Gas Quality Control in Oxy-Fuel Technology for Carbon Capture and Storage: Scrubbing of CO₂ Prior to Compression

A Thesis Submitted for the Degree of

Doctor of Philosophy

By

Dunyu Liu, BE, ME.

THE UNIVERSITY OF NEWCASTLE
AUSTRALIA

December, 2014

Chemical Engineering

School of Engineering

The University of Newcastle

Callaghan, NSW, 2308, Australia
Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provision of the Copyright Act 1968.

Signature: Date: 1/12/14
Abstract

Oxy-fuel combustion is an emerging technology intended to mitigate CO$_2$ emissions from power plants. Compared with other CO$_2$ capture technologies, non-CO$_2$ components in Oxy-fuel flue gas are highly concentrated, among which SO$_2$ is of concern. Sodium based quench units have been used in Oxy-fuel projects to directly cool the gas prior to compression and to also remove SO$_2$. However, the high concentration of CO$_2$ in the flue gas can interfere with the capture of SO$_2$.

This study considers the mechanisms by which SO$_2$ in CO$_2$ is absorbed by sodium containing liquids, using laboratory experimentation and experiments at the Callide Oxy-fuel Project. Conditions for the operation of Oxy-fuel scrubbers are recommended, including operational pH levels based on both the SO$_2$ absorption rate and the effective use of Na$^+$ in liquid.

In the laboratory evaluation, dynamic experiments were designed to elucidate the reaction mechanisms of SO$_2$ absorption from gas mixtures of SO$_2$/N$_2$, SO$_2$/CO$_2$, SO$_2$/N$_2$/O$_2$ and SO$_2$/CO$_2$/O$_2$ when introduced into solutions of NaOH, Na$_2$CO$_3$ and NaHCO$_3$ with known initial concentrations and pH. Correspondingly, the steady state experiments were designed to understand the absorption rate of SO$_2$ from gas mixtures of SO$_2$/CO$_2$ when introduced into sodium solutions with known mixtures of NaHCO$_3$ and NaHSO$_3$. The SO$_2$ concentration of the exhaust gas and the changes in the pH of the liquid were obtained during experiments in both dynamic and steady state processes. The changes in both parameters were recorded during experiments for dynamic processes; whereas both parameters were controlled to reach target values during experiments for steady state processes. Additionally, liquid samples were obtained on a regular basis for the analysis of HCO$_3^-$, S (IV) and S (VI) in both dynamic and steady state processes.

The absorption rate of SO$_2$ in dynamic experiments was found to be reduced in CO$_2$ in the gas phase controlled region primarily due to the reduced diffusivity of SO$_2$ in CO$_2$ and reduced kinematic viscosity of CO$_2$ compared to N$_2$. The dynamic absorption results for gas mixtures of SO$_2$/CO$_2$ demonstrated three pH regions of absorption rate behaviour and the absorption rate of SO$_2$ was correlated with speciation in these regions, as pH decreased during the experiments.

The steady state experiments of SO$_2$ absorption into mixtures of NaHCO$_3$ and NaHSO$_3$ investigated solution chemistry at various pH values, the significance of solution pH and the concentration of SO$_2$ on the absorption rate of SO$_2$. The absorption rates of SO$_2$ obtained in steady state experiments were predicted by the model based on the instantaneous reaction
assumption. The model generally overestimates the absorption rates of SO$_2$ at pH values below pH 6 indicating a kinetic limitation of SO$_2$ and water reaction at low pH values.

Experiments at the Callide Oxy-fuel Project yielded both gas and liquid analyses. Gas analysis for SO$_2$, CO$_2$, O$_2$, CO, NO and NO$_2$ were obtained at three positions: before, at the intermediate location of, and after the atmospheric scrubbing system. Liquid analysis for dissolved CO$_2$, HCO$_3^-$, S (IV) and S (VI) was obtained from two columns. From the gas analysis, it could be observed that the initial Quencher column captured most of the SO$_2$ (97%) and the subsequent low pressure (LP) scrubber captured a limited amount of the SO$_2$ (1%). Thus, from the liquid analysis, the amount of total sulfur measured in the liquid discharge from the Quencher is therefore 100 times higher than the total sulfur measured in the liquid obtained from the LP scrubber.

This work has implications for the absorption of SO$_2$ into sodium solutions in a spray tower. Simulations on the absorption rate of SO$_2$ into droplets were conducted based on the instantaneous reaction model and demonstrated the impacts of pH, SO$_2$ concentration, droplet size, droplet position and gas phase CO$_2$ on the absorption rate of SO$_2$. More importantly, simulations revealed the three pH regions for droplets in a spray tower. In region 1, the absorption rate of SO$_2$ is the highest; however, a large amount of CO$_2$ is absorbed instead of SO$_2$. In region 2, the absorption rate of SO$_2$ is moderate and Na$^+$ is effectively utilised. In region 3, the absorption rate of SO$_2$ is low and dissolved SO$_2$ is not fixed.

The operational pH of the sodium based quench unit is recommended to be in region 2, where a high absorption rate of SO$_2$ and low sodium losses are expected. The operational window is primarily related to the concentration of sodium solutions and the window narrows at high sodium solution concentrations (refer to dynamic experiments). The operational window is secondarily related to the concentration of SO$_2$ (refer to dynamic experiments). This operational pH region is also related to droplet position and droplet size (refer to droplet simulations).

The operational pH region 2 can be further divided into three sub regions. Three sub regions are defined as follows. Region 2-1 is the pH region where the absorption rates of SO$_2$ at intermediate to high concentrations from 600ppm to 1500ppm are moderate; region 2-2 is the pH region where the absorption rates of SO$_2$ at all concentrations are moderate; region 2-3 is the pH region of minimal Na$^+$ waste for CO$_2$ capture. In the region 2-1, the absorption rate is moderate, but there is a large amount of Na$^+$ consumed for CO$_2$ capture. In the region 2-2, there is moderate consumption of Na$^+$ for CO$_2$ capture. In the region 2-3, Na$^+$ consumed for CO$_2$ capture is minimized, but the effective ratio of Na$^+$ is still not 100%. The operational pH region graph can be used to optimise the operation of a spray tower.
This work also has implications for the disposal of waste liquids and use of reagents. The disposal of waste liquids should take into consideration the presence of HCO$_3^-$ in liquids and the effect on the final pH for extended exposure of liquid solutions to air. In the presence of HCO$_3^-$, the final pH reached will be pH around 8 and in the absence of HCO$_3^-$, the final pH will reach around 4. The cost of reagents should also be considered. Using soda ash instead of caustic soda and sodium bicarbonate could reduce costs by 58-79%.
Acknowledgement

It has been a long but a remarkable journey for me to come here and work for four years for my PhD. It has marked two things in my life. One is a good completion of the journey as a student; the other one is the opportunity to experience education in Australia. Within this journey, there are so many people who have given me help.

To start with, I want to thank my supervisor Prof Terry Wall. He has always been there and dedicated to help me out of difficulties from experiments to daily life. He has led me all the way from the start. From him, I have learnt the way of doing research, the way of being a good person and the way of living a life. The practical applications have been the ideas throughout the research. He has made me understand the words “supervisor” and “gentleman” from a new perspective. The “supervisor” is a combination of “super” and “wiser”. A gentleman always thinks of himself as gentle but thinks of other people as important, while in other people’s heart, he is the most important of all.

Dr Yinghui Liu helped me through my early PhD stage. He encouraged me to think independently. He provided me with new opportunities to see new rigs such as an Autotitrator in the Chemistry lab, a falling film reactor and a high pressure well stirred reactor with online IR measurement in CSIRO.

Dr Rohan Stanger has always been ready to give me a hand. He has never hesitated to share his new and brilliant ideas. He designed “the first generation well stirred reactor” for me and later he also helped me for the steady state and closed-circuit setup.

Dr Kalpit Shah has been an energetic researcher. He has kept asking important questions such as “What’s the hypothesis?”, “What are the aims?”, “What are the findings?” until he was pleased with the answer. He has been an honest person and he has always showed his opinion straightforwardly. He has helped me to develop the sense of critical thinking.

Dr Caimao Luo assisted me in solving differential equations. He shared his enormous knowledge on the numerical simulations. Without his help, I could not have done this section in my thesis by any means.

Dr Stanley Santos and Prof. Dongke Zhang gave many valuable suggestions on improving this thesis. The suggestions that Dr Santos made on the literature review and introduction really helped me understand the Oxy-fuel system in a deeper level. The changes that Dr Santos suggested improved the clarity of the whole thesis. The criticism that Prof. Zhang made on the
error analysis and statistical assessment of the experimental data improved the precision and strictness of data from this thesis.

Dr Candace Gabelish spent a lot of extra hours on editing the final thesis and making everything consistent. My friends Mr Timothy Ting, Miss Melody Xiuhui Li and Mr Lawrence Belo also helped in revising quite a few chapters in this thesis. Deep thanks should also be given to them.

Discussions have always been part of the culture in our office. I often shared a lot of discussions with my colleagues: Dr Liza Elliott, Dr Hongyu Li, Dr Wei Xie, Dr Harold Rogers, Ms Jenny Martin, Mr Zheng Xinlong Julian, Prof. Hong Zhang, Dr Yan Liu, Dr Xianchun Li and Prof. Jianglong Yu. Good ideas came from deep discussions most of the time. As a group, they cared more about my life and made my life easier.

Some staff and students including Ms Jane Hamson, Dr Wendy Venpin, Dr Mark Rayson and Miss Song Hou in ATC gave me help with the IC. Prof. Marcel Maeder and Miss Debra Fernandes from Chemistry allowed and assisted me to use the Autotitrator. Mr Aidan Rendle and Mrs Carolyn Freeburn in the Chemistry lab helped me to use DO probe.

I have spent my spare time with many friends. They are Bill, Dr Zhengbiao Peng, Dr Qinglin He, Dr Dongmei Liu, Dr Bin Chen, Dr Yuxiu Li, Dr Hai Yu, Dr Guojie Qi, Mr Hui Song, Dr Hua Li, Miss Jie Li, Mr He Kong, Mr Xue Zhang, Miss Linda Lamby, Mr Yongxing Zhang, Mr Guichao Wang and other friends. They have all made my journey an enjoyable one.

Thanks to the sponsorship from CSC (Chinese Scholarship Council) for myself and ANLEC R&D (Australian National Low Emission Coal Research and Development) for the project, I could finish this project and my thesis without worrying about my expenses.

Last but not least, I owe a lot to my parents. Life has not been easy for them to stay in the countryside and bring up a child and educate him to be a responsible adult. They have spent almost all the money they have earned on me, their only son. It is for them I am working so hard.
Publications

Journals

Conference Papers

Liu, D., Y. Liu, and T. Wall, CO\textsubscript{2} quality control in oxy-fuel combustion: A dynamic study on the absorption of SO\textsubscript{2} into sodium based aqueous solutions relevant to scrubbing prior to CO\textsubscript{2} compression, The 37th International Technical Conference on Clean Coal & Fuel Systems, 3-7 June 2012, Clearwater, Florida, USA.

Liu, D., T. Wall, and Y. Liu, A dynamic study on the impacts of CO\textsubscript{2} on SO\textsubscript{2} absorption into sodium based aqueous solutions in an oxy-fuel scrubber. Australian Combustion Symposium, 6-8 November, 2013, Perth, WA, Australia.
Reports

Liu, Y., D. Liu, and T. Wall. Reporting of well stirred scrubber results: scrubbing of SO$_2$ and CO$_2$ by caustic solutions at atmospheric pressure.

Nomenclature

A interfacial area between gas and liquid, cm2

A^* interfacial concentration of dissolved gas A, mole/cm3

A^0 average concentration of dissolved gas A in bulk liquid, mole/cm3

$[A]_i$ concentration of A at the gas liquid interface, mole/L; Here, A refers to Na$^+$, H$^+$, OH$^-$, SO$_2^-$, HSO$_3^-$, SO$_3^{2-}$, CO$_2^-$, HCO$_3^-$, HCl, CO$_3^{2-}$ and total S

$[A]_0$ concentration of A in the bulk liquid, mole/L; Here, A refers to Na$^+$, H$^+$, OH$^-$, SO$_2^-$, HSO$_3^-$, SO$_3^{2-}$, SO$_4^{2-}$, CO$_2^-$, HCO$_3^-$, HCl, CO$_3^{2-}$ and total S

$[A]_{i0}$ concentration of A at the discrete point 0

$[A]_a$ concentration of A in the bulk liquid, mole/L; Here, A refers to Na$^+$, H$^+$, OH$^-$, SO$_2^-$, HSO$_3^-$, SO$_3^{2-}$, SO$_4^{2-}$, CO$_2^-$, HCO$_3^-$, HCl, CO$_3^{2-}$ and total S

a interfacial area to volume ratio, cm$^{-1}$ or cm2/L

B^0 concentration of B in bulk liquid, mole/cm3

C_D drag coefficient

D diffusivity of gases in liquid, cm2/s

D_A diffusivity of gas A in liquid, cm2/s; Here, A refers to Na$^+$, H$^+$, OH$^-$, SO$_2^-$, HSO$_3^-$, SO$_3^{2-}$, CO$_2^-$, HCO$_3^-$, and CO$_3^{2-}$

$D_G(T_1)$ diffusivity of a gas at a temperature T_1

$D_G(T_2)$ diffusivity of a gas at a temperature T_2

$D_L(T_1)$ diffusivity of a gas in liquid at a temperature T_1

$D_L(T_2)$ diffusivity of a gas in liquid at a temperature T_2

$D_{SO_2-H_2O}$ diffusivity of SO$_2$ in water, cm2/s;

$D_{CO_2-H_2O}$ diffusivity of CO$_2$ in water, cm2/s.

d stirring diameter, cm

d_p equivalent diameter of a droplet, cm

E_i enhancement factor for instantaneous reactions

E enhancement factor

F_a faraday constant, 96488 C/g-equiv

f oscillation frequency of a droplet, 1/s

H_a Hatta number, \sqrt{M}

H_e Henry’s constant, atm cm3/mole for P/A* or mole/L-atm for A*/P*
h solubility factor, L/mole
I ionic strength of an electrolyte solution, g ion/L
K equilibrium constant, mole/L
K_G overall mass transfer coefficient based on gas side mole/cm2 s atm
K_L overall mass transfer coefficient based on liquid side, cm/s
k_L liquid phase mass transfer coefficient, cm/s
k_2 kinetic constant for a second order reaction, L/mole·s or cm3/mole·s
k_G gas side mass transfer coefficient, mole/cm2·s·atm or m/s;
$k_{L,a}$ liquid side overall volumetric mass transfer coefficient, h$^{-1}$ or s$^{-1}$
k_{l,SO_2-H_2O} liquid side mass transfer coefficient for SO$_2$ in water, cm/s
k_{l,CO_2-H_2O} liquid side mass transfer coefficient for CO$_2$ in water, cm/s
k_1 forward rate constant for SO$_2$ reaction with H$_2$O , s$^{-1}$
k_{-1} backward rate constant for SO$_2$ reaction with H$_2$O, L/mole·s
M $M = \frac{D_A k_2 B_0}{k_2^2}$ for a 2nd order (1,1 order) reaction
the molecular weight of the solvent, 18g/mole
MFC Mass Flow Controller
m mass of a droplet, $(\pi / 6)d_p^3 \rho_p \cdot g$
total flow rate of gases passing through CPU, kmol/h
m_L flow rate of discharged liquid, L/h
$m_{A,in}$ mole flow rate of A at the inlet of a scrubber, kmole/h; Here, A refers to SO$_3$, SO$_2$, NO$_2$ and H$_2$O in the gas phase.
$m_{A,out}$ mole flow rate of A at the outlet of a scrubber, kmole/h;
m_B mole flow rate of B in the liquid phase with B representing NaOH, Na$_2$SO$_4$, NaHSO$_3$ and NaNO$_3$.
N absorption rate, mole/cm2·s or mole/L·s
n rotation speed, s$^{-1}$ or rpm
P$_i$ concentration of a gas above interface, atm
P concentration of gases, ppm or atm
P_{in} concentration of gases at the inlet of WSR, atm
P_{out} concentration of gases at the outlet of WSR, atm
R gas constant, 8.315J/K g-mol
\bar{R} average gas absorption rate, mole/cm2s
\(\text{Re}_* \) interfacial Reynolds number, \(\text{Re}_* = \frac{u_* d}{v} \)

\(\text{Re} \) gas Reynolds number, \(\text{Re} = \frac{\rho_G d_p u_p}{\mu_G} \)

Reynolds number, \(\text{Re} = \frac{d^2 \times n \times \rho_G}{\mu_G} \)

\(R_s \) gas side resistance ratio

\(R_L \) liquid side resistance ratio

\(\gamma_i \) activity coefficient of ion i

\(\text{Sc} \) liquid Schmidt number, \(\text{Sc} = \frac{V_L}{D} \)

\(\text{Sc} \) gas Schmidt number, \(\text{Sc} = \frac{\mu_G}{D_G \rho_G} \)

\(\text{Sh} \) liquid Sherwood number \(\text{Sh} = \frac{d_p k_L}{D} \)

\(\text{Sh} \) gas Sherwood number \(\text{Sh} = \frac{k_g d}{D_g} \)

\(S(\text{IV}) \) the total concentration of \(\text{HSO}_4^- \), \(\text{SO}_3^{2-} \) and \(\text{SO}_2 \)

\(T \) temperature, K

\(T_c \) Celsius temperature

\(t \) time, min

\(u_* \) interfacial velocity, cm/s

\(u_p \) droplet velocity, cm/s

\(u_\infty \) droplet terminal velocity, cm/s

\(\Delta V_{HCl} \) HCl added between two valley points for dpH/dt, mL

\(V \) molecular volume of the solute at the normal boiling point with 34cm\(^3\)/mole for CO\(_2\) and 44.8cm\(^3\)/mole for SO\(_2\)

flow rate of inlet gas stream, L/min or L/s

\(V_L \) kinematic viscosity of liquid, cm\(^2\)/s

\(V_G \) kinematic viscosity of gases, cm\(^2\)/s

\(V \) initial volume of the solution mixture, mL

\(X_{\text{SO}_2} \) mole fraction of \(\text{SO}_2 \), %

\(X_{\text{CO}_2} \) mole fraction of \(\text{CO}_2 \), %
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ</td>
<td>an association factor, 2.6 for water</td>
</tr>
<tr>
<td>z_j</td>
<td>the valency</td>
</tr>
<tr>
<td>z^0</td>
<td>equivalent ion conductance, cm2/mole/ohm</td>
</tr>
<tr>
<td>θ</td>
<td>exposure time at the interface, s</td>
</tr>
<tr>
<td>δ</td>
<td>thickness of the liquid film, cm</td>
</tr>
<tr>
<td>σ</td>
<td>surface tension of liquid, dyne/cm</td>
</tr>
<tr>
<td>ρ_p</td>
<td>density of the droplet liquid, g/cm3</td>
</tr>
<tr>
<td>ρ_G</td>
<td>gas density, g/cm3</td>
</tr>
<tr>
<td>ρ_l</td>
<td>liquid density, g/cm3</td>
</tr>
<tr>
<td>ε</td>
<td>distortion parameter, $\varepsilon = 0$ or $\varepsilon = 3$</td>
</tr>
<tr>
<td>ω</td>
<td>a constant, here $\omega = 1$.</td>
</tr>
<tr>
<td>ν_m</td>
<td>molar volume of gas mixture, taken as 22.4L/mole at the standard temperature and pressure</td>
</tr>
<tr>
<td>μ_G</td>
<td>gas viscosity, g/cm s</td>
</tr>
</tbody>
</table>
Table of Contents

Chapter 1: Introduction ... 1
1.1 Introduction of Oxy-Fuel Combustion and Capture ... 1
1.2 The Requirement for Non-CO\textsubscript{2} Components from the Oxy-fuel Combustion Process for CO\textsubscript{2} capture ... 3
1.3 Removal Methods of Non-CO\textsubscript{2} Components from the Oxy-fuel Combustion Process for CO\textsubscript{2} capture ... 6
1.4 Australian Solutions for Non-CO\textsubscript{2} component Control in the Oxy-Fuel Combustion and Capture Process .. 8
1.5 Relevant Literature on the Operation of Atmospheric Scrubbers in Removing SO\textsubscript{2} and NO in Oxy-Fuel Combustion .. 10
1.6 Aims of This Study and Scope of Work ... 14

Chapter 2: Literature Review ... 16
2.1 The Role of SO\textsubscript{2}, CO\textsubscript{2} and O\textsubscript{2} in the Operation of the Low Pressure Scrubber Unit or Flue Gas Condenser Using NaOH, Na\textsubscript{2}CO\textsubscript{3} or NaHCO\textsubscript{3} Solvent as Washing Fluids ... 16
2.1.1 Composition of Flue Gas from Oxy-fuel Combustion ... 17
2.1.2 Solubility of N\textsubscript{2}, O\textsubscript{2}, CO\textsubscript{2}, NO\textsubscript{x} and SO\textsubscript{x} Species in Water ... 17
2.1.3 Capture Efficiencies of SO\textsubscript{2}, CO\textsubscript{2} and O\textsubscript{2} through the Atmospheric Scrubber in CPU18
2.2 The Mechanisms of SO\textsubscript{2} and CO\textsubscript{2} Absorption into Sodium Solutions ... 20
2.2.1 The SO\textsubscript{2} Absorption Mechanisms and pH Impacts ... 20
2.2.2 CO\textsubscript{2} Absorption Mechanisms and pH Impacts ... 24
2.2.3 Interactions between SO\textsubscript{2} and CO\textsubscript{2} ... 24
2.3 The Mechanisms of O\textsubscript{2} Absorption into Sodium Solutions .. 25
2.3.1 Impacts of O\textsubscript{2} Absorption into Sodium Solutions ... 25
2.3.2 The O\textsubscript{2} Absorption Mechanisms and pH Impacts ... 26
2.4 Understanding the Gas Absorption Rate .. 29
2.4.1 Insight into Three Basic Theories for Mass Transfer .. 29
2.4.1.1 Film Model .. 29
2.4.1.2 Penetration Model .. 30
2.4.1.3 Surface Renewal Model .. 30
2.4.2 Understanding the Absorption Rate of SO\textsubscript{2} .. 31
2.4.3 Understanding the Absorption Rate of CO₂ .. 35
2.4.4 Understanding the Absorption Rate of O₂ .. 36
2.4.5 Physical and Chemical Parameters ... 36
 2.4.5.1 Diffusivity of Gases in Liquid ... 36
 2.4.5.2 Diffusivity of Electrolyte in Liquid ... 37
 2.4.5.3 Mass Transfer Coefficient .. 37
 2.4.5.4 Henry’s Constant ... 39
2.5 Modelling of Spray Tower .. 40
 2.5.1 Droplet Behaviours ... 41
 2.5.2 Mass Transfer Coefficient for Droplets ... 42
2.6 Chapter Summary .. 46
Chapter 3: Materials and Methodology ... 49
 3.1 Materials ... 49
 3.2 Experiments ... 49
 3.2.1 Transient Experimental Setup .. 49
 3.2.2 Steady State Experimental Setup ... 50
 3.2.3 Homogeneous Oxidation Experimental Setup ... 51
 3.2.4 Closed-Circuit Experimental Setup .. 52
 3.3 Analytical Method .. 53
 3.3.1 Gas Analysis ... 53
 3.3.2 Liquid Analysis ... 57
 3.3.2.1 Liquid Analysis for S (IV) and S (VI) by Ion Chromatography 58
 3.3.2.2 Estimated Liquid Analysis for SO₃²⁻, HSO₃⁻ and SO₂ (aq) by Equilibrium Calculations ... 61
 3.3.2.3 Liquid Analysis for CO₂²⁻ and HCO₃⁻ by Combined Acid Titration and Ion Chromatography ... 62
 3.3.2.4 Liquid Analysis for CO₂ (aq), SO₂ (aq.), SO₃²⁻, HSO₃⁻, HCO₃⁻ by Combined Acid Titration and Gas Analysis ... 65
 3.4 Chapter Summary .. 70
Chapter 4: The Impacts of CO₂ on the Absorption of SO₂ into Sodium Solutions in Dynamic Processes ... 71
 4.1 Influences of CO₂ on the Absorption Rate of SO₂ in Sodium Solutions 71
 4.1.1 Experimental Conditions ... 71
 4.1.2 Typical “Dynamic Absorption Curves” ... 72
 4.1.3 Determination of Gas Phase Mass Transfer Coefficient 73
4.1.4 The Influences of CO$_2$ on SO$_2$ Absorption Rate in the Liquid Phase76
4.1.5 The Influences of CO$_2$ on SO$_2$ Absorption Rate in both the Gas and Liquid Phase ..78
4.1.6 The Influences of CO$_2$ on SO$_2$ Absorption Rate in the Gas Phase79
4.1.7 Liquid Analysis on NaHCO$_3$ and Total Sulfur ..81
4.2 Mechanisms of the Absorption of SO$_2$ in Sodium Solutions and CO$_2$ Impacts82
4.2.1 Experimental Conditions ...83
4.2.2 Mechanisms on Dynamic SO$_2$ Absorption into 0.01M NaOH83
4.2.3 Mechanisms of the Impacts of CO$_2$ on SO$_2$ Absorption into 0.01M NaOH..........84
4.2.4 Relationship between Absorption Rate and Solution Chemistry86
4.2.5 Significance of Concentrations of Sodium Solutions on Operational Conditions87
4.3 Chapter Summary ...90

Chapter 5: S (IV) Oxidation Rate and Its Impacts on Dynamic Gas Absorption Processes92
5.1 Methodology for the Oxidation of S (IV)...92
5.2 Heterogeneous Oxidation of S (IV) ...92
5.2.1 Impacts of the Gas Stirring Speed, the Liquid Stirring Speed, the Total S (IV) and the Concentration of O$_2$ on the Oxidation Rate of S (IV) at pH Around 893
5.2.2 Impacts of Reducing pH on the Desorption of SO$_2$ and the Oxidation Rate of S (IV)95
5.3 Homogeneous Oxidation of S (IV) ...97
5.3.1 Changes in DO Levels in the S (IV) Oxidation Process ..98
5.3.2 Changes in pH in the S (IV) Oxidation Process ..99
5.3.3 Changes in pH and DO in the S (IV) Oxidation Process100
5.4 A Relationship between pH and the Oxidation Rate of S (IV)101
5.5 The Oxidation Rate of S (IV) and Its Impacts on the SO$_2$ Absorption Process103
5.5.1 The Oxidation Rate of S (IV) in the Presence of Liquid O$_2$103
5.5.2 The Oxidation Rate of S (IV) in the Presence of Liquid and Gas O$_2$....................103
5.6 Practical Implications ...104
5.6.1 Practical Implications on the Disposal of Reacted Liquid Solutions105
5.6.2 Implications for the Oxidation Rate of S (IV) in a Spray Tower105
5.7 Chapter Summary ...106

Chapter 6: SO$_2$ Absorption Rate at Steady State in a Well Stirred Reactor108
6.1 Experimental Conditions ..108
6.2 Typical Curves for Steady State Experiments ...110
6.3 Significance of pH on Steady State Operation ..110
6.3.1 Significance of pH on Liquid Compositions ..110

XIV
6.3.2 Significance of pH on the Absorption Rate of SO₂ .. 113
6.4 Significance of Concentrations of SO₂ on Steady State Absorption 116
6.5 Chapter Summary ... 118

Chapter 7: Mass Transfer Coefficients for both the Dynamic Experimental Rig and the Steady State Experimental Rig .. 119

7.1 Liquid Phase Mass Transfer Coefficient for the Dynamic Experimental Rig 119
7.1.1 Pure CO₂ Absorption into Water to Obtain the Liquid Side Mass Transfer Coefficient .. 119
7.1.2 3,000ppm of SO₂ Absorption into 1M HCl to Obtain the Liquid Side Mass Transfer Coefficient ... 125
7.1.3 Heterogeneous Oxidation of S (IV) to Determine the Liquid Side Mass Transfer Coefficient ... 130
7.1.4 Comparison on Liquid Mass Transfer Coefficients Obtained From Three Experiments ... 130
7.2 Mass Transfer Coefficient for the Steady State Experimental Rig 132
7.3 Chapter Summary ... 133

Chapter 8: Understanding the Absorption Rate of SO₂ in a Well Stirred Reactor 134

8.1 A Theoretical Model of SO₂ Absorption into Sodium Solutions Based on Mass Transfer with Equilibrium Reactions ... 134
8.1.1 The Physical Model for the SO₂ Absorption into Sodium Solutions 134
8.1.2 Solving Mass Transfer with Equilibrium Reactions ... 136
8.1.2.1 Chemistry ... 136
8.1.2.2 The Mass Transfer Model .. 136
8.1.2.3 Numerical Treatment ... 140
8.1.2.4 A Computing Diagram for Calculating SO₂ Absorption Rate 145
8.1.3 Temperature Dependence of the SO₂ Absorption Rate .. 146
8.1.3.1 Temperature Impacts on the Gas Phase Mass Transfer Coefficient 147
8.1.3.2 Temperature Impacts on the Liquid Phase Mass Transfer Coefficient 147
8.1.3.3 Temperature Impacts on Gas Liquid Equilibrium .. 148
8.1.3.4 Temperature Impacts on Liquid Equilibrium .. 148
8.1.3.5 Temperature Impacts on the Physico-Chemical Parameters 149
8.1.4 Comparisons of the Model with the Dynamic Experiments 150
8.1.5 Analysis of the Controlling Regions for Dynamic Experiments 151
8.1.6 Comparison of the Model with Steady State Experiments 153
8.1.7 Analysis of the Controlling Regions for Steady State Experiments 154
8.2 Chapter Summary ... 155

Chapter 9: Results from the Callide Oxy-fuel Plant ... 156

9.1 The Atmospheric Scrubbing System in the Callide Oxy-fuel Project 156

9.2 Gas Analysis before, at the Intermediate Location of, and after the Atmospheric Scrubbing System ... 158

9.3 Liquid Analysis ... 159

9.3.1 Liquid analysis for pH, CO2 (aq), HCO3-, S (IV), and S (IV) 160

9.3.2 Liquid analysis for the Na+ Concentration, the Ratio of HCO3- and the Effective Ratio of Na+ .. 162

9.4 Implications for Long Term Impacts of Liquid Disposal ... 165

9.5 Chapter Summary .. 167

Chapter 10: Implications for SO2 Absorption into Sodium Solutions in a Spray Tower 169

10.1 Development of a Theoretical Model for Droplets Relevant to a Spray Tower 169

10.1.1 Gas Phase Mass Transfer Coefficient ... 170

10.1.2 Liquid Phase Mass Transfer Coefficient ... 171

10.1.3 Momentum Equations of Falling Droplets ... 172

10.1.4 Model Parameters .. 175

10.2 Results and Discussions .. 177

10.2.1 Impacts of Droplet Position ... 177

10.2.2 Impacts of Droplet Size ... 178

10.2.3 Impacts of Gas Phase CO2 .. 179

10.2.4 Controlling Region ... 180

10.2.5 Operational pH Range ... 181

10.3 Practical Implications ... 183

10.3.1 Implications on the Absorption of SO2 in a Spray Tower 183

10.3.2 Practical Implications for the Operation of a Spray Tower 184

10.3.3 Implications on the Disposal of Liquid Wastes ... 186

10.3.4 Implications on the Use of Reagents ... 186

10.4 Chapter Summary .. 187

Chapter 11: Conclusions and Recommendations ... 190

11.1 Conclusions ... 190

11.1.1 Impacts of CO2 on SO2 Absorption ... 190

11.1.2 Impacts of O2 on SO2 Absorption ... 190

11.1.3 SO2 Absorption Rate at Steady State ... 190

XVI
List of Figures

Figure 1.1 A flow diagram of the oxy-fuel process, with additional unit operations for carbon capture shown in bold [13] ... 2
Figure 1.2 A schematic diagram of the Callide 30MWe Oxy-fuel Power Plant 9
Figure 1.3 Air Liquide design for the compression purification units (CPU) used in the Callide Oxy-fuel Project [47, 48, 50] .. 10
Figure 1.4 A flow diagram for a two stage scrubber system used in the Vattenfall’s Schwarze Pumpe pilot project [7] ... 11
Figure 1.5 SO\textsubscript{2} removal efficiency against pH values for the second state of the atmospheric sodium scrubber in Vattenfall’s Schwarze Pumpe pilot project [7] ... 12
Figure 1.6 The interpreted liquid composition at different operational pH values for the second stage of the atmospheric sodium scrubber in Vattenfall’s Schwarze Pumpe pilot project with HCO\textsubscript{3}- and SO\textsubscript{2}2- being obtained from literature [7] and HSO\textsubscript{3}- and total Na being obtained from our calculation by OLI software ... 13
Figure 2.1 Mole fractions of species H\textsubscript{2}CO\textsubscript{3}, HCO\textsubscript{3}-, CO\textsubscript{3}2-, H\textsubscript{2}SO\textsubscript{3}, HSO\textsubscript{3}- and SO\textsubscript{2}\textsubscript{2-} versus pH [74] 22
Figure 2.2 Comparisons between experimental results with other models for the oxidation rates of 0.01M total S(IV) at different pH values .. 29
Figure 2.3 Relationships between the enhancement factor, E and the Hatta number, Ha. This figure is obtained from the explicit film model [113] ... 33
Figure 2.4 The relationship between mass transfer coefficient and droplet sizes [144-146, 148-150, 152, 153], points from experimental values, lines from modelling .. 46
Figure 3.1 A schematic diagram of the semi-batch well stirred reactor (WSR) 50
Figure 3.2 Experimental setup for steady state experiments .. 51
Figure 3.3 A schematic diagram of the well stirred liquid reactor for homogeneous experiments 52
Figure 3.4 A schematic diagram for the closed circuit experiments .. 53
Figure 3.5 A typical SO\textsubscript{2} concentration cycle for SO\textsubscript{2} in N\textsubscript{2} and SO\textsubscript{2} in CO\textsubscript{2} ... 54
Figure 3.6 Calibrations for SO\textsubscript{2} concentrations in N\textsubscript{2}, comparison between mass flow controller prediction and Testo 350XL reading .. 55
Figure 3.7 Effect of flow rate on calibration for SO\textsubscript{2} concentration in N\textsubscript{2}, comparison between mass flow controller prediction and Testo 350XL reading ... 56
Figure 3.8 Calibration for SO\textsubscript{2} in CO\textsubscript{2}, comparison between mass flow controller prediction and Testo reading ... 56
Figure 3.9 Schematic graph of an ion chromatograph[159, 160] .. 58
Figure 3.10 Typical conductivity curves obtained from ion chromatography with the liquid samples taken from the reactor at 25mins and diluted 20 times, (a) without glycerol, (b) with 0.04M glycerol (from an experiment of 3,000ppm SO\textsubscript{2}, 70% CO\textsubscript{2}, 29.7% N\textsubscript{2} absorption into 0.01M NaOH) .. 60
Figure 3.11 Calibration for sulfite (pH 11.88-12.06), bisulfite (pH 4.13-6.72) and sulfate (pH 4.03-4.21) ... 61
Figure 3.12 A pH-metric titration curve of 0.002M Na\textsubscript{2}CO\textsubscript{3}, 0.01M Na\textsubscript{2}SO\textsubscript{3} and 0.01M NaOH with 0.001M HCl ... 63
Figure 3.13 First order derivative of pH for the titration curve represented in Figure 3.12, the equivalent points defined by the two valley points in Figure 3.13 ... 64
Figure 3.14 Calibration for the concentrations of Na\textsubscript{2}CO\textsubscript{3} by a combined method of acid titration and ion chromatography ... 65
Figure 3.15 A titration cell with CO\textsubscript{2} and SO\textsubscript{2} analyser .. 66
Figure 3.16 Analysis of CO\textsubscript{2} (aq) and HCO\textsubscript{3}- based on CO\textsubscript{2} release, initial solution being 3mL of a mixture solution at a pH 6 and N\textsubscript{2} flow rate being 1.9 L/min ... 67
Figure 3.17 Analysis of \(\text{SO}_2 \) (aq), \(\text{SO}_3^{2-} \) and \(\text{HSO}_3^- \) based on \(\text{SO}_2 \) release, initial solution being 3mL of a mixture solution at a pH 6 and \(\text{N}_2 \) flow rate being 1.9 L/min ...67

Figure 3.18 \(\text{pH} \) and \(\text{dph/dt} \) changes with HCl addition for the titration of a 30mL of a mixture solution by 0.1M HCl solution..69

Figure 4.1 SO\(_2\) concentrations at the outlet of the well stirred reactor and \(\text{pH} \) changes against time for a high concentration of sodium solution (gas mixture of 0.3% \(\text{SO}_2 \), 99.7% \(\text{N}_2 \) absorption in 1M \(\text{NaOH} \), gas mixture of 0.3% \(\text{SO}_2 \), 29.7% \(\text{N}_2 \), 70% \(\text{CO}_2 \) absorption in 1M \(\text{NaOH} \), gas stirring speed and liquid stirring speed being around 200rpm) ..73

Figure 4.2 \(\text{SO}_2 \) concentrations at the outlet of the well stirred reactor and \(\text{pH} \) changes against time for a low concentration of sodium solution (gas mixture of 0.3% \(\text{SO}_2 \), 99.7% \(\text{N}_2 \) absorption in 0.01M \(\text{NaOH} \), gas mixture of 0.3% \(\text{SO}_2 \), 29.7% \(\text{N}_2 \), 70% \(\text{CO}_2 \) absorption in 0.01M \(\text{NaOH} \), gas stirring speed and liquid stirring speed being around 200 rpm respectively) ..73

Figure 4.3 Absorption rate changes against \(\text{SO}_2 \) partial pressures for dilute \(\text{SO}_2 \) absorption in 1M \(\text{NaOH} \) with gas stirring speed varied, liquid stirring speed kept constant at 200rpm and \(\text{pH} \) of \(\text{NaOH} \) kept at 13.71 at all times ...75

Figure 4.4 The influences of gas stirring speeds and liquid stirring speeds on the absorption rate of \(\text{SO}_2 \) with the concentration of \(\text{SO}_2 \) at the inlet of the well stirred reactor being 860 ppm ...75

Figure 4.5 Gas side mass transfer coefficient \(k_g \) against stirring speeds in gas phase and comparison with similar work of H. Chu et al [134] and H. Takeuchi et al [70] with \(\text{pH} \) of \(\text{NaOH} \) kept at 13.71 ...76

Figure 4.6 Absorption of \(\text{SO}_2 \) into various solutions (the starting \(\text{pH} \) of different solutions are \(\text{pH} \) 12(0.01M \(\text{NaOH} \)), \(\text{pH} \) 11.2(0.005M \(\text{Na}_2\text{CO}_3 \)) and \(\text{pH} \) 8.42(0.01M \(\text{NaHCO}_3 \))) stirring speed for gas and liquid being 200rpm, the transition \(\text{pH} \) values from region1 to region 2 being 6.62 for 310ppm \(\text{SO}_2 \), 6.88 for 856ppm \(\text{SO}_2 \), 7.55 for 1391ppm \(\text{SO}_2 \) and 7.52 for 1910ppm \(\text{SO}_2 \) respectively. ...78

Figure 4.7 Comparison on absorption rate of \(\text{SO}_2 \) with and without \(\text{CO}_2 \) in 0.01M \(\text{NaOH} \) at different partial pressures of \(\text{SO}_2 \) and different \(\text{pH} \) values (initial \(\text{pH} \) for all experiments is 12, stirring speed for gas and liquid being 200rpm), the transition \(\text{pH} \) values from gas phase controlled region being 5.06 for 286ppm \(\text{SO}_2 \), 5.67 for 856ppm \(\text{SO}_2 \), 5.95 for 1278ppm \(\text{SO}_2 \) and 6.04 for 1802ppm \(\text{SO}_2 \) respectively for \(\text{SO}_2 \) in \(\text{CO}_2 \) and for \(\text{SO}_2 \) in \(\text{N}_2 \) are the same as above...79

Figure 4.8 The relationship between \(\text{SO}_2 \) absorption rate and partial pressures of \(\text{SO}_2 \) at different solutions and comparison with gas phase controlled lines which are obtained from Figure 6 and calculated from above dimensionless equation separately (\(\text{pH}=12 \) for 0.01M \(\text{NaOH} \), \(\text{pH}=11.2 \) for 0.005M \(\text{Na}_2\text{CO}_3 \), \(\text{pH}=8.42 \) for 0.01M \(\text{NaHCO}_3 \), \(\text{pH}=11.97 \) for 0.005M \(\text{NaOH} \), stirring speed for gas and liquid being 200rpm) ...81

Figure 4.9 Liquid analysis for concentration of carbon based ions [\(\text{CO}_3^{2-} \), HCO\(_3^-\)] and sulfur based ions ...82

Figure 4.10 Concentrations of sulfur related liquid species (\(\text{SO}_3^{2-} \), \(\text{HSO}_3^- \), \(\text{SO}_2 \), \(\text{SO}_4^{2-} \)) change with time for a gas mixture of 2953ppm \(\text{SO}_2 \), 99.7% \(\text{N}_2 \) absorption into 0.01M \(\text{NaOH} \), with S(IV) (\(\text{SO}_2^{2+} + \text{HSO}_3^- + \text{SO}_2 \)) and \(\text{SO}_4^{2-} \) obtained by ion chromatography (a), and with detailed speciation obtained from equilibrium calculation (b) ...84

Figure 4.11 Concentrations of sulfur related liquid species (\(\text{SO}_3^{2-} \), \(\text{HSO}_3^- \), \(\text{SO}_2 \), \(\text{SO}_4^{2-} \)) change with time for a gas mixture of 2856ppm \(\text{SO}_2 \) 70% \(\text{CO}_2 \), 29.7% \(\text{N}_2 \) absorption into 0.01M \(\text{NaOH} \), with S(IV) (\(\text{SO}_2^{2+} + \text{HSO}_3^- + \text{SO}_2 \)) and \(\text{SO}_4^{2-} \) obtained by ion chromatography (a), with detailed speciation obtained from equilibrium calculation (b) ..85

Figure 4.12 The absorption rate of \(\text{SO}_2 \) changes with \(\text{pH} \) (top) and concentrations of species change with \(\text{pH} \) (bottom) for a gas mixture of 2953ppm \(\text{SO}_2 \), 99.7% \(\text{N}_2 \) absorption into 0.01M \(\text{NaOH} \)86
Figure 4.13 The absorption rate of SO$_2$ changes with pH (top) and concentrations of species change with pH (bottom) for a gas mixture of 2856ppm SO$_2$, 70% CO$_2$, 29.7% N$_2$ absorption into 0.01M NaOH .. 87

Figure 4.14 SO$_2$ absorption rate changes with pH in dynamic processes, starting with different solutions and at different concentrations, the inlet concentration of SO$_2$, CO$_2$ being 2877ppm, 70% with N$_2$ as the balanced gas, with the concentration of SO$_2$ at the outlet from 1278ppm to 2844ppm ... 88

Figure 4.15 Suggested operational regions for different concentrations of sodium solutions for approximate 3000ppm SO$_2$ inlet concentration and the outlet concentration ranges from 1610ppm to 2765ppm for 0.01M sodium solutions, from 1278ppm to 2784ppm for 0.1M sodium solutions, from 1360ppm to 2844ppm for proximate 1M sodium solutions, from 1380ppm to 2394ppm for proximate 5M sodium solutions, respectively .. 89

Figure 4.16 Suggested operational pH regions for SO$_2$ absorption into 0.01M NaOH with CO$_2$ present as the dilution gas against the outlet partial pressure, with five inlet partial pressures of SO$_2$ (namely 286ppm, 803ppm, 1278ppm, 1802ppm and 2877ppm) and five outlet SO$_2$ concentration ranges (namely, 139-224ppm, 375-704ppm, 583-1150ppm, and 1610-2765ppm respectively). Data points were obtained from Fig. 7 in the reference [165] .. 90

Figure 5.1 The impacts of the gas stirring speed, the liquid stirring speed and the total S (IV) on the oxidation rate of S (IV) at pH values around 8, with O$_2$ concentration of 5%-6% 94

Figure 5.2 A linear relationship between the partial pressure of O$_2$ and the oxidation rate of S (IV), with the partial pressures of SO$_2$ being 6%, 9.72%, 14.73%, and 21% absorption into 0.01M Na$_2$SO$_3$... 95

Figure 5.3 The dynamic pH changes and SO$_2$ desorption in the S (IV) oxidation processes for five different starting solutions (0.01M NaHSO$_3$ starting at pH 3.11; a mixture of 0.01M NaHSO$_3$ and 0.0025M NaOH starting at pH 6.38; a mixture of 0.01M NaHSO$_3$ and 0.005M NaOH starting from pH 6.89; a mixture of 0.01M NaHSO$_3$ and 0.01M NaOH starting from pH 8.49) 96

Figure 5.4 Sulfate content changes against time for four different starting solutions (0.01M NaHSO$_3$ starting at pH 3.11; a mixture of 0.01M NaHSO$_3$ and 0.0025M NaOH starting at pH 6.38; a mixture of 0.01M NaHSO$_3$ and 0.005M NaOH starting from pH 6.89; a mixture of 0.01M NaHSO$_3$ and 0.01M NaOH starting from pH 8.49) .. 97

Figure 5.5 Dissolved oxygen levels change with time, with experiments starting from 0.01M NaHSO$_3$ addition and different NaOH additions for the controlling of initial pH .. 99

Figure 5.6 pH changes with time, with experiments starting from 0.01M NaHSO$_3$ addition and different NaOH addition for the controlling of initial pH .. 100

Figure 5.7 pH and dissolved oxygen change with time, with experiments starting from 0.01M NaHSO$_3$ addition and different NaOH addition for the controlling of initial pH .. 101

Figure 5.8 (a) The dependence of oxidation rate of 0.01M S(IV) on pH for both the heterogeneous oxidation and the homogeneous oxidation; (b) the speciation of sulfur based ions against pH (dash lines between square makers represent the average oxidation rate) 102

Figure 5.9 pH, S(IV), sulfate, and total sulfur change with time for a mixture of 3000ppm SO$_2$ and 70% CO$_2$, with N$_2$ as the diluent and a mixture of 3000ppm SO$_2$ with N$_2$ as the diluent with absorption into 0.01M NaOH .. 103

Figure 5.10 pH, S(IV), sulfate, and total sulfur change with time for a mixture of 3,000ppm SO$_2$, 70% CO$_2$, 5% O$_2$, and N$_2$ as the diluent and a mixture of 3,000ppm SO$_2$, 5% O$_2$ and N$_2$ as the diluent absorption into 0.01M NaOH .. 104

Figure 5.11 Illustrated mechanisms for the oxidation of S(IV) and its associated desorption of SO$_2$ [97] .. 105
Figure 6.1 Typical curves for a steady state experiment using gas mixtures with 182ppm of SO₂, 70% CO₂ and ~30% N₂ when introduced into 0.28M sodium solutions maintained at pH 5.1. (Flow rate of gas mixture and liquid solution were maintained at 2L/min and 2.5ml/hr, respectively) …..110

Figure 6.2 The concentration of sulfur species in liquid solution during steady state operations. The sodium solution is kept constant at 0.28M and the gas mixture contains 70% CO₂ and varying amount of SO₂ from 19ppm to 1000ppm. …………………………………………………………………..112

Figure 6.3 The concentrations of carbon related species in liquid in steady state operations. The sodium solution is kept at 0.28M, the gas mixture contains 70% CO₂ and the concentration of SO₂ is from 19ppm to 1000ppm. ……………………………………………………………………..113

Figure 6.4 The absorption rate of SO₂ against pH when SO₂ is introduced into 0.28M sodium solutions. The gas mixture contains 70% CO₂ and six different concentrations of SO₂ (i.e. 19ppm, 100ppm, 200ppm, 500ppm, 1000ppm and 1500ppm). Error bars are added based on 95% confident intervals [175]………………………………………………………………………………….114

Figure 6.5 Suggested operational pH regions for SO₂ absorption into 0.28M sodium solutions with CO₂ present at 70% and N₂ as the balance gas………………………………………………………………………………115

Figure 6.6 Equilibrium SO₂ concentrations change against pH obtained from desorption experiments and compared with equilibrium simulations……116

Figure 6.7 The absorption rate of SO₂ changes with the concentrations of SO₂ at different pH values…………..117

Figure 7.1 Dynamic pH changes against time for pure CO₂ absorption into water at four liquid stirring speeds (i.e. 100rpm, 150rpm, 200rpm and 250rpm) and one gas stirring speed of 200rpm ………..120

Figure 7.2 The concentration of carbonic acid changes with time at four liquid stirring speeds (i.e. 100rpm, 150rpm, 200rpm and 250rpm) at one gas stirring speed of 200rpm ……………………..121

Figure 7.3 The relationship between ln(\([H_2CO_3]/[H_2O]\)) and time …………………………………………122

Figure 7.4 The relationship between the liquid side mass transfer coefficient and the stirring speed 123

Figure 7.5 The pH and the SO₂ concentration change against time for 2.898ppm SO₂ absorption into 1M HCl, with polynomial regression for the SO₂ concentration …………………127

Figure 7.6 Total sulfur absorbed increases against time obtained from liquid and gas analysis separately for 2.898ppm SO₂ absorption into 1M HCl…………………………………………………………………………………..128

Figure 7.7 Regression of \(k_a\) from the relationship between the absorption rate of SO₂, N and P/He-\([SO_3]_b\) for the dynamic experimental rig ………129

Figure 7.8 A comparison of the normalized liquid mass transfer coefficients for SO₂-\(H_2O\) obtained from three systems including \(CO_2-H_2O, SO_2-HCl\) and \(O_2-S(IV)\) ………………………………………………………………………………………………………131

Figure 7.9 The absorption rate of SO₂ changes with the concentration of SO₂ for different concentrations of SO₂, 70% CO₂ and N₂ balance absorption into 1M NaOH ……………………..132

Figure 7.10 Regression of \(K_a\) from the relationship between the absorption rate of SO₂, N and P/He-\([SO_2]_b\) for the steady state apparatus ………..133

Figure 8.1 A physical model for the SO₂, CO₂ gas absorption into NaOH solutions ……………………………135

Figure 8.2 A computing flow chart for the calculation of the SO₂ absorption rate……………………………146

Figure 8.3 Comparisons between the modelling and the experimental absorption rates of SO₂ in a gas mixture of 2.953ppm SO₂ and 99.7% N₂ absorption into 0.01M NaOH and a gas mixture 2.856ppm SO₂, 70% CO₂ and 29.7% N₂ absorption into 0.01M NaOH, the gas phase mass transfer coefficient chosen as 0.00002874mole/cm²/s/atm for SO₂/N₂ and 0.00002683mole/cm²/s/atm for SO₂/CO₂, the liquid phase mass transfer coefficient chosen as 0.002372cm/s………………………………………………………………………………….151

Figure 8.4 The changes in the controlled regions for the dynamic absorption of a gas mixture of 2.856ppm SO₂, 70% CO₂ and 29.7% N₂ into 0.01M NaOH, the gas phase mass transfer coefficient being 0.00002683mole/cm²/s/atm for SO₂/CO₂, the liquid phase mass transfer coefficient being 0.002372cm/s………………………………………………………………………………….153

Figure 8.5 The absorption rate of SO₂ changes with the concentration of SO₂ at different pH values, comparisons between experimental and simulation results ignoring kinetic limitations, a mixture
of 70% CO₂, N₂ balance and different concentrations of SO₂ existing in the gas phase, the gas phase mass transfer coefficient being 0.0000237 mole/cm²/s/atm at 19°C and liquid phase mass transfer coefficient being 0.002487 cm/s at 16°C corrected to actual experiment temperatures.

Figure 8.6 The proportion of gas resistance changes against the concentration of SO₂ at four pH values.

Figure 9.1 A schematic diagram of the Quencher (the first column) and the LP scrubber (the second column) in the Callide Oxy-fuel Plant.

Figure 9.2 The operational pH changes with sampling date for the Quencher and LP scrubber, with the Quencher operated at a set pH of 7 and the LP scrubber operated at a set pH of 7.5, samples obtained from the sampling point F and point G respectively.

Figure 9.3 Liquid analysis for CO₂ (aq) and HCO₃⁻ in the Quencher and the LP scrubber at different sampling date, samples obtained from the liquid sampling points F and G.

Figure 9.4 The total S and S (IV) concentrations change with sampling date for the Quencher at the sampling point F and the LP scrubber at the sampling point G.

Figure 9.5 The Na⁺ concentration changes with sampling date for the Quencher and the LP scrubber, the total Na⁺ concentrations calculated by Total Sx²+HCO₃⁻.

Figure 9.6 The ratio of HCO₃⁻ changes with sampling date for the Quencher and the LP scrubber, concentrations of HCO₃⁻ obtained from Figure 9.3 and concentrations of Na⁺ obtained from Figure 9.5.

Figure 9.7 The effective ratio of Na⁺ changes against sampling date for the Quencher and the LP scrubber, the effective ratio of Na⁺ defined as the ratio of Total S by Na⁺.

Figure 9.8 pH changes against sampling date for both the Quencher and the LP scrubber, comparisons of pH before and after the two months’ storage.

Figure 9.9 Exposure of a liquid sample to air is accompanied by the desorption of CO₂ and pH increase, the sample obtained from the Quencher at 12:26pm, 12/10/13, an air flow rate of 1.89L/min, the volume of the sample being 20mL.

Figure 10.1 The impact of the droplet size on the height to reach the terminal velocity for three droplet sizes, 100µm, 500µm and 1000µm, the initial velocity of all three droplets being 12m/s.

Figure 10.2 The impact of the initial velocity of a droplet on the height to reach the terminal velocity for a droplet size of 500µm with four initial velocities, 6m/s, 12m/s, 20m/s and 30m/s.

Figure 10.3 The impact of droplet size on the absorption rate of SO₂ against pH at six concentrations of SO₂ with CO₂ as the diluent, with the droplet diameter being 500µm.

Figure 10.4 The impact of droplet size on the absorption rate of SO₂ at four concentrations of SO₂ for droplets close to nozzles.

Figure 10.5 The impact of the droplet size on the absorption rate of SO₂ at four concentrations of SO₂ for droplets below nozzles.

Figure 10.6 The impact of CO₂ in the gas phase on the absorption rate of SO₂ against pH for different concentrations of SO₂, the droplet size being 500µm, droplet location being close to nozzles.

Figure 10.7 A comparison of the controlling region at different pH values and different concentrations of SO₂ for droplets close to nozzles and droplets below nozzles with CO₂ as the diluent, the droplet size being 500µm.

Figure 10.8 The impact of the droplet position on the operational pH region against the concentration of SO₂ with the concentration of sodium ions being 0.08M and the droplet size being 500µm.

Figure 10.9 The impact of the droplet size on the operational pH region against the concentration of SO₂ with the concentration of sodium ions being 0.08M and the droplet sizes being 100µm, 500µm, and 1000µm.

Figure 10.10 The operational pH regions for droplets in a spray tower, the Na⁺ concentration being 0.08M, the droplet size being 500µm.
Figure A.1 Materials balance in the atmospheric scrubber

Figure A.2 Comparisons on the liquid compositions at different pH with or without CO₂ in the gas phase calculated by the OLI software

Figure B.1 Total C and pH change against time for an experiment of 70% CO₂ with N₂ absorption into 0.01M NaOH, total C obtained from the acid titration

Figure D.1 Concentrations of CO, NO, SO₂, NO₂, NOx, O₂ at the inlet of the CPU system, i.e. the inlet of the quencher on 13/10/2013

Figure D.2 Concentrations of CO, NO, SO₂, NO₂, NOx, O₂ at the outlet of the quencher and inlet of LP scrubber on 13/10/2013

Figure D.3 Concentrations of CO, NO, SO₂, NO₂, NOx and O₂ at the blower outlet i.e. outlet of the LP scrubber on 12/10/2013

Figure E.1 A photo of the steady state experimental setup. From left to right, A is a NaOH scrubber; B is a syringe pump; C is a well stirred reactor; D is a hot plate; E is a pH meter; F is a Testo 350XL unit; G are three mass flow controllers (MFC)

Figure E.2 A photo of the auto titrator with CO₂ and SO₂ gas analysis. From left to right, A is a CO₂ analyser; B is a syringe pump; C is a pH meter; D is a titrator; E is a Testo 350 XL unit
List of Tables

Table 1.1 Combustion results for gas composition from IHI Test [15] .. 3
Table 1.2 Dynamic CO2 purity requirements [26] .. 5
Table 1.3 Summary of facilities used for Oxy-fuel non-CO2 component control for three projects [31] 8
Table 2.1 Solubility of Different Gases in Water at 25°C and 1atm (Mole fraction x10^5) [69-71] 17
Table 2.2 Gas quality at atmospheric scrubber inlet and outlet [40] ... 19
Table 2.3 Liquid analysis for process condensates [40] ... 20
Table 2.4 Equilibrium constants and their dependence on temperature for different reactions [57] 22
Table 2.5 Literature on the kinetics of S (IV) oxidation .. 27
Table 2.6 Classifications of the reaction rates in different ranges of the Hatta number 33
Table 2.7 Comparisons of reported Mass Transfer Coefficients ... 39
Table 2.8 Henry’s constant for different gases ... 40
Table 2.9 Droplet behaviours [143] ... 42
Table 2.10 Experimental Data for Mass Transfer Coefficients ... 43
Table 3.1 Liquid analysis by acid titration, CO2 and SO2 gas analysis for the concentrations of CO2
(aq), SO2 (aq), SO2^2-, HSO3^-, HCO3^- in a sample which was obtained from a steady state
experiment of a gas mixture of 200ppm SO2, 70% CO2, and 29.98% N2 absorption into a
mixture of NaHCO3 and NaHSO3 with a total sodium concentration of 0.28M at a pH of 6........ 69
Table 4.1 List of experiments on SO2 absorption into sodium aqueous solutions, under various stirring
speeds in gas phase, concentrations in gas phase (liquid stirring speed is kept at 200rpm, CO2 or
N2 used as the carrier gas) .. 72
Table 4.2 A list of experiments on SO2 absorption into different concentrations of solutions 83
Table 5.1 An experimental list for the heterogeneous oxidation experiments .. 93
Table 5.2 An experimental list for the homogeneous oxidation ... 98
Table 6.1 Preparation of batch solutions by mixing different percentages of NaHCO3 and NaHSO3,
keeping a 0.28M sodium concentration, a comparison between measured pH by a pH meter and
predicted pH by the OLI software, with detailed compositions obtained from the OLI software,
with the unit of concentrations being M ... 109
Table 8.1 Effective diffusivities in water at 25°C and infinite dilution [57] .. 150
Table 9.1 Average concentrations and variations of flue gas compositions before (I), at the
intermediate location of (II) and after the scrubber (III), concentrations before the scrubber
being obtained from CEM (Callide Plant on line analyser (noted as *)) and at the intermediate
location of and after the scrubber being obtained from Testo 350 XL (noted as **); the units of
concentrations for SO2, NO, NOx, NOx and CO being ppm (dry); for CO2 and O2 being % (dry). For
point I and point III, the whole range of data in Figure D.1 and Figure D.3 being used; For point II,
only data before 16:25:55pm in Figure D.2 being used .. 159
Table 10.1 Parameters at 25 °C used for theoretical calculations for a spray tower with CO2 or N2 as
the bulk gas [55, 152, 174] ... 176
Table 10.2 Mass transfer conditions for three droplet sizes .. 176
Table 10.3 Simulation conditions ... 177
Table 10.4 Comparisons on international prices of NaOH, Na2CO3 and NaHCO3 in 2008 [205] 187

Table A.1 Gas compositions for the Quench column and the LP scrubber used in Callide Oxy fuel
Project CPU ... 195
Table A.2 An experimental list for steady state experiments ... 199
Table A.3 Concentrations predicted from OLI without gas phase CO₂, the simulation conditions being different portions of NaHCO₃ and NaHSO₃ to match a total concentration Na of 0.28M. .. 202
Table A.4 Concentrations of different ions predicted from OLI with gas phase CO₂, the simulation conditions being 0.6mol N₂, 1.4mol CO₂, different portions of NaHCO₃ and NaHSO₃ to match a total concentration Na of 0.28M. .. 202
Table C.1 Values of physico-chemical properties at different temperatures [164, 189, 193-196] ... 205