Investigating the Role of Situational Interest in Developing Individual Interest in Science and Self-Efficacy to Teach Science in Preservice Primary Teachers

by

Jeanette Maree Dixon

AM, TeachCert(Newcastle), BEd(UNE), MSc(Newcastle), Hon DEd(Newcastle)

Thesis submitted in total fulfilment of the requirements of the

Degree of Doctor of Philosophy

School of Education

Faculty of Education and Arts

University of Newcastle, Australia

December, 2014

Principal Supervisor: Associate Professor David Palmer

Associate Supervisor: Dr Jennifer Archer
The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository**, subject to the provisions of the Copyright Act 1968.
**Unless an Embargo has been approved for a determined period.

...
Acknowledgements

This thesis would not have been possible without the thoughtful, constant support and invaluable supervision from Associate Professor David Palmer and Dr Jennifer Archer. It has been an immense joy and privilege to have such knowledgeable, skilled, and enthusiastic academics provide advice and guidance for a project that defines my life. It takes special people to be so patient and caring in desiring the best for their student.

I would also like to extend my deepest gratitude to my many students who participated in the study and enabled me to build a report that may assist preservice primary teachers to look forward to teaching science in their future classroom.
Dedication

This thesis is dedicated to all members of my family who have been extremely understanding, supportive and very patient in having their wife, mother, grandmother, and daughter allocate a very large proportion of personal time to the preparation and the writing of this thesis. Their loving support and pride in my work has always encouraged me. I give special recognition to my husband who has been my constant strength, suffered any anxiety that I shared with him through my journey, and spent many lonely hours without me while I endeavoured to achieve the end result of my passion in science teacher education.
Table of Contents

Acknowledgements .. ii
List of Tables ... ix
List of Figures .. xi
Abstract .. xii

Chapter 1: Introduction

1.1 Overview .. 1
1.2 Definitions of Terms ... 1
 1.2.1 Situational interest ... 1
 1.2.2 Individual interest ... 2
 1.2.3 Self-efficacy .. 2
1.3 Theoretical Framework .. 3
 1.3.1 Situational interest ... 3
 1.3.2 Individual interest ... 4
 1.3.3 Self-efficacy .. 4
1.4 Rationale .. 5
1.5 Research Questions of the Study ... 6
1.6 Study Design .. 7
1.7 Organisation of the Thesis ... 8
1.8 Significance of This Study ... 10

Chapter 2: Problems with Primary Science in Australia

2.1 Introduction .. 12
2.2 Importance of Science in the Primary School ... 12
2.3 Historical Background of the Dilemma in Australian Primary Science 14
2.4 Problems of Primary Science Teaching in Australia .. 15
 2.4.1 Problem: Too little time spent teaching science in the primary classroom 15
 2.4.2 Problem: Quality of science teaching in the primary classroom is inadequate 20
 2.4.3 Problem: Student achievement in primary science tests does not improve 23
2.5 The benefit of the Primary Connections Program in Australia 24
2.6 Summary of Chapter 2 .. 25
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3 External validity</td>
<td>75</td>
</tr>
<tr>
<td>4.2.4 Ethical considerations for conducting this study</td>
<td>75</td>
</tr>
<tr>
<td>4.3 Participants</td>
<td>77</td>
</tr>
<tr>
<td>4.4 Treatment</td>
<td>79</td>
</tr>
<tr>
<td>4.4.1 Description of the science content unit</td>
<td>79</td>
</tr>
<tr>
<td>4.4.2 Rationale for selecting this science content unit</td>
<td>80</td>
</tr>
<tr>
<td>4.4.3 Sources of situational interest used in the treatment</td>
<td>80</td>
</tr>
<tr>
<td>4.4.4 Treatment techniques designed to enhance situational interest</td>
<td>82</td>
</tr>
<tr>
<td>4.5 Data Collection</td>
<td>90</td>
</tr>
<tr>
<td>4.5.1 Quantitative data collection</td>
<td>91</td>
</tr>
<tr>
<td>4.5.2 Qualitative data collection</td>
<td>95</td>
</tr>
<tr>
<td>4.5.3 Schedule of Quantitative and Qualitative Data Collection</td>
<td>103</td>
</tr>
<tr>
<td>4.6 Summary of Chapter 4</td>
<td>104</td>
</tr>
<tr>
<td>Chapter 5: Quantitative Data Analyses</td>
<td>106</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>106</td>
</tr>
<tr>
<td>5.2 Participants</td>
<td>107</td>
</tr>
<tr>
<td>5.3 Collection of Data</td>
<td>111</td>
</tr>
<tr>
<td>5.4 Measures and Results</td>
<td>112</td>
</tr>
<tr>
<td>5.4.1 Survey 1: Interest in science topics</td>
<td>112</td>
</tr>
<tr>
<td>5.4.2 Survey 2: Individual interest in science</td>
<td>118</td>
</tr>
<tr>
<td>5.4.3 Survey 3: Science Teaching Efficacy Belief Instrument</td>
<td>122</td>
</tr>
<tr>
<td>5.4.4 Survey 4: Interest aroused by different teaching techniques</td>
<td>127</td>
</tr>
<tr>
<td>5.5 Correlations</td>
<td>128</td>
</tr>
<tr>
<td>5.5.1 Links between reported individual interest in science and personal science teaching efficacy at Times 1, 2, and 3</td>
<td>130</td>
</tr>
<tr>
<td>5.5.2 Links between individual interest in science at Times 1, 2, and 3</td>
<td>132</td>
</tr>
<tr>
<td>5.5.3 Links between personal science teaching efficacy Times 1, 2, and 3</td>
<td>133</td>
</tr>
<tr>
<td>5.6 Summary of Chapter 5</td>
<td>134</td>
</tr>
<tr>
<td>Chapter 6: Results of Qualitative Data Analysis</td>
<td>137</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>137</td>
</tr>
<tr>
<td>6.2 Coding of Questionnaire 1: Evidence of Situational Interest</td>
<td>138</td>
</tr>
<tr>
<td>6.2.1 Coding process of Week 4 responses</td>
<td>138</td>
</tr>
<tr>
<td>6.2.2 Coding process of Week 7 responses</td>
<td>145</td>
</tr>
<tr>
<td>6.2.3 Coding process of Week 9 responses</td>
<td>151</td>
</tr>
<tr>
<td>6.2.4 Comparison of sources of situational interest</td>
<td>157</td>
</tr>
</tbody>
</table>
6.3 Questionnaire 2: Reasons for Any Change in Individual Interest in Science

6.4 Individual Interviews

6.4.1 Changes in individual interest in science (Questions 1-6)

6.4.2 Causes of change in individual interest (Questions 7, 8, and 9)

6.4.3 Changes in self-efficacy for teaching science (Questions 10-14)

6.4.4 Causes of change in self-efficacy for teaching science

6.5 Summary of Chapter 6

Chapter 7: Discussion

7.1 Introduction

7.2 Research Question 1: Can situational interest be aroused during a science content unit for primary teacher education students, and if this does occur, how does this occur?

7.2.1 Was situational interest aroused?

7.2.2 Why was situational interest aroused?

7.2.3 Summary of the findings for Research Question 1

7.3 Research Question 2: Can strategies designed to generate situational interest enhance preservice primary teachers’ long-term individual interest in science?

7.3.1 Was individual interest in science increased?

7.3.2 What caused the increase in individual interest?

7.3.3 Summary of the findings for Research Question 2

7.4 Research Question 3: Can self-efficacy for teaching science be enhanced by use of the strategies designed to arouse situational interest?

7.4.1 Was self-efficacy to teach science improved?

7.4.2 What caused the increase in self-efficacy to teach science?

7.4.3 Summary of the findings for Research Question 3

7.5 Limitations

Chapter 8: Conclusions

8.1 Introduction

8.2 Conclusions for Research Question 1: Can situational interest be successfully aroused during a science content unit for primary teacher education students, and if so, how does this occur?

8.3 Conclusions for Research Question 2: Can strategies designed to generate situational interest enhance preservice primary teachers’ long-term individual interest in science?
8.4 Conclusion for Research Question 3: Can self-efficacy for teaching science be enhanced by use of the strategies designed to arouse situational interest? 236
8.5 Implications………………………………………………………………… 237

List of References……………………………………………………………… 240

Appendices……………………………………………………………………… 258
Appendix A Information Statement for the Research Project………………… 259
Appendix B Consent Form for the Research Project………………………… 261
Appendix C Survey 1: Interest in Science Topics…………………………….. 262
Appendix D Survey 2: Personal Interest in Science…………………………… 263
Appendix E Survey 3 Preservice Primary Science Teaching Efficacy Belief Instrument…………………………………………………………….. 264
Appendix F Questionnaire 1 What interested you in this tutorial?……………… 265
Appendix G Questionnaire 2 Did you change your interest in science?……….. 266
Appendix H Survey 4 Level of Interest Generated by Teaching Strategies During Tutorials and Lectures……………………………………… 267
Appendix I Examples of teaching techniques, resources and worksheets used in this study……………………………………………………….. 268
Appendix J Principal Components Factor Analysis for Survey 2……………… 281
List of Tables

Table 1 Comparison of Problems with Teaching Science for Preservice and Inservice Primary Teachers ... 26
Table 2 Gender and Age of Participants .. 78
Table 3 Schedule of Weekly Topics in the Science Content Unit 79
Table 4 Techniques used in Lectures and Tutorials 89
Table 5 Topics Used in Survey 1 .. 92
Table 6 Schedule for Collecting Quantitative and Qualitative Data 103
Table 7 Participants in the Pretest (N = 313) .. 108
Table 8 Participants in the Immediate Posttest (n = 199) 109
Table 9 Participants in the Delayed Posttest (n = 136) 110
Table 10 Participants Responding to All Surveys on All Three Occasions (n = 104) ... 111
Table 11 Number of Administrations of Surveys .. 112
Table 12 Interest in Science Topics at the Pretest Administration (N = 313).. 113
Table 13 Interest in Science Topics at the Immediate Posttest Administration (n = 199) .. 113
Table 14 Interest in Science Topics at the Delayed Posttest Administration (n = 136) .. 114
Table 15 Comparison of Interest in Science Topics Lists A and B 115
Table 16 Means and Standard Deviations for Interest in Science Topics List A and Interest in Science Topics List B across the Three Times of Administration (n = 106) .. 117
Table 17 Pretest Results for Individual Interest in Science (N = 313)............. 120
Table 18 Comparing Interest in Science Responses for the 105 Students and the Other Students Who Completed the Survey 122
Table 19 Descriptive Statistics for the PSTE results (13 items) 124
Table 20 Post Hoc Pairwise Comparisons of the PSTE Subscale for Participants (n = 104) ... 125
Table 21 Descriptive Statistics for the STOE Results (8 items) n = 104...... 126
Table 22 Post Hoc Pairwise Comparisons of the STOE Subscale for Participants (n = 104) ... 126
Table 23 Descriptive Statistics for Interest Aroused by Teaching Techniques ($n = 243$) ...
Table 24 Correlations between Individual Interest in Science and Personal Science Teaching Efficacy at Times 1, 2, and 3
Table 25 Sources of Situational Interest in Week 4 144
Table 26 Sources of Situational Interest in Week 7 150
Table 27 Sources of Situational Interest in Week 9 156
Table 28 Percentages of Responses for Different Sources of Situational Interest ... 158
Table 29 Results for Item 1 of Questionnaire 2 160
Table 30 Causes of Increase in Individual Interest 164
Table 31 Details of Students Interviewed .. 166
Table 32 Sources of Situational Interest Reported by Each Student ($n = 24$). 184
Table 33 Change in Confidence from Before the Science Unit to After the Science Unit ... 189
Table 34 Causes of Change in Self-efficacy to Teach Science for Each Participant ($n = 25$) ... 194
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Comparison of Means for the Three Administrations of Survey 1 for All Participants</td>
<td>114</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Week 4 “Energy” tutorial: Frequency of responses for each teaching technique</td>
<td>145</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Week 7 “The Human Body” tutorial: Frequency of responses for each teaching technique</td>
<td>151</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Week 9 “Natural Selection” tutorial: Frequency of responses for each teaching technique</td>
<td>157</td>
</tr>
</tbody>
</table>
Abstract

The study is designed to investigate the relationship between situational interest and individual interest, and between situational interest and self-efficacy for teaching science. Situational interest is a temporary kind of interest that can be spontaneously stimulated in a person by something in the environment. It has been argued that exposure to regular experiences of situational interest can promote individual interest, which is a long-lasting personal preference for a content area. This study also investigates the nature of a relationship between situational interest and self-efficacy, that is, a belief in one’s capabilities to perform a task successfully. These are important matters for primary teacher education students because it is unlikely that they will teach science well if they have no individual interest in it and low self-efficacy to teach it. The major research questions of this study were as follows:

1. Can situational interest be successfully aroused during a science content unit for primary teacher education students, and if so, how does this occur?
2. Can strategies designed to generate situational interest enhance preservice primary teachers’ long-term individual interest in science?
3. Can self-efficacy for teaching science be enhanced by use of the same strategies designed to arouse situational interest?

The study was conducted using a preexperimental design comprising a pretest, immediate posttest, delayed posttest, and mixed method data collection. The participants undertaking the pretest were 313 primary teacher education students most of whom were in their first year of university study. However, there was a
reduction in number of participants by the end of the science unit to 199 for the immediate posttest data collection. By the time of the delayed posttest ten months after the completion of the science unit, the participant number had dropped to 136 for data collection.

The study began in a one-semester science content unit that was designed to enhance students’ knowledge of science concepts. This unit was written and taught by the researcher who made use of techniques designed to stimulate situational interest in science. These techniques included hands-on activities, science magic, toys, demonstrations, analogies, anecdotes, and fun facts.

Quantitative and qualitative data were collected. These included two self-developed surveys to measure individual interest, one survey to measure the level of situational interest generated by the different kinds of teaching techniques used during the unit, Enochs and Riggs’ (1990) STEBI-B instrument to measure self-efficacy, open ended questionnaires administered during the science unit, and individual interviews conducted at the end of the semester. Results showed that individual interest in science and self-efficacy to teach science increased substantially from pretest to immediate posttest. Individual interest in science dropped somewhat from immediate posttest to delayed posttest but self-efficacy to teach science remained stable from immediate posttest to delayed posttest. Participants reported high levels of situational interest throughout the unit. Situational interest was linked to specific teaching techniques, relevance to teaching primary science, the experience of successful learning, teacher qualities, novelty, physical activity, and social interaction. The factors that aroused situational interest
in science also enhanced self-efficacy to teach science. Both situational interest in
science and self-efficacy to teach science appear to enhance individual interest in
science.

This study provides evidence that the factors that generate situational interest
in science can also enhance students’ long-term interest in science and their self-
efficacy to teach science.