. Effect of the gas flow rate on solid conversion during (a) reduction and (b) oxidation at 900°C for the oxygen carrier of C49S ... 134

Figure 6.3. Effect of the sample loading weight on solid conversion during (a) reduction and (b) oxidation at 900°C for the oxygen carrier of C49S .. 136

Figure 6.4. Effect of the oxygen carrier particle size on solid conversion during (a) reduction and (b) oxidation at 900°C for the oxygen carrier of C49S 137

Figure 6.5. Effect of the CuO loading content on solid conversion during (a) reduction and (b) oxidation at 900°C for Cu-based oxygen carriers using SiO$_2$ as a support 138

Figure 6.6. SEM images at 2000× magnification for the fresh oxygen carriers of (a) C18S and (b) C49S .. 139
Figure 6.7. Plots for the reaction rate constant k determination from Avrami-Erofe'ev random nucleation and subsequence growth model with $n = 2$, i.e., A2 model, for the reduction of C18S oxygen carrier under a N$_2$ environment ... 142

Figure 6.8. Arrhenius plot for the reduction reaction of the oxygen carrier of C18S under a N$_2$ environment .. 143

Figure 6.9. Solid conversion during reduction under a N$_2$ environment at 800, 825, 850, 875, 900 and 975°C versus time for the oxygen carrier of C18S. The continuous lines represent the A2 model prediction using the kinetic data of $E = 315$ kJ/mol and $A = 1.595 \times 10^{14}$ min$^{-1}$ and $E = 176$ kJ/mol and $A = 1.189 \times 10^9$ min$^{-1}$ corresponding to the temperature range of 800-900°C and temperature of 975°C, respectively. 145

Figure 6.10. Plots for the $k \cdot (C - C_{eq})^n$ determination from the phase boundary reaction model with $n = 2$, i.e., R2 model, for the oxidation of the oxygen carrier of C18S under an air environment. The continuous lines are the fitting results between the R2 model and time using the linear least-squares regression method. Symbols represent the R2 model calculated from the oxygen carrier conversion during oxidation at corresponding temperatures .. 146

Figure 6.11. Plots of $ln[k \cdot (C - C_{eq})^n]$ versus $ln(C - C_{eq})$ at 850 and 950°C for the oxidation reaction order determination for the oxygen carrier of C18S. $P_{O_2} - P_{O_{2,e}} = 0.07$, 0.11, and 0.15, respectively ... 148

Figure 6.12. Arrhenius plot for the oxidation reaction of the C18S oxygen carrier under an air environment... 148

Figure 6.13. Solid conversion during oxidation (a) at 800, 900, 925, 950 and 975°C under an air environment and (b) for varying the oxygen content by keeping $P_{O_2} - P_{O_{2,e}} = 0.07$, 0.11, and 0.15, respectively, at 850°C as a function of time for the C18S oxygen carrier. The continuous lines represent the R2 model prediction using the kinetic data of $E = 3$ kJ/mol and $A = 2.67 \text{ m}^{3/2} \text{mol}^{-1/2} \text{min}^{-1}$ and $E = -43$ kJ/mol and $A = 0.024 \text{ m}^{3/2} \text{mol}^{1/2} \text{min}^{-1}$ corresponding to the temperature ranges of 800-900°C and 925-975°C, respectively .. 151

Figure 6.14. SEM image of 200× magnification for the fresh oxygen carrier of spray dried CuO/MgAl$_2$O$_4$.. 153

Figure 6.15. Effect of the gas flow rate on solid conversion during (a) reduction and (b) oxidation obtained for the spray dried CuO/MgAl$_2$O$_4$ oxygen carrier at 900°C 154

Figure 6.16. Weight fraction for the spray dried oxygen carrier of CuO/MgAl$_2$O$_4$ during 5 consecutive redox cycle test at 800°C ... 156

Figure 6.17. Arrhenius plots for (a) reduction from Avrami-Erofe'ev random nucleation and subsequence growth model (A2) and (b) oxidation from phase boundary reaction model (R2) .. 158

Figure 6.18. Solid conversion during reduction for CuO/MgAl$_2$O$_4$ in the temperature range of 825-975°C. Symbols represent the experimental results and the solid lines denote the simulation of Avrami-Erofe'ev random nucleation and subsequence growth model (A2) using kinetic data, i.e., $E = 259$ kJ/mol and $A = 2.79 \times 10^{11}$ min$^{-1}$ 159
Figure 6.19. Solid conversion during oxidation for CuO/MgAl₂O₄ in the temperature ranges of (a) 825-900°C and (b) 900-975°C. Symbols represent the experimental results and the solid lines denote the simulation of the phase boundary reaction model (R2) using kinetic data, i.e., $E = 59$ kJ/mol and $A = 835 \text{ m}^3\text{mol}^{-1/2}\text{min}^{-1}$ and $E = -21$ kJ/mol and $A = 0.21 \text{ m}^3\text{mol}^{-1/2}\text{min}^{-1}$ corresponding to the temperature ranges of 825-900°C and 925-975°C ... 161

Figure 7.1. Weight fraction for C18S during the 41 cycles of reduction-oxidation test in TGA at 900°C .. 169

Figure 7.2. Weight fraction for CuMg-1 during the 41 cycles of reduction-oxidation test in TGA at 900°C .. 171

Figure 7.3. Weight fraction for CuMg-2 during the 41 cycles of reduction-oxidation test in TGA at 900°C .. 172

Figure 7.4. Weight fraction for CuMg-3 during the 41 cycles of reduction-oxidation test in TGA at 900°C .. 172

Figure 7.5. Weight fraction for CuMg-4 during the 41 cycles of reduction-oxidation test in TGA at 900°C .. 173

Figure 7.6. XRD patterns for the oxygen carriers of a, CuMg-4; b, CuMg-3; c, CuMg-2; d, CuMg-1, and e, C49S ... 173

Figure 7.7. Weight fraction for CuMg-VI during the 41 cycles of reduction-oxidation test in TGA at 900°C ... 175

Figure 7.8. SEM images at 5000× magnification for both fresh and reacted oxygen carriers of C18S, CuMg-VI, CuMg-3, and CuMg-4 ... 177

Figure 7.9. Effect of the MgO addition on the reactivity of Cu-Mg bimetallic oxygen carriers during (a) reduction and (b) oxidation in TGA for the fifth redox cycle at 900°C ... 179

Figure 7.10. Effect of the temperature on the reactivity of CuMg-3 during (a) reduction and (b) oxidation in TGA for the fifth redox cycle ... 182

Figure 7.11. Effect of the cycle number on the reactivity during (a) reduction and (b) oxidation in TGA for CuMg-3 at 900°C .. 183

Figure 7.12. Weight faction for CuFe-1 during the 41 redox cycles test in TGA at 900°C ... 184

Figure 7.13. SEM images at 5000× magnification for CuFe-1, (a) fresh sample and (b) the sample after the 41 redox cycle test at 900°C in TGA ... 185

Figure 7.14. Effect of the temperature on the reactivity of CuFe-1 during (a) oxygen release and (b) oxidation for the fifth redox cycle ... 186

Figure 7.15. Weight faction for CuNi-1 during the 41 cycles of reduction-oxidation test in TGA at 900°C ... 187

Figure 7.16. Weight faction for CuNi-3 during the 41 cycles of reduction-oxidation test in TGA at 900°C ... 187
Figure 7.17. Effect of the NiO content on the reactivity of Cu-Ni-bimetallic oxygen carriers during (a) oxygen release and (b) oxidation, in TGA for the fifth redox cycle at 900°C ... 189

Figure 7.18. Effect of the temperature on reactivity of CuNi-1 during (a) oxygen release and (b) oxidation in TGA for the fifth redox cycle ... 190

Figure 7.19. SEM images at 5000× magnification for both fresh and reacted oxygen carriers of CuNi-1, CuNi-2, and CuNi-3 ... 191

Figure 7.20. Weight faction for CuMn-1 during the 41 cycles of reduction-oxidation test in TGA at 900°C ... 192

Figure 7.21. SEM images at 5000× magnification for CuMn-1, (a) fresh sample and (b) the sample after the 41 redox cycle test in TGA at 900°C ... 193

Figure 7.22. Effect of the temperature on the reactivity of CuMn-1 during (a) oxygen release and (b) oxidation in TGA for the fifth redox cycle ... 194

Figure 7.23. Weight faction for CuCo-1 during the 41 cycles of reduction-oxidation test in TGA at 900°C ... 195

Figure 7.24. Weight faction for CuCo-3 during the 41 cycles of reduction-oxidation test in TGA at 900°C ... 195

Figure 7.25. Effect of the temperature on the reactivity of CuCo-1 during (a) oxygen release and (b) oxidation in TGA for the fifth redox cycle ... 197

Figure 7.26. Effect of the Co3O4 content on the reactivity of Cu-Co bimetallic oxygen carriers during (a) oxygen release and (b) oxidation in TGA at 900°C ... 198

Figure 7.27. SEM images at 5000× magnification for both fresh and reacted oxygen carriers of CuCo-1, CuCo-2, and CuCo-3 ... 200

Figure 7.28. Loss of OTC as a function of the cycle number for C18S and C49S and the Cu-based bimetallic oxygen carriers with the addition of Mg-, Fe-, Ni-, Mn-, or Co-oxide ... 201

Figure 8.1. Operating regime for the ICFB rig (symbols) using the CuMg3-2 oxygen carrier and the flow regime borders for gas-solids fluidisation ... 209

Figure 8.2. Weight fraction for CuMg3-2 during the 41 cycles of reduction-oxidation test in TGA at 900°C ... 214

Figure 8.3. Solid conversion during (a) reduction and (b) oxidation at 900, 925, 950, and 975°C for CuMg3-2. Continuous lines represent the predictions using the Avrami-Erofe'ev random nucleation and subsequence growth (A2) and phase boundary reaction (R2) models for reduction and oxidation, respectively ... 216

Figure 8.4. Arrhenius plots for (a) reduction and (b) oxidation reactions of the CuMg3-2 oxygen carrier ... 218

Figure 8.5. Pressure profile measured for ICFB under the optimum operation condition ... 221

Figure 8.6. Temperature profile for the oxidation reactor and riser of ICFB measured under the optimum operation condition ... 222
Figure 8.7. Temperature profile for the reduction reactor of ICFB measured under the optimum operation condition ... 223

Figure 8.8. Pressure drop profile for ICFB obtained under the optimum operation condition .. 224

Figure 8.9. Oxygen profile for continuous ICFB operation obtained under the optimum condition, Reduction reactor temperature = 930°C and Oxidation reactor temperature = 850°C .. 226

Figure 8.10. SEM images at 200× magnification for CuMg3-2, (a) fresh sample and (b) the sample after the ICFB rig test .. 227
List of Tables

Table 2.1. Comparison of the air separation alternatives for oxygen product 19
Table 2.2. Various oxygen carriers reported in the literature... 30
Table 2.3. Summary of the facilities built for chemical looping techniques 35
Table 3.1. Properties of the metal nitrates for oxygen carrier preparation 38
Table 3.2. Theoretical content of the metal oxides and supports for dry impregnation 41
Table 4.1. The detailed parameters for the mass and energy balance analysis 70
Table 4.2. Comparison of different metal oxide systems for the selection of suitable oxygen carrier candidates for CLAS ... 79
Table 5.1. Characterization of the fresh Mn-, Co-, and Cu-based oxygen carriers 97
Table 5.2. OTCl and ROTl values at 30% solid conversion for selected oxygen carriers .. 105
Table 6.1. Physical properties for the fresh SiO2 and MgAl2O4 supported Cu-based oxygen carriers .. 129
Table 6.2. Summarisation of G(\(\alpha\)) equations for different reaction mechanisms 132
Table 6.3. R2 values for fitting different reaction mechanisms based on solid conversion during reduction in the temperature range of 800-975°C for the oxygen carrier of C18S ... 140
Table 6.4. R2 values for fitting different reaction mechanisms based on solid conversion during oxidation in the temperature range of 800-975°C for the oxygen carrier of C18S ... 141
Table 6.5. R2 values for fitting A2, R2 and P1 reaction mechanisms upon increasing solid conversion during oxidation at 900°C for the C18S oxygen carrier 146
Table 6.6. R2 values for fitting different reaction mechanisms based on the solid conversion during reduction in the temperature range of 800-975°C for the spray dried oxygen carrier of CuO/MgAl2O4 ... 155
Table 6.7. R2 values for fitting different reaction mechanisms based on solid conversion during oxidation in the temperature range of 825-975°C for the spray dried oxygen carrier of CuO/MgAl2O4 ... 156
Table 6.8. Reaction kinetic parameters, i.e., activation energy E and pre-exponential factor A, determined using the A2 and R2 mechanisms for reduction and oxidation respectively for C18S and CuO/MgAl2O4 ... 163
Table 7.1. Physical properties for the fresh and reacted bimetallic oxygen carriers 168
Table 8.1. Design parameters for the ICFB rig .. 208
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP</td>
<td>Actual partial pressure</td>
</tr>
<tr>
<td>ASU</td>
<td>Air separation unit</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer-Emmett-Teller</td>
</tr>
<tr>
<td>CAR</td>
<td>Ceramic auto-thermal recovery</td>
</tr>
<tr>
<td>CAS</td>
<td>Cryogenic air separation</td>
</tr>
<tr>
<td>CCS</td>
<td>Carbon capture and storage</td>
</tr>
<tr>
<td>CLAS</td>
<td>Chemical looping air separation</td>
</tr>
<tr>
<td>CLC</td>
<td>Chemical looping combustion</td>
</tr>
<tr>
<td>CLOU</td>
<td>Chemical looping with oxygen uncoupling</td>
</tr>
<tr>
<td>DCFB</td>
<td>Dual circulating fluidised beds</td>
</tr>
<tr>
<td>EPP</td>
<td>Equilibrium partial pressure</td>
</tr>
<tr>
<td>HR</td>
<td>Heat recovery</td>
</tr>
<tr>
<td>ICFB</td>
<td>Interconnected circulating fluidised beds</td>
</tr>
<tr>
<td>ICP-OES</td>
<td>Inductively coupled plasma-optical emission spectrometer</td>
</tr>
<tr>
<td>ITM or OTM</td>
<td>Ion transport membrane</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquid nature gas</td>
</tr>
<tr>
<td>Loss of OTC</td>
<td>Loss of oxygen transport capacity for oxygen carrier</td>
</tr>
<tr>
<td>OR</td>
<td>Oxidation reactor</td>
</tr>
<tr>
<td>OTC</td>
<td>Oxygen transport capacity for oxygen carrier</td>
</tr>
<tr>
<td>PSA</td>
<td>Pressure swing adsorption</td>
</tr>
<tr>
<td>ROT</td>
<td>Rate of oxygen transport for oxygen carrier</td>
</tr>
<tr>
<td>RR</td>
<td>Reduction reactor</td>
</tr>
<tr>
<td>SCM</td>
<td>Shrinking core model</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>SLMs</td>
<td>Supported liquid membrane</td>
</tr>
<tr>
<td>sTPD</td>
<td>Standard ton per day</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analyser</td>
</tr>
<tr>
<td>VSA</td>
<td>Vacuum swing adsorption</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
</tbody>
</table>
Nomenclature

A Pre-exponential factor, min$^{-1}$ (reduction), m$^{3/2}$ mol$^{-1/2}$ min$^{-1}$ (oxidation)

A_1 Coefficient for calculation of C_p, kJ mol$^{-1}$ K$^{-1}$

Ar Archimedes number

$Au_{oxy-boiler}$ Auxiliary energy consumption for oxy-boiler

B_1 Coefficient for calculation of C_p, kJ mol$^{-1}$ K$^{-2}$

C Oxygen mole concentration, mol m$^{-3}$

C_1 Coefficient for calculation of C_p, kJ mol$^{-1}$ K

C_{eq} Oxygen equilibrium mole concentration, mol m$^{-3}$

C_p Heat capacity at atmospheric pressure, kJ mol$^{-1}$ K$^{-1}$

$C_{p,air}$ Air heat capacity at atmospheric pressure, kJ mol$^{-1}$ K$^{-1}$

C_{p,CO_2} CO$_2$ heat capacity at atmospheric pressure, kJ mol$^{-1}$ K$^{-1}$

d_p Particle size, m

d_p^* Dimensionless particle size

D_1 Coefficient for calculation of C_p, kJ mol$^{-1}$ K$^{-3}$

E Activation energy, kJ mol$^{-1}$

F_{blower} Power consumption for air blower, kW h

g Gravitational acceleration, m s$^{-2}$

G Gibbs free energy of chemical specie, kJ mol$^{-1}$

G_p Gibbs free energy for product, kJ mol$^{-1}$

G_r Gibbs free energy for reactant, kJ mol$^{-1}$

G_s Solid circulation rate, kg min$^{-1}$

H Enthalpy of chemical specie, kJ mol$^{-1}$

H_{coal} Heat vale for coal, kJ kg$^{-1}$

$H_f(298.15)$ Standard enthalpy of formation at 298.15K, kJ mol$^{-1}$

H_{tr} Enthalpy of transformation, kJ mol$^{-1}$
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>Reaction rate constant, min$^{-1}$ (reduction) and m$^{3/2}$mol$^{-1/2}$min$^{-1}$ (oxidation)</td>
</tr>
<tr>
<td>m_1</td>
<td>Mass for density bottle loaded with water, kg</td>
</tr>
<tr>
<td>m_2</td>
<td>Mass for density bottle loaded with oxygen carrier and water, kg</td>
</tr>
<tr>
<td>m_{air}</td>
<td>Mass of air fed into CLAS unit, kg</td>
</tr>
<tr>
<td>m_{CO_2}</td>
<td>Mass of CO$_2$ required by CLAS unit, kg</td>
</tr>
<tr>
<td>m_d</td>
<td>Mass of density bottle, kg</td>
</tr>
<tr>
<td>m_{O_2}</td>
<td>Mass of oxygen recovered in CLAS unit, kg</td>
</tr>
<tr>
<td>m_o</td>
<td>Mass for oxygen carrier used in density bottle, kg</td>
</tr>
<tr>
<td>m_{ox}</td>
<td>Oxygen carrier mass at fully oxidised state, kg</td>
</tr>
<tr>
<td>m_{red}</td>
<td>Oxygen carrier mass at fully reduced state, kg</td>
</tr>
<tr>
<td>m_t</td>
<td>Oxygen carrier instantaneous mass during TGA test, kg</td>
</tr>
<tr>
<td>m'_{O_2}</td>
<td>Mass of oxygen consumed by coal, kg</td>
</tr>
<tr>
<td>n_*</td>
<td>Reaction order</td>
</tr>
<tr>
<td>P</td>
<td>Applied pressure for N$_2$ adsorption and desorption, Pa</td>
</tr>
<tr>
<td>P_o</td>
<td>Atmospheric pressure, Pa</td>
</tr>
<tr>
<td>P_{O_2}</td>
<td>Oxygen actual partial pressure</td>
</tr>
<tr>
<td>$P_{O_2,e}$</td>
<td>Oxygen equilibrium partial pressure</td>
</tr>
<tr>
<td>Pr_{coal}</td>
<td>Market price for coal, $\text{$ kg}^{-1}$</td>
</tr>
<tr>
<td>Pr_e</td>
<td>Market price for electricity, $\text{$ kg}^{-1}$</td>
</tr>
<tr>
<td>R</td>
<td>Constant of the ideal gases, kJ mol$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>R_{air}</td>
<td>Excessed air ratio for combustion</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>Re_{mf}</td>
<td>Reynolds number corresponding to minimum fluidisation</td>
</tr>
<tr>
<td>S</td>
<td>Entropy of chemical specie, kJ mol$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>$S(298.15)$</td>
<td>Standard entropy of chemical specie, kJ mol$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>S_{BET}</td>
<td>BET surface area, m2 g$^{-1}$</td>
</tr>
<tr>
<td>t</td>
<td>Time, s</td>
</tr>
<tr>
<td>T</td>
<td>Absolute temperature, K</td>
</tr>
</tbody>
</table>
Nomenclature

\(T_{\text{air}} \) \hspace{1cm} Air inlet temperature, K
\(T_{\text{CO}_2} \) \hspace{1cm} Temperature for recycled \(\text{CO}_2 \), K
\(T_{tr} \) \hspace{1cm} Temperature for phase transformation, K
\(u \) \hspace{1cm} Superficial velocity, m s\(^{-1}\)
\(u_c \) \hspace{1cm} Superficial velocity limit toward turbulent fluidisation, m s\(^{-1}\)
\(u_{mf} \) \hspace{1cm} Minimum fluidisation velocity, m s\(^{-1}\)
\(u_t \) \hspace{1cm} Terminal velocity, m s\(^{-1}\)
\(U^* \) \hspace{1cm} Dimensionless velocity
\(U_t^* \) \hspace{1cm} Dimensionless terminal velocity
\(u_{se} \) \hspace{1cm} Superficial velocity limit toward fast fluidisation, m s\(^{-1}\)
\(V_a \) \hspace{1cm} Volume for the adsorbed \(\text{N}_2 \) at pressure of \(P \), m\(^3\)
\(V_d \) \hspace{1cm} Volume of density bottle, m\(^3\)
\(V_m \) \hspace{1cm} Volume for oxygen carries used in density bottle, m\(^3\)
\(V_s \) \hspace{1cm} Volume for the \(\text{N}_2 \) absorbed after the solid surface is covered by a monomolecular layer, m\(^3\)
\(\dot{V} \) \hspace{1cm} Volume flow rate of air, m\(^3\) s\(^{-1}\)
\(X \) \hspace{1cm} Oxygen carrier conversion

Greek letters

\(\alpha_{\text{ox}} \) \hspace{1cm} Oxygen carrier conversion during oxidation
\(\alpha_{\text{red}} \) \hspace{1cm} Oxygen carrier conversion during reduction
\(\Delta G \) \hspace{1cm} Variation of Gibbs free energy for chemical reaction, kJ mol\(^{-1}\)
\(\Delta G_{\text{oxidation}} \) \hspace{1cm} Variation of Gibbs free energy for oxidation reaction, kJ mol\(^{-1}\)
\(\Delta H \) \hspace{1cm} Variation of heat, kJ mol\(^{-1}\)
\(\Delta P_{\text{blower}} \) \hspace{1cm} Increase of air pressure via air blower, Pa
\(\Delta P_{or} \) \hspace{1cm} Oxygen partial pressure difference between oxygen EPP and APP in oxidation reactor
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔP_{rr}</td>
<td>Oxygen partial pressure difference between oxygen EPP and APP in reduction reactor</td>
</tr>
<tr>
<td>ΔT</td>
<td>Variation of temperature, K</td>
</tr>
<tr>
<td>η_{fan}</td>
<td>Fan efficiency</td>
</tr>
<tr>
<td>η_{motor}</td>
<td>Motor efficiency for air blower</td>
</tr>
<tr>
<td>$\eta_{\text{oxy-boiler}}$</td>
<td>Efficiency of oxy-boiler</td>
</tr>
<tr>
<td>η_{tr}</td>
<td>Electric transmission efficiency for air blower</td>
</tr>
<tr>
<td>μ_G</td>
<td>Gas viscosity, kg m$^{-1}$s$^{-1}$</td>
</tr>
<tr>
<td>ρ_m</td>
<td>Real density for oxygen carrier, kg m$^{-3}$</td>
</tr>
<tr>
<td>ρ_G</td>
<td>Density of fluidising gas, kg m$^{-3}$</td>
</tr>
<tr>
<td>ρ_l</td>
<td>Density for water, kg m$^{-3}$</td>
</tr>
<tr>
<td>Φ</td>
<td>Particle sphericity</td>
</tr>
</tbody>
</table>