Enhanced
Power Frequency Droop Control for Microgrids

Christopher N. Rowe
B.E. (Elec.)(Hons. 1)

July 2013

A thesis submitted to embody the research carried out to fulfil the requirements for the degree of:

Doctor of Philosophy

in Electrical Engineering

at The University of Newcastle

Callaghan, NSW, 2308, Australia
Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Christopher N. Rowe
B.E. (Elec.)(Hons. 1)

July 2013
Acknowledgements

I would like to express my gratitude to my supervisors Dr Terrence Summers and Professor Bob Betz. You have provided technical expertise and support, beyond this I would consider you both friends, role models and mentors.

I would like to thank my friend Christopher Townsend. You have contributed to my life direction, motivation and commitment throughout this PhD.

I have appreciated the support of the CSIRO Energy Transformed Flagship. A special thanks to Timothy Moore for his positivity and thesis corrections.

To the Electrical Engineering technical staff: Ian, Ken, Chris and Roy. Thank you for your help in constructing the experimental microgrid. Thanks to Nicholas Hawryluk for his assistance and genuine nature.

To my friends around the world, thank you for your love and your understanding. I promise you will not hear the words 'Paper Due' in the near future. Saludos amigos, vamos a tomar una cerveza para la realizacion de nuestros sueños. I hope that we will continue to better ourselves and support each other, whilst striving to change the world.

Special thanks to my family Robert, Genna, Louise and John for your ever loving support. Thank you for understanding my absence over the last few years. I held you closer to my heart throughout this thesis than perhaps you understand.

To end with a cliche, I would like to thank all the scientists who have, and continue to, inspire me. Whilst growing up in my small country town in Australia you were always a guiding light. From my first physics class, I was captivated. To this day, I am captivated.
The philosophy that I take away from this doctorate, is that, there are two kinds of people in this world, the living and the dead. Beyond this, no true differences exist.
"Physics IS everything."

Dr Paul Dastoor
My first physics lecture.
Contents

Abstract xxv

Nomenclature xxvii

1 Introduction 1

1.1 Introduction .. 1

1.2 Why Microgrids? ... 8

1.3 Defining a Microgrid 10

1.4 The Future of Microgrids 13

1.5 Précis: Problem Statement, Motivation and Key Contributions 15

1.5.1 Problem Statement 15

1.5.2 Motivation .. 16

1.5.3 Current State of the Art 17

1.5.4 Key Contributions 18

1.6 Thesis Outline .. 19

1.7 Publications ... 20

1.8 A Note on Nomenclature 22

2 Review of Technical Background 23

2.1 Introduction ... 23

2.2 Power Theory .. 24
2.2.1 Fryze Power ... 24
2.2.2 Stationary Frame pq Theory 25
2.2.3 Rotating Frame pq Theory 26
2.2.4 Instantaneous Power Theory 26
2.3 Voltage Regulation ... 27
2.4 Pulse Width Modulation Strategies 28
 2.4.1 Space Vector Modulation 29
 2.4.2 Modified Space Vector Modulation 31
 2.4.3 Three Phase PWM 32
2.5 Control Systems ... 34
 2.5.1 PID Control .. 35
 2.5.2 Proportional Resonant Control 36
 2.5.3 Feedforward Control 37
 2.5.4 Deadbeat Control 38
 2.5.5 Sliding Mode Control 38
2.6 Control of Voltage Source Converters 39
 2.6.1 Voltage Control of Voltage Source Converters 39
 2.6.2 Current Control of Voltage Source Converters 41
2.7 Conclusion .. 44

3 Review of Power Frequency Droop Control Schemes 45
 3.1 Introduction ... 45
 3.1.1 Outline ... 46
 3.2 Defining a Two Inverter Microgrid 47
 3.3 The Control Hierarchy of a Microgrid 48
 3.4 Power - Frequency and Reactive Power - Voltage Droop 50
3.5 Modifications to the $P - f$ and $Q - V$ Droop Algorithm 55
3.5.1 Cascaded Voltage and Current Control Loops 56
3.5.2 Linear Rotational Transformation of Power Quantities to consider a Resistive and Inductive Coupling 56
3.5.3 Minimum Output Current Tracker for R/X ratio 61
3.5.4 Modified $P - f$ Droop Gradients ... 64
3.5.5 Isochronous Frequency Droop ... 66
3.5.6 Modified $P - f$ Droop with Frequency Restorer 68
3.5.7 The Virtual Output Impedance Concept ... 70
3.5.8 V dot Droop: A Modified Q-V Droop Scheme 74
3.5.9 Proportional Resonant Control .. 76
3.5.10 Secondary Control Loops .. 79
3.6 Small Signal Stability of a Two Inverter Microgrid 80
3.6.1 System Linearisation ... 80
3.6.2 Stability Constraints of Droop .. 85
3.7 Conclusions .. 86

4 Enhancements to Power Frequency Droop for Microgrids 89
4.1 Introduction ... 89
4.2 Arctan Power Frequency Droop ... 91
4.2.1 Introduction ... 91
4.2.2 Arctan $P' - f$ Droop ... 91
4.2.3 Frequency Limiting ... 92
4.2.4 Improved Stability ... 94
4.2.5 System Linearisation ... 94
4.2.6 Applications ... 101
4.2.7 Conclusion .. 104
4.3 Extending the Virtual Output Impedance Concept 104
 4.3.1 Introduction ... 104
 4.3.2 A \(dq\) RRF Implementation of the Virtual Output Impedance 105
 4.3.3 \(Z_{\text{virtual}}\) Selection .. 107
 4.3.4 Conclusions ... 111
4.4 PCC Voltage Estimation ... 111
 4.4.1 Introduction ... 111
 4.4.2 PCC Voltage Estimation .. 112
 4.4.3 Conclusion ... 119
4.5 Parallel Voltage and Current Control ... 120
 4.5.1 Introduction ... 120
 4.5.2 Quadrature Axis Current Controller 120
 4.5.3 Direct Axis Voltage Control ... 126
 4.5.4 Conclusion ... 127
4.6 Adaptive Sliding Mode Voltage Control ... 128
 4.6.1 Introduction ... 128
 4.6.2 Adaptive Sliding Mode Control ... 128
 4.6.3 Conclusion ... 133
4.7 Related Work .. 133
 4.7.1 Distributed Stars: A Topology for Microgrids 133
 4.7.2 Interrelated Work .. 133
4.8 Conclusions ... 134

5 Simulation Studies ... 137
 5.1 Introduction ... 137
 5.2 Structure of the Saber® Simulation 138
5.2.1 Saber® ... 138
5.2.2 Saber® Simulation 139
5.2.3 The Structure: A Two Inverter Microgrid 139

5.3 Defining General Performance Indicators 140
5.3.1 Introduction .. 140
5.3.2 Small Signal Stability 140
5.3.3 Voltage Regulation 140
5.3.4 Mathematically Defining Power Imbalance 142
5.3.5 Voltage Rating of Three Phase Inverters 143
5.3.6 Integral Windup 144
5.3.7 Control Bandwidth 144
5.3.8 Steady State Error 144
5.3.9 Conclusion .. 145

5.4 $\text{Arctan } P' - f$ Droop 145
5.4.1 Introduction and Simulation Parametrisation 145
5.4.2 Simulation Results 145
5.4.3 Conclusions .. 156

5.5 Enhancement of the VOI Concept 157
5.5.1 Introduction and Simulation Parametrisation 157
5.5.2 Simulation Results 159
5.5.3 Conclusion .. 164

5.6 PCC Voltage Estimation 165
5.6.1 Introduction .. 165
5.6.2 Simulation Parametrisation and Results 165
5.6.3 Conclusions .. 172

5.7 VC||CC Droop ... 172
5.7.1 Introduction and Simulation Parametrisation ... 172
5.7.2 Simulation Results .. 173
5.7.3 Conclusions .. 177
5.8 Adaptive Sliding Mode Control .. 178
5.8.1 Introduction and Simulation Parametrisation ... 178
5.8.2 Simulation Results .. 179
5.8.3 Conclusions .. 185
5.9 Conclusions ... 186

6 Experimental Results .. 189
6.1 Introduction .. 189
6.2 dSPACE® Experimental System ... 190
6.2.1 dSPACE® .. 190
6.2.2 Experimental System .. 191
6.3 Arctan \(P' - f \) Droop .. 193
6.3.1 Introduction ... 193
6.3.2 Hardware Results .. 194
6.3.3 Conclusion ... 197
6.4 Enhancement of the VOI Concept .. 197
6.4.1 Introduction ... 197
6.4.2 Hardware Results .. 198
6.4.3 Conclusion ... 201
6.5 PCC Voltage Estimation ... 201
6.5.1 Introduction ... 201
6.5.2 Hardware Results .. 201
6.5.3 Conclusion ... 204
6.6 VC||CC Droop .. 206
 6.6.1 Introduction .. 206
 6.6.2 Hardware Results .. 206
 6.6.3 Conclusion ... 209
6.7 Adaptive Sliding Mode Control 209
 6.7.1 Introduction .. 209
 6.7.2 Hardware Results .. 209
 6.7.3 Conclusion ... 211
6.8 Conclusion .. 211

7 Conclusions and Extensions .. 213
 7.1 Future Work .. 218

A Simulation System: A Detailed Description 221
 A.1 Introduction ... 221
 A.2 Saber® ... 221
 A.3 Saber® Simulation .. 222
 A.4 Conclusion ... 226

B Experimental System: A Detailed Description 227
 B.1 Introduction ... 227
 B.2 SEMITEACH Stacks ... 230
 B.3 dSPACE® and MATLAB Simulink RTI model 230
 B.4 ControlDesk Interface 237
 B.5 PCB Design .. 239
 B.5.1 Feedback PCB ... 239
 B.5.2 Interface PCB ... 240
 B.6 Load Banks .. 242
B.6.1 Resistive ... 242
B.6.2 Inductive ... 242
B.7 LCL Filter Design ... 243
B.8 Limitations of the Hardware System 248
B.9 Conclusion ... 248

C Distributed Stars: A Topology for Microgrids 249
C.1 Introduction .. 249
C.2 The Distributed Stars Concept ... 249
C.3 Improvements to Control ... 253
 C.3.1 Local Load Metering ... 253
 C.3.2 Self-Sacrifice and Distributed Control Algorithms 255
C.4 Simulation Parametrisation ... 256
C.5 Simulation Results .. 258
C.6 Conclusion ... 260
C.7 Future Research .. 261

D Interrelated Work ... 263

E Publications ... 265
E.1 Introduction .. 265
E.2 Publications .. 267
 E.2.1 Arctan power frequency droop for improved microgrid stability . 267
 E.2.2 Arctan power frequency droop for power electronics dominated mi-
 crogrids ... 281
 E.2.3 Small signal stability analysis of arctan power frequency droop . 281
 E.2.4 Arctan power frequency droop for power electronics dominated mi-
 crogrids ... 289
E.2.5 Implementing the virtual output impedance concept in a three
phase system utilising cascaded pi controllers in the dq rotating
reference frame for microgrid inverter control 297

E.2.6 Implementing pcc voltage estimation utilising cascaded pi con-
trollers in the dq rotating reference frame for microgrid inverter
control ... 309

E.2.7 A virtual point of common coupling voltage for improved droop
control in microgrids .. 317

E.2.8 A novel parallel voltage and current control scheme implementing
p-f and q-v droop in a microgrid 327

E.2.9 An adaptive sliding mode controller for enhanced q-v droop in a
microgrid .. 339

E.2.10 Distributed stars (d-stars): A system topology for microgrids . . 349

E.2.11 A comparison of instantaneous and fryze power calculations on p-f
and q-v droop in microgrids 357

E.3 Interrelated Publications .. 363

E.3.1 An intelligent current limiter and zero active power injection algo-
rithm for microgrid voltage support 363

E.3.2 The windro skyscraper: A concept 371
List of Figures

1.1 Radial Distribution System Topology 3
1.2 Contemporary Power System .. 4
1.3 The CERTS Microgrid [32] ... 11

2.1 Defining Voltage Regulation with a Transmission Line 28
2.2 Basic PWM .. 29
2.3 Inverter Base SVM Vectors [84] 31
2.4 Three phase switching pattern for SVM [84] 31
2.5 Modified Space Vector Modulation [85] 32
2.6 Three phase triangular PWM (a) Carrier waveforms and three phase voltage waveforms, (b) Switched a phase output voltage [82] 33
2.7 Negative Feedback Loop .. 35
2.8 PID Controller .. 36
2.9 Basic PR Controller .. 37
2.10 Feedforward Control ... 37
2.11 RRF PI Voltage Control of a VSC 40
2.12 PR Voltage Control of a VSC 41
2.13 PI Current Control of a VSC 42
2.14 Two phase machine model for deadbeat current control 43
2.15 α-axis Switching Pattern for Deadbeat Current Control of a VSC 43
3.1 Two Inverter Microgrid ... 48
3.2 Hierarchical Control [33] ... 49
3.3 Power flow across a single impedance, circuit diagram 51
3.4 Power flow across a single impedance, vector diagram 51
3.5 Typical $P - f$ Droop Characteristics 54
3.6 Typical $Q - V$ Droop Characteristics 54
3.7 Traditional Droop Control Scheme 55
3.8 Cascaded Voltage and Current Control Scheme 57
3.9 Linear Rotational Transform 59
3.10 Control Scheme with LRT .. 61
3.11 Minimum output current tracker [105] 62
3.12 Vector shift by minimum current tracker 62
3.13 Overall Control Scheme, minimum output current tracker by Lee [105] . 63
3.14 Modified droop presented in [106] 65
3.15 Non-linear droop for isochronous frequency operation 66
3.16 Variations in fixed gradient droop for isochronous frequency operation . 67
3.17 Control scheme showing the frequency restoration technique 68
3.18 A visual representation of the frequency restoration 69
3.19 Virtual Output Impedance Circuit Diagram 71
3.20 Generic Virtual Output Impedance based Control Scheme 71
3.21 Virtual Output Impedance Phasor Diagram 72
3.22 V Dot Droop ... 75
3.23 V Dot Droop Control Scheme 77
3.24 PR Voltage Controller ... 78
3.25 Dominant Modes of Droop System [110] 86

4.1 A comparison between arctan droop and fixed gradient droop 93
4.2 Arctan Droop Control Scheme .. 95
4.3 Ramping generator case for remote microgrids 102
4.4 Arctan function designed to increase system stability at high power and fixed gradient droop .. 103
4.5 Three Phase dq RRF PI Cascaded Control Structure Implementing the VOI and LRT ... 106
4.6 Selection Surface intersected by a plane at $C_{imb} = 1.1$ 110
4.7 Selection Surface intersected by a plane at $C_{imb} = 1.25$ 110
4.8 Three Phase dq RRF PI Cascaded Control Structure Implementing PCC Voltage Estimation .. 115
4.9 A PCC voltage estimation implemented utilising the VC||CC scheme ... 118
4.10 Parallel Voltage and Current Control Scheme 121
4.11 Control Scheme Implementing an Adaptive Sliding Mode Controller ... 130
4.12 Sliding Manifold and Regions of the Adaptive Sliding Mode Controller ... 131

5.1 Single line diagram of the two inverter microgrid 141
5.2 Equilibria under equal power sharing, derived from SABER® Simulation at Low Powers ... 147
5.3 Equilibria under equal power sharing, derived from SABER® Simulation at High Powers ... 148
5.4 A-phase voltage and current under a step change in active power under equal power sharing, from $300\, W_{1\phi}$, the 4^{th} operating point, to $600\, W_{1\phi}$, the 8^{th} operating point ... 148
5.5 Fixed gradient eigenvalues for the overall system 150
5.6 Zoom on dominant pole position, Fixed gradient eigenvalues 150
5.7 Eigenvalues for standard arctan droop 151
5.8 Zoom on dominant pole position, eigenvalues for standard arctan droop . 152
5.9 Dominant eigenvalue movement with increasing P' power for standard arctan droop ... 152
5.10 Arctan function designed to increase system stability at high power and fixed gradient droop .. 154
5.11 Eigenvalues for high power arctan droop 154
5.12 Zoom on dominant pole position, eigenvalues for high power arctan droop 155
5.13 Dominant eigenvalue movement with increasing P’ power for high power arctan droop .. 155
5.14 Virtual Output Impedance System Configuration 158
5.15 Q’ power imbalance implementing no VOI: \(R_{v1} = R_{v2} = 0.0 \) 159
5.16 Q’ power imbalance implementing the summation approach: \(R_{v1} = 0.34 \) and \(R_{v2} = 0.0 \) .. 160
5.17 Dominating the line impedance: A visual comparison 160
5.18 Q’ power output for inverter 1 and 2 vs virtual output resistance 162
5.19 Q’ power imbalance vs virtual output resistance 163
5.20 PCC voltage regulation vs virtual output resistance, considering the worst case line impedance 164
5.21 DC bus voltage rating of inverter 2 vs virtual output resistance 164
5.22 Inverter 1 and 2, Q’ output powers 166
5.23 Inverter 1 and 2, P’ output powers 167
5.24 VOI with \(R_{v1/2} = 6.8 \, \Omega \), Inverter 1 and 2, Q’ output powers 167
5.25 Inverter 1 and 2, Output voltage magnitudes 168
5.26 Active and reactive power without PCC-V-Est. 170
5.27 Active and reactive power implementing PCC-V-Est. 171
5.28 Voltage difference between PLL voltage and PCC voltage estimate (previously known as ‘Virtual PCC voltage’): Zoom at t=0.54 s 171
5.29 VC||CC Droop System Configuration 173
5.30 Equal active and Reactive Power Sharing: (a) Power and Reactive Power; (b) Inverter 1 Voltage and Current Magnitudes; and (c) Inverter 1 \(V_{abc} \) and \(I_{abc} \) ... 174
6.5 Step change in active power, voltages and currents for standard arctan droop

6.6 Standard arctan droop, comparison of hardware and simulation pole positions

6.7 High power arctan droop, comparison of hardware and simulation pole positions

6.8 Q' power imbalance beginning with $R_{v1} = R_{v2} = 0.0 \, \Omega$, and transitioning to $R_{v1} = 0.34 \, \Omega$ and $R_{v2} = 0.0 \, \Omega$

6.9 Q' power imbalance beginning with $R_{v1} = R_{v2} = 0.0 \, \Omega$, and transitioning to $R_{v1} = R_{v2} = 3.0 \, \Omega$

6.10 Q' power output for inverter 1 and 2 vs virtual output resistance

6.11 Q' power imbalance vs virtual output resistance

6.12 Inverter 1 and 2, Q' output power

6.13 Hardware Results: Inverter 1 and 2, P' output power

6.14 Inverter 1 and 2, Output voltage magnitudes

6.15 No PCC voltage estimation: active power, reactive power and voltage, with $L_{l1} = 120 \, \mu H$ and $L_{l2} = 2.1 \, mH$

6.16 PCC voltage estimation implemented: active power, reactive power and voltage, with $L_{l1} = 120 \, \mu H$ and $L_{l2} = 2.1 \, mH$

6.17 Active power of inverter 1 and 2 and PCC voltage, under a step change in active power

6.18 A phase voltage, under a step change in active power

6.19 A phase current, under a step change in active power

6.20 Reactive power of inverter 1 and 2 and PCC voltage, under a step change in reactive power

6.21 A-SMC output voltage, inverter output voltage, active and reactive power

6.22 Zoom on: inverter output voltage and A-SMC output voltage

A.1 Overall System Simulation
A.2 Hierarchical Diagram

B.1 Overall Layout Diagram of the Microgrid Laboratory at the University of Newcastle, Australia

B.2 dSPACE® Two Inverter Microgrid Hardware Layout

B.3 A photo of the microgrid laboratory

B.4 SEMITEACH Electrical Circuit Diagram

B.5 RTI Model Top Level Schematic

B.6 RTI Model PLL Schematic

B.7 RTI Model Main Control Schematic

B.8 Pure Simulation in Matlab Simulink, utilised to set up the first dSPACE® model

B.9 dSPACE® ControlDesk Graphical User Interface (Software Front End)

B.10 Placement of the PCBs for Inverter 1

B.11 Feedback PCB Layout

B.12 Interface PCB Layout

B.13 Photograph of Load Banks located under inverter 1

B.14 Bode Diagram, LCL filter transfer function $\frac{I_l}{V_i}$ under varied $R_{sh,c}$

B.15 Bode Diagram, LCL filter transfer function $\frac{I_l}{V_i}$ under varied L_f

B.16 Bode Diagram, LCL filter transfer function $\frac{I_l}{V_i}$ under varied C_f

B.17 Bode Diagram, LCL filter transfer function $\frac{I_l}{V_i}$ under varied L_l

B.18 Bode Diagram, LCL filter transfer function $\frac{I_l}{V_i}$ under varied R_g

B.19 Bode Diagram, LCL filter transfer function $\frac{I_l}{V_i}$ under varied L_g

C.1 One Single D-STAR

C.2 D-STAR Configurations

C.3 VC||CC Scheme including the PCC-V-Est, extended to utilise local load data
C.4 Two D-STAR System .. 256
C.5 SABER® Simulation top level schematic including local loads 257
C.6 Active power increase in local load 2 259
C.7 Active power sharing, without augmented control scheme 259
C.8 Active power sharing, with augmented control scheme 260
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>General System Parameters</td>
</tr>
<tr>
<td>5.2</td>
<td>Arctan Droop System Parameters</td>
</tr>
<tr>
<td>5.3</td>
<td>System Parameters used in the enhancement of the VOI experiment</td>
</tr>
<tr>
<td>5.4</td>
<td>A comparison of $Q_{imbalance}', VR$ and $V_{DC Rated}$ for: traditional droop, dominant VOI droop and the summation approach</td>
</tr>
<tr>
<td>5.5</td>
<td>PCC Voltage Estimation (dq RRF) System Parameters</td>
</tr>
<tr>
<td>5.6</td>
<td>A comparison of $Q_{imbalance}', VR$ and $V_{DC Rated}$ for: traditional droop, dominant VOI droop and PCC-V-Est in the dq RRF</td>
</tr>
<tr>
<td>5.7</td>
<td>PCC-V-Est System Parameters exploiting Deadbeat Control Theory</td>
</tr>
<tr>
<td>5.8</td>
<td>A comparison of active and reactive power imbalance for traditional droop and PCC-V-Est utilising a deadbeat prediction.</td>
</tr>
<tr>
<td>5.9</td>
<td>VC</td>
</tr>
<tr>
<td>5.10</td>
<td>A-SMC Droop System Parameters</td>
</tr>
<tr>
<td>6.1</td>
<td>Reduction in active and reactive power imbalance utilising deadbeat estimation of the PCC voltage</td>
</tr>
<tr>
<td>B.1</td>
<td>Steps in resistive load used in experiments.</td>
</tr>
<tr>
<td>B.2</td>
<td>Steps in inductive load used in experiments.</td>
</tr>
<tr>
<td>B.3</td>
<td>Comparison of power loss in a passively damped LCL filter operating a 10 kW output power.</td>
</tr>
</tbody>
</table>
B.4 Nominal LCL filter values .. 244

C.1 D-Stars System Parameters ... 258
Abstract

This thesis develops enhancements to power frequency droop control for microgrids. Contemporary research fails to fully solve a number of problems with droop control. This thesis provides a conclusive argument that the control employed in microgrid inverters requires advancement, to address the specific problems of: imbalances in reactive power output; poor voltage regulation; increased voltage range; achieving frequency limiting and ensuring the stable operation of microgrid control algorithms.

This thesis provides enhancements to droop control that solve or circumvent the specific problems noted. The five contributions to primary level control in microgrids are: the utilisation of an arctan function for the power frequency droop profile; the enhancement of the virtual output impedance concept; a PCC voltage estimation technique; a parallel voltage and current control scheme and an adaptive sliding mode controller for microgrids. The thesis discusses the theoretical basis for each of these enhancements and justifies their advantages over contemporary state of the art control schemes.

Experimental and simulation results are presented from a three phase two inverter microgrid. The results confirm the performance improvements provided by each enhancement to power frequency droop control, on a case by case basis.
Nomenclature

3pPWM Three phase pulse width modulation

\(\alpha[k, k + 1] \) \(\alpha \)-axis duty cycle over the next control period in deadbeat current control

\(\rho \) Arctan droop concavity co-efficient

\(A \) Amperes, the base quantity of electrical current

\(A - SMC \) Adaptive sliding mode control

\(a_p \) Arctan droop bounding co-efficient

\(AC \) Alternating current

\(B_{aa'} \) Magnetic flux density of the a phase stator winding in a three phase AC machine

\(B_{bb'} \) Magnetic flux density of the b phase stator winding in a three phase AC machine

\(B_{cc'} \) Magnetic flux density of the c phase stator winding in a three phase AC machine

\(B_s \) Resultant magnetic flux density space vector in a three phase AC machine

\(CSIRO \) Commonwealth Scientific and Industrial Research Organisation, the national government body for scientific research in Australia

\(\delta_n \) Power angle, the angle between \(V_n \) and \(V_{PCC} \), where \(n \) denotes the inverter number

\(D \) Duty cycle
DC Direct current

DG Distributed generation

DGU Distributed generation unit, singular

DLL Dynamic link library

e[k] Voltage at the present sample in deadbeat current control

e_{avg}[k, k + 1] Average voltage over the next control period in deadbeat current control

EV Electric vehicle

f_c Cut off frequency of a specified filter

f Frequency of the inverter AC output voltage *Hz*

f_0 Nominal frequency of inverter output voltage *Hz*

GUI Graphical user interface

GPS Global Positioning System

HDL Hardware description language

 İ̇_{rated} Peak rated output current of the inverter

 İ̇_n Line current space vector

 İ̇̃_n Line current phasor

i_{cap} Current through the capacitor in the LCL filter

I_{rated} RMS rated output current of the inverter

i^{e+}_{x,qd} Positive sequence component SRF Current

i^a_{x,qd} SRF Current

İ̇̃_n Output current phasor for inverter n

i[k] Current at the present sample in deadbeat current control

I_n Inverter output current, where n denotes the inverter number
\(i_\alpha \) \(\alpha \)-axis SRF current

\(i_\beta \) \(\beta \)-axis SRF current

\(I_a \) A phase current

\(i_a \) Instantaneous A phase current

\(I_b \) B phase current

\(i_b \) Instantaneous B phase current

\(I_c \) C phase current

\(i_c \) Instantaneous C phase current

\(i_{\text{des}}[k+1] \) Desired current one control period in the future, in deadbeat current control

\(i_{\text{des}}[k, k+1] \) Desired current over the next control period in deadbeat current control

\(i_d \) \(d \)-axis RRF current

\(i_n(t) \) Instantaneous inverter output current as a function of time

\(i_q \) \(q \)-axis RRF current

\(ICE \) Internal combustion engine

\(k_{ii} \) Integral gain of the current controller in a nested control structure

\(k_{iv} \) Integral gain of the voltage controller in a nested control structure

\(k_{pi} \) Proportional gain of the current controller in a nested control structure

\(k_{pv} \) Proportional gain of the voltage controller in a nested control structure

\(k_{PWM} \) Maximum modulation index of a PWM scheme

\(KVL \) Kirchhoff’s voltage law

\(KPI \) Key performance indicator

\(LPF \) Low pass filter

\(LRT \) Linear rotational transform
\(M - SVM \) Modified space vector modulation

\(m_{dp} \) Differential droop co-efficient

\(m_{dq} \) Differential droop co-efficient

\(m_p \) Droop co-efficient or droop gradient of \(P - f \) or \(P' - f \) droop control

\(m_q \) Droop co-efficient or droop gradient of \(Q - V \) or \(Q' - V \) droop control

\(n \) Designates the inverter number

\(n_{SMC} \) Sliding mode control time step

\(n_T \) Total number of inverters in the system

\(PLL \) Phase locked loop

\(P \) Active power

\(P \) Proportional controller

\(P'_0 \) \(P' \) power set point

\(P - f \) Active power proportional to frequency

\(P - V \) Active power proportional to voltage

\(P_0 \) Nominal single phase active power set point

\(P_{1\phi} \) Single phase active power

\(P_{3\phi} \) Three phase active power

\(P_{avg} \) Average or Fryze real power

\(PC - PWM \) Pulse centred pulse width modulation

\(PCC \) Point of common coupling

\(PD \) Proportional derivative controller

\(PI \) Proportional integral controller

\(PID \) Proportional, integral and derivative controller
\[PR \] Proportional resonant controller

\[PV \] Photovoltaic

\[PWM \] Pulse width modulation

\(P' \) or \(P_{dash} \) Apparent power quantity that is directly coupled to the frequency variation in \(P' - f \) droop control

\[Q \] Reactive Power

\[Q'_0 \] \(Q' \) power set point

\[Q'_{average} \] Average of the \(Q' \) power of all inverters in the system

\[Q'_{imbalance} \] Imbalance in \(Q' \) power

\[Q'_n \] Apparent power quantity that is directly coupled to the voltage variation in \(Q' - V \) droop control for inverter \(n \)

\[Q - f \] Reactive power proportional to frequency

\[Q - V \] Reactive power proportional to voltage

\[Q_0 \] Nominal single phase reactive power set point

\[Q_{1\phi} \] Single phase reactive power

\[Q_{3\phi} \] Three phase reactive power

\[Q_{avg} \] Average or Fryze imaginary power

\(Q' \) or \(Q_{dash} \) Apparent power quantity that is directly coupled to the voltage variation in \(Q' - V \) droop control

\[R_{en} \] Virtual output resistance for inverter \(n \)

\[R_{ln} \] Line resistance, from inverter \(n \) to the PCC

\[RMS \] Root mean squared

\[RRF \] Rotating reference frame

\[SMC \] Sliding mode control
SMPS Switch mode power supply
SRF Stationary reference frame
SVM Space vector modulation
T_{SMC} Sliding mode control time step
T Length of the control period in seconds.
t_1 Time before the output voltage is forced high in space vector PWM
T_{PLL} Length of the control period in seconds.
u Number of samples per period in Fryze power theory
UPS Uninterruptible power supply
$\hat{V}_{PCC_{max}}$ Maximum, peak PCC connection voltage
V_0 Inverter voltage set point
V_n Inverter output voltage, where n denotes the inverter number
$v_{A(\text{control})}$ Sinesoidal control voltage used in three phase pulse width modulation
v_{cap} Voltage across the capacitor in the LCL filter
$V_{DC\text{ Rated}}$ Rated DC voltage of the inverter DC bus
v_{dropn} Voltage drop across the line impedance for inverter n
V_{err} Input error of the voltage PI controller
v^{out}_{k+1} Voltage output one control step in the future, at time $k + 1$
v^{out}_{k} Voltage output at time k
V_{PCC} RMS point of common coupling voltage
$v_{\text{step}x}$ Sliding mode control voltage step size for region x
v_{TRIANGLE} Triangular wave voltage used in three phase pulse width modulation
v_{err}^{+} Positive sequence component SRF Voltage
\(v_{x,qd} \)
SRF Voltage

\(VOI \)
Virtual output impedance

\(\dot{V} \) or \(V_{dot} \)
V dot voltage

\(v_d \)
d-axis RRF voltage

\(v_\alpha \)
\(\alpha \)-axis SRF voltage

\(\vec{V}_{PCC} \)
PCC voltage phasor

\(v_q \)
q-axis RRF voltage

\(v_\beta \)
\(\beta \)-axis SRF voltage

\(V \)
Volts, the base quantity of electrical voltage

\(V_a \)
A phase voltage

\(V_b \)
B phase voltage

\(V_c \)
C phase voltage

\(V_{dc} \)
DC bus voltage

\(V_{fl} \)
Full load receiving end voltage of a transmission line

\(v_L \)
Voltage across an inductor

\(V_{nl} \)
No load receiving end voltage of a transmission line

\(v_{PCC(t)} \)
Instantaneous voltage at the PCC as a function of time

\(V_{rms} \)
Voltage specified in RMS

\(V_R \)
Receiving end voltage of a transmission line

\(V_S \)
Sending end voltage of a transmission line

\(VA \)
Volt-Amperes, the base quantity of apparent power

\(var \)
Volt-Amperes Reactive, the base quantity of imaginary power

\(VR \)
Voltage regulation
VSC Voltage source converter

ω Angular frequency of inverter output voltage rads^{-1}

ω_0 Nominal angular frequency of inverter output voltage rads^{-1}

W Watts, the base quantity of real power

$\frac{X_{in}}{R_{in}}$ Inductive reactance to resistance ratio of the line

X_{vn} Virtual output inductive reactance for inverter n

X_{ln} Line reactance, from inverter n to the PCC

Z_{ln} Line impedance, from inverter n to the PCC

Z_{TC} Total coupling impedance; from the inverter terminal to the PCC, including the filter impedance

Z_{vn} Virtual output impedance for inverter n

θ_{k+1} Angle specified one control period in the future, at time $k + 1$

φ Angle of the coupling impedance of inverter n to the PCC

λ Power factor in Fryze power theory