Note on Parity Factors of Regular Graphs

Hongliang Lua, Yuqing Linb

aDepartment of Mathematics
Xi’an Jiaotong University, Xi’an 710049, PR China
bSchool of Electrical Engineering and Computer Science,
The University of Newcastle, Australia
luhongliang215@sina.com, yuqing.lin@newcastle.edu.au

Abstract

In this paper, we obtain a sufficient condition for the existence of parity factors in a regular graph in terms of edge-connectivity. Moreover, we also show that our condition is sharp.

Keywords: Parity Factors, edge-connectivity
Mathematics Subject Classification: 05C70

1. Preliminaries

Let $G = (V, E)$ be a graph with vertex set $V(G)$ and edge set $E(G)$. The number of vertices of a graph G is called the \textit{order} of G and is denoted by n. The number of edges of G is called the \textit{size} of G and is denoted by e. For a vertex v of graph G, the number of edges of G incident to v is called the \textit{degree} of v in G and is denoted by $d_G(v)$. For two subsets $S, T \subseteq V(G)$, let $e_G(S, T)$ denote the number of edges of G joining S to T.

Let H be a function associating a subset of \mathbb{Z} to each vertex of G. A spanning subgraph F of graph G is called an H-factor of G if

\begin{equation}
 d_F(x) \in H(x) \quad \text{for every vertex } x \in V(G).
\end{equation}

For a spanning subgraph F of G and for a vertex v of G, define

\[\delta(H; F, v) = \min\{|d_F(v) - i | i \in H_v\}, \]

Received: 6 February 2013, Revised: 8 April 2013, Accepted: 24 April 2013.
and let $\delta(H; F) = \sum_{x \in V(G)} \delta(H; F, x)$. Thus a spanning subgraph F is an H-factor if and only if $\delta(H; F) = 0$. Let

$$\delta_H(G) = \min \{ \delta(H; F) \mid F \text{ are spanning subgraphs of } G \}.$$

A spanning subgraph F is called H-optimal if $\delta(H; F) = \delta_H(G)$. The H-factor problem is to determine the value $\delta_H(G)$. An integer h is called a gap of $H(v)$ if $h \notin H(v)$ but $H(v)$ contains an element less than h and an element greater than h. Lovász [11] gave a structural description on the H-factor problem in the case where $H(v)$ has no two consecutive gaps for all $v \in V(G)$ and showed that the problem is NP-complete without this restriction. Moreover, he also conjectured that the decision problem of determining whether a graph has an H-factor is polynomial in the case where $H(v)$ has no two consecutive gaps for all $v \in V(G)$. Cornuéjols [5] proved the conjecture.

Let therefore $g, f : V \rightarrow \mathbb{Z}^+$ such that $g(v) \leq f(v)$ and $g(v) \equiv f(v) \pmod{2}$ for every $v \in V$. Then a spanning subgraph F of G is called a (g, f)-parity-factor, if $g(v) \leq d_F(v) \leq f(v)$ and $d_F(v) \equiv f(v) \pmod{2}$ for all $v \in V$. Clearly, a (g, f)-parity-factor is a special kind of H-factor and it has been shown that the decision problem of determining whether a graph has a (g, f)-parity factor is polynomial.

Let a, b be two integers such that $1 \leq a \leq b$ and $a \equiv b \pmod{2}$. If $g(v) = a$ and $f(v) = b$ for all $v \in V(G)$, then a (g, f)-parity-factor is called an (a, b)-parity factor. Let $n \geq 1$ be odd. If $a = 1$ and $b = n$, then an (a, b)-parity factor is called a $(1, n)$-odd factor. There is also a special case of the (g, f)-factor problem which is called the even factor problem, i.e., the problem with $g(v) = 2, f(v) \geq |V(G)|$ and $f(v) \equiv g(v) \pmod{2}$ for all $v \in V(G)$.

Feischner gave a sufficient condition for a graph to have an even factor in terms of edge connectivity.

Theorem 1.1 (Feischner [8]; Lovász [12]). *If G is a bridgeless graph with $\delta(G) \geq 3$, then G has an even factor.*

For a general graph G and an integer k, a spanning subgraph F such that

$$d_F(x) = k \quad \text{for all } x \in V(G)$$

is called a k-factor. In fact, a k-factor is also a (k, k)-parity factor.

The first investigation of the $(1, n)$-odd factor problem is due to Amahashi [2], who gave a Tutte type characterization for graphs having a global odd factor.

Theorem 1.2 (Amahashi). *Let n be an odd integer. A graph G has a $(1, n)$-odd factor if and only if

$$o(G - S) \leq n |S| \quad \text{for all subsets } S \subset V(G).$$

(2)*

For general odd value functions h, Cui and Kano [6] established a Tutte type of theorem.

Theorem 1.3 (Cui and Kano, [6]). *Let $h : V(G) \rightarrow N$ be odd value function. A graph G has a $(1, h)$-odd factor if and only if

$$o(G - S) \leq h(S) \quad \text{for all subsets } S \subset V(G).$$

(3)
Now there are many results on consecutive factors (i.e. \((g, f)\)-factor). But the research progress on non-consecutive factors is slow. In non-consecutive factor problems, \((g, f)\)-parity factors have many similar properties with \(k\)-factors. So we believe that many results on \(k\)-factors can be extended to \((g, f)\)-factor. In this paper, we will extend a result on \(k\)-factors of regular graphs to the \((g, f)\)-parity-factors.

Now let us recall one of the classical results due to Petersen.

Theorem 1.4 (Petersen [13]). Let \(r\) and \(k\) be integers such that \(1 \leq k \leq r\). Every \(2r\)-regular graph has a \(2k\)-factor.

Considering the edge-connectivity, Gallai [7] proved the following result.

Theorem 1.5 (Gallai [7]). Let \(r\) and \(k\) be integers such that \(1 \leq k < r\), and \(G\) an \(m\)-edge-connected \(r\)-regular graph, where \(m \geq 1\). If one of the following conditions holds, then \(G\) has a \(k\)-factor.

(i) \(r\) is even, \(k\) is odd, \(|G|\) is even, and \(\frac{r}{m} \leq k \leq r(1 - \frac{1}{m})\);

(ii) \(r\) is odd, \(k\) is even and \(2 \leq k \leq r(1 - \frac{1}{m})\);

(iii) \(r\) and \(k\) are both odd and \(\frac{r}{m} \leq k\).

Theorem 1.6 (Bollobás, Saito and Wormald). Let \(r\) and \(k\) be integers such that \(1 \leq k < r\), and \(G\) be an \(m\)-edge-connected \(r\)-regular graph, where \(m \geq 1\) is a positive integer. Let \(m^* \in \{m, m+1\}\) such that \(m^* \equiv 1 \pmod{2}\). If one of the following conditions holds, then \(G\) has a \(k\)-factor.

(i) \(r\) is odd, \(k\) is even and \(2 \leq k \leq r(1 - \frac{1}{m^*})\);

(ii) \(r\) and \(k\) are both odd and \(\frac{r}{m^*} \leq k\).

In this paper, we extend Theorems 1.5 and 1.6 to \((a, b)\)-factors. The main tool in our proofs is the following theorem of Lovász (see[11]).

Theorem 1.7 (Lovász [11]). \(G\) has a \((g, f)\)-parity factor if and only if for all disjoint subsets \(S\) and \(T\) of \(V(G)\),

\[
\delta(S, T) = f(S) + \sum_{x \in T} d_G(x) - g(T) - e_G(S, T) - \tau \geq 0,
\]

where \(\tau\) denotes the number of components \(C\), called \(f\)-odd components of \(G - (S \cup T)\) such that \(e_G(V(C), T) + f(V(C)) \equiv 1 \pmod{2}\). Moreover, \(\delta(S, T) \equiv f(V(G)) \pmod{2}\).
Note on parity factors of regular graphs | H. Lu and Y. Lin

2. Main Theorem

Theorem 2.1. Let \(a, b \) and \(r \) be integers such that \(1 \leq a \leq b < r \) and \(a \equiv b \pmod{2} \). Let \(G \) be an \(m \)-edge-connected \(r \)-regular graph with \(n \) vertices. Let \(m^* \in \{m, m+1\} \) such that \(m^* \equiv 1 \pmod{2} \). If one of the following conditions holds, then \(G \) has an \((a, b)\)-parity factor.

(i) \(r \) is even, \(a, b \) are odd, \(|G|\) is even, \(\frac{r}{m} \leq b \) and \(a \leq r(1 - \frac{1}{m}) \);

(ii) \(r \) is odd, \(a, b \) are even and \(a \leq r(1 - \frac{1}{m}) \);

(iii) \(r, a, b \) are odd and \(\frac{r}{m^*} \leq b \).

By Theorem 1.6, (ii) and (iii) are true. Now we prove (i). Let \(\theta_1 = \frac{a}{r} \) and \(\theta_2 = \frac{b}{r} \). Then \(0 < \theta_1 \leq \theta_2 < 1 \). Suppose that \(G \) contains no \((a, b)\)-parity factors. By Theorem 1.7, there exist two disjoint subsets \(S \) and \(T \) of \(V(G) \) such that \(S \cup T \neq \emptyset \), and

\[-2 \geq \delta(S, T) = b|S| + \sum_{x \in T} d_G(x) - a|T| - e_G(S, T) - \tau, \tag{4}\]

where \(\tau \) is the number of \(a \)-odd (i.e. \(b \)-odd) components \(C \) of \(G - (S \cup T) \). Let \(C_1, \cdots, C_\tau \) denote \(a \)-odd components of \(G - S - T \) and \(D = C_1 \cup \cdots \cup C_\tau \).

Note that

\[-2 \geq \delta(S, T) = b|S| + \sum_{x \in T} d_G(x) - a|T| - e_G(S, T) - \tau
= b|S| + (r - a)|T| - e_G(S, T) - \tau
= \theta_2 r|S| + (1 - \theta_1) r|T| - e_G(S, T) - \tau
= \theta_2 \sum_{x \in S} d_G(x) + (1 - \theta_1) \sum_{x \in T} d_G(x) - e_G(S, T) - \tau
\geq \theta_2(e_G(S, T) + \sum_{i=1}^{\tau} e_G(S, C_i)) + (1 - \theta_1)(e_G(S, T) + \sum_{i=1}^{\tau} e_G(T, C_i)) - e_G(S, T) - \tau
= \sum_{i=1}^{\tau} (\theta_2 e_G(S, C_i) + (1 - \theta_1)e_G(T, C_i) - 1) + (\theta_2 - \theta_1)e_G(S, T)
\geq \sum_{i=1}^{\tau} (\theta_2 e_G(S, C_i) + (1 - \theta_1)e_G(T, C_i) - 1).\]

Since \(G \) is connected and \(0 < \theta_1 \leq \theta_2 < 1 \), so \(\theta_2 e_G(S, C_i) + (1 - \theta_1)e_G(T, C_i) > 0 \) for each \(C_i \).
Hence we will obtain a contradiction by showing that for every \(C = C_i, 1 \leq i \leq \tau \), we have

\[\theta_2 e_G(S, C) + (1 - \theta_1)e_G(T, C) \geq 1. \tag{5}\]
These inequalities imply

$$-2 \geq \delta_G(S, T) \geq \sum_{i=1}^{r-2} (\theta_2 e_G(S, C_i) + (1 - \theta_1) e_G(T, C_i) - 1)$$

$$> \sum_{i=1}^{r-2} (\theta_2 e_G(S, C_i) + (1 - \theta_1) e_G(T, C_i) - 1) - 2 \geq -2,$$

which is impossible.

Now, we will prove the 5 is true. Since \(C \) is an \(a \)-odd component of \(G - (S \cup T) \), we have

$$a|C| + e_G(T, C) \equiv 1 \pmod{2}. \quad (6)$$

Moreover, since

$$r|C| = \sum_{x \in V(C)} d_G(x) = e_G(S \cup T, C) + 2|E(C)|,$$

we have

$$r|C| = e_G(S \cup T, C) \pmod{2}. \quad (7)$$

It is obvious that the two inequalities \(e_G(S, C) \geq 1 \) and \(e_G(T, C) \geq 1 \) imply

$$\theta_2 e_G(S, C) + (1 - \theta_1) e_G(T, C) \geq \theta_2 + 1 - \theta_1 = 1.$$

Hence we may assume \(e_G(S, C) = 0 \) or \(e_G(T, C) = 0. \)

We consider the condition (i). If \(e_G(S, C) = 0 \), then \(e_G(T, C) \geq m \). Since \(a \leq r(1 - \frac{1}{m}) \), then \(\theta_1 \leq 1 - \frac{1}{m} \) and so \(1 \leq (1 - \theta_1)m \). By substituting \(e_G(T, C) \geq m \) and \(e_G(S, C) = 0 \) into (5), we have

$$(1 - \theta_1) e_G(T, C) \geq (1 - \theta_1)m \geq 1.$$

If \(e_G(T, C) = 0 \), then \(e_G(S, C) \geq m \). Since \(\frac{r}{m} \leq b \), hence \(\theta_2 m \geq 1 \), and so we obtain

$$\theta_2 e_G(S, C) \geq \theta_2 m \geq 1.$$

Consequently, condition (i) guarantees (5) holds and thus (i) is true. The proof is completed. \(\Box \)

Remark: The edge connectivity conditions in Theorem 2.1 are sharp.

We will give the construction for condition (i) of Theorem 2.1. For (ii) and (iii), the constructions are similar. Let \(r \geq 2 \) be an even integer, \(a, b \geq 1 \) two odd integers and \(2 \leq m \leq r - 2 \) an even integer such that \(b < r/m \) or \(r(1 - \frac{1}{m}) < a \). Since \(G \) has an \((a, b) \)-parity factor if and only if \(G \) has an \((r - b, r - a) \)-parity factor, so we can assume \(b < r/m \). Let \(J(r, m) \) be the complete graph \(K_{r+1} \) from which a matching of size \(m/2 \) is deleted. Take \(r \) disjoint copies of \(J(r, m) \). Add \(m \) new vertices and connect each of these vertices to a vertex of degree \(r - 1 \) of \(J(r, m) \). This gives an \(m \)-edge-connected \(r \)-regular graph denoted by \(G \). Let \(S \) denote the set of \(m \) new vertices and \(T = \emptyset \). Let \(\tau \) denote the number of components \(C \), which are called \(a \)-odd components of \(G - (S \cup T) \) and \(e_G(V(C), T) + a|C| \equiv 1 \pmod{2} \). Then we have \(\tau = r \), and

$$\delta(S, T) = b|S| + \sum_{x \in T} d_{G-S}(x) - a|T| - \tau(S, T) = bm - r < 0.$$

So by Theorem 1.7, \(G \) contains no \((a, b)\)-parity factors.
Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 11101329)

