THE ROLE OF L-ARGININE AND METHYLATED-ARGININES IN HEALTH AND DISEASE

Mark A McEvoy, MMed.Sc. (Clinical Epidemiology)

Submitted for the Degree of Doctor of Philosophy

Submitted December, 2013

School of Medicine and Public Health, University of Newcastle
Declaration

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

__
Mark McEvoy Date
Statement of Collaboration

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers, or carried out in other institutions. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices

Mark McEvoy
Date
Statement of Authorship (thesis by publication)

I hereby certify that this thesis is in the form of a series of published papers of which I am a joint author. I have included as part of the thesis a written statement from each co-author, endorsed by the Faculty Assistant Dean (Research Training), attesting to my contribution to the joint publications.

Mark McEvoy

Date
Acknowledgements

I have been very fortunate to be surrounded by supportive and caring colleagues over the past 6 years while I worked full-time and slowly chipped away at my thesis. There are a number of people who I wish to thank.

Firstly, thank you to my supervisors, Associate Professor Peter Schofield and Professor Wayne Smith. Peter, your support and encouragement during this time has been extremely helpful. Thank you for your commitment, friendship, openness, and continual belief in me. Wayne, you have been a constant source of wisdom, and this work has been made immeasurably better by the things that you have taught me. I couldn’t have hoped for two more supportive supervisors.

To Professor John Attia, mentor, colleague, and friend, your guidance, expertise, patience, and friendship over the years have been invaluable. Without you I am not sure I could have finished this thesis. When times are tough you always seem to know just what to say to motivate me and point me in the right direction. Your continual belief in me and your honest appraisal of my ideas and work have been invaluable.

To my colleague and friend Roseanne Peel, your encouragement, friendship, and endless support have made this journey so much easier than it would have been. Thank you for the many hours you spent reviewing and discussing my work. Without you I may have thrown in the towel a long time ago.

To my colleague and friend Jane MacDonald, your willingness to go above and beyond the call of duty to help me with formatting and editing my thesis makes me feel so fortunate to have a friend like you.

To my colleague Professor Arduino Mangoni, your expertise and your willingness to help me have been invaluable.

To my family, thanks for being there for me, especially when I was impossible to live with, and making this journey easier.
List of publications

The Statements of Contribution from the co-authors appear in the appendix.
Contents

Declaration ii
Statement of Collaboration ... iii
Statement of Authorship (thesis by publication) iv
Acknowledgements ... v
List of publications ... vi
Synopsis ... 1
Section 1 Overview ... 4

Chapter 1

Background, aims, structure of thesis and candidate’s contribution........ 4
1.1 Background and Rationale .. 4
1.2 Aims and Hypotheses .. 4
1.3 Structure of this thesis ... 5
 1.3.1 Section 1 (Chapters 1 to 3): ... 5
 1.3.2 Section 2 (Chapters 4 to 7): ... 6
 1.3.3 Section 3 (Chapter 8): .. 6
1.4 Candidate’s contribution to the reporting of results from the Hunter
Community Study: Peer-reviewed publications emanating from PhD study 6
1.5 Candidate’s Contribution to the conduct of the Hunter Community Study
(HCS) ... 8

Chapter 2

Brief literature Review ... 12
2.1 What is nitric oxide and how is it synthesized in human tissues? 12
2.2 What is the role of nitric oxide in normal human physiology? 13
2.3 What is the effect of endogenously produced nitric oxide synthase inhibitors
on nitric oxide synthesis? ... 14
2.4 How are free methylarginines produced and metabolised? 15
2.5 What is the tissue distribution of methylarginines and how are they
transported between cellular compartments? 17
2.6 What is the normal serum concentration range of ADMA and SDMA?17
2.7 How do endogenous methylarginine serum concentrations become elevated?
.. 18
2.8 Given that endogenous methylarginines inhibit cellular nitric oxide synthesis
and this messenger is essential to normal cellular physiology, which disease states
are associated with elevated methylarginine concentrations? 19
2.9 Summary .. 21

Chapter 3

Methods based on ‘Cohort Profile: The Hunter Community Study’ paper23
3.1 Cohort Profile: The Hunter Community Study 23
 3.1.1 How did the study come about? .. 23
 3.1.2 What does the study cover? .. 24
 3.1.3 Who are in the sample? ... 25
 3.1.4 What has been measured? .. 27
 3.1.5 How often have they been followed up? 34
 3.1.6 What is attrition like? ... 35
Chapter 4
Methylarginines and memory impairment

4.1 Memory impairment is associated with serum methylarginines in older adults

4.1.1 Abstract
4.1.1.1 Background
4.1.1.2 Methods
4.1.1.3 Results
4.1.1.4 Conclusions

4.1.2 Introduction

4.1.3 Materials and methods
4.1.3.1 Main exposure variables: L-arginine and methylarginines
4.1.3.2 Primary outcomes
4.1.3.3 Study factors
4.1.3.4 Statistical analyses

4.1.4 Results

4.1.5 Discussion

4.1.6 Conclusion

4.1.7 Abbreviations

Acknowledgements/Conflicts/Funding Sources

Chapter 5
Methylarginines and lung function

5.1 Serum methylarginines and spirometry-measured lung function in older adults

5.1.1 Abstract
5.1.1.1 Rationale
5.1.1.2 Objectives
5.1.1.3 Methods
5.1.1.4 Measurements and main results
5.1.1.5 Conclusions

5.1.2 Introduction

5.1.3 Methods
5.1.3.1 Main exposure variables: L-arginine and methylarginines
5.1.3.2 Primary outcomes
5.1.3.3 Study factors
5.1.3.4 Statistical Analysis
Chapter 6 Methylarginines and depression ... 89
6.1 Serum methylarginines and incident depression in a cohort of older adults . 89
 6.1.1 Abstract .. 89
 6.1.1.1 Background ... 89
 6.1.1.2 Methods ... 90
 6.1.1.3 Results .. 90
 6.1.1.4 Limitations ... 90
 6.1.1.5 Conclusions .. 90
 6.1.2 Introduction .. 91
 6.1.3 Methods ... 94
 6.1.3.1 Main exposure variables: L-arginine and methylarginines 94
 6.1.3.2 Primary outcomes ... 95
 6.1.3.3 Study factors ... 95
 6.1.3.4 Statistical Analysis .. 96
 6.1.4 Results ... 97
 6.1.5 Discussion .. 104
 6.1.6 Limitations .. 106
 6.1.7 Conclusions ... 107

Chapter 7 L-arginine and endogenous methylarginines and irritable bowel syndrome ... 108
7.1 Serum L-arginine and endogenous methylarginine concentrations predict irritable bowel syndrome diagnosis in older adults. ... 108
 7.1.1 Abstract.. 108
 7.1.1.1 Background & Aims .. 108
 7.1.1.2 Methods ... 109
 7.1.1.3 Results .. 109
 7.1.1.4 Conclusions ... 109
 7.1.2 Introduction .. 109
 7.1.3 Methods ... 112
 7.1.3.1 Subject recruitment ... 112
 7.1.3.2 Case and control ascertainment .. 113
 7.1.3.3 Measurement of L-arginine and Dimethylarginines 113
 7.1.3.4 Potential confounding variables ... 113
 7.1.3.5 Statistical analysis .. 113
 7.1.4 Results .. 114
 7.1.5 Discussion .. 117
 7.1.6 Acknowledgements .. 122

Section 3 Conclusions and research implications ... 124
Chapter 8 Conclusions ... 124
8.1 Main study findings .. 124
8.1.1 Higher serum concentrations of ADMA and SDMA, but not L-arginine, are associated with memory impairment in older adults .. 124
8.1.2 Higher serum concentrations of ADMA, but not SDMA, are associated with reduced measures of spirometric lung function in older adults 125
8.1.3 Higher serum concentrations of the ADMA, but not SDMA, predict depression symptomatology in older adults ... 125
8.1.4 Serum concentrations of L-arginine, ADMA, SDMA, L-arginine/ADMA ratio, strongly predict IBS diagnosis in older adults ... 126
8.2 Research strengths and limitations .. 126
8.3 Outstanding questions and recommendations for future research 129
 8.3.1 Memory impairment is associated with serum methylarginine concentrations in older adults ... 130
 8.3.2 Study 2: Serum methylarginines and spirometry-measured lung function in older adults ... 131
 8.3.3 Study 3: Serum methylarginines and incident depression in older adults ... 132
 8.3.4 Study 4: Serum L-arginine and endogenous methylarginine concentrations predict irritable bowel syndrome diagnosis in older adults 133
8.4 Conclusions ... 134
References ... 135
Appendix ... 156
8.5 Signed coauthor contribution statements .. 156
Table of Figures

Figure 2.1 Schematic overview of the NO synthesis pathway, involving both enzymatic (via NOS; major pathway) and non-enzymatic pathways... 13

Figure 2.2 Production and metabolism of methylarginines in humans.......................... 16

Figure 3.1: Location of the HCS: Newcastle, Hunter Region, NSW, Australia............. 25

Figure 3.2: Measures in the HCS.. 26

Figure 4.1: Unadjusted odds ratios for univariate logistic regression analyses of quartiles of ADMA, SDMA, L-arginine, and L-arginine/ADMA ratio with objective memory impairment... 48

Figure 4.2: Unadjusted odds ratios for univariate logistic regression analyses of quartiles of ADMA, SDMA, L-arginine, and L-arginine/ADMA ratio with subjective memory impairment .. 49
Table of Tables

Table 1.1: Candidate contribution to the parent cohort study (HCS) in which data for the methylarginine sub-studies were derived. .. 9
Table 1.2: Candidate contribution to the Methylarginine sub-studies that form the basis of this thesis. ... 9
Table 2.1: Association of ADMA with traditional and cardiovascular risk factors.* 20
Table 2.2 Conditions associated with raised plasma/blood concentrations of ADMA**20
Table 2.3: Clinical Outcomes Independently Associated With Raised ADMA in Longitudinal Studies *** .. 21
Table 3.1: Baseline Socio-demographic characteristics of participants in The Hunter Community Study .. 27
Table 3.2: Lifestyle and social factors in participants joining the HCS............................. 30
Table 3.3: Mental health and wellbeing of participants joining the Hunter Community Study ... 31
Table 3.4: Medical and Surgical history of participants joining the HCS 32
Table 3.5: Biochemical and haematological measures of participants joining the HCS . 32
Table 3.6: Comparison of age and sex distribution between HCS and Hunter Valley, NSW, and the national population... 33
Table 4.1: Median serum concentration of Asymmetric dimethylarginine (ADMA), Symmetric dimethylarginine (SDMA), L-arginine, and L-arginine/ADMA ratio in lowest (Quartile 1) and highest (Quartile 4) quartile of each predictor (N=483). ... 48
Table 4.2: Adjusted odds ratios for predictors of objective memory impairment 51
Table 4.3: Adjusted odds ratios for predictors of subjective memory impairment 53
Table 5.1: Median serum concentration of Asymmetric dimethylarginine (ADMA), Symmetric dimethylarginine (SDMA), L-arginine, and L-arginine/ADMA ratio in lowest (Quartile 1) and highest (Quartile 4) quartile of each predictor (N=483) 70
Table 5.2: Participant characteristics and mean of each lung function outcome in the lowest vs. highest quartile of ADMA, SDMA, L-arginine, and L-arginine/ADMA ratio in the Hunter Community Study ... 71
Table 5.3: Unadjusted β -coefficients and 95% confidence intervals obtained from simple linear regression analyses of Asymmetric dimethylarginine (ADMA), Symmetric dimethylarginine (SDMA), L-arginine, and L-arginine/asymmetric dimethylarginine with Forced Expiratory Volume in 1 second (FEV1), Forced Vital Capacity (FVC), Forced Expiratory Volume in 1 second to Forced Vital Capacity ratio (FEV1/FVC), Percent Predicted Forced Expiratory Volume in 1 second (%Predicted FEV1), and Percent Predicted Forced Vital Capacity (%Predicted FVC). ... 74
Table 5.4: Adjusted β -coefficient and 95% confidence intervals obtained from a multiple linear regression analysis of Asymmetric dimethylarginine, symmetric dimethylarginine, L-arginine, and L-arginine/asymmetric dimethylarginine ratio with FEV1 ... 77
Table 5.5: Adjusted β-coefficient and 95% confidence intervals obtained from a multiple linear regression analysis of Asymmetric dimethylarginine, symmetric dimethylarginine, L-arginine, and L-arginine/asymmetric dimethylarginine ratio with percent predicted FEV1 (Supplementary info) ... 79

Table 5.6: Adjusted β-coefficient and 95% confidence intervals obtained from a multiple linear regression analysis of Asymmetric dimethylarginine, symmetric dimethylarginine, L-arginine, and L-arginine/asymmetric dimethylarginine ratio with FVC ... 81

Table 5.7: Adjusted β-coefficient and 95% confidence intervals obtained from a multiple linear regression analysis of Asymmetric dimethylarginine, symmetric dimethylarginine, L-arginine, and L-arginine/asymmetric dimethylarginine ratio with percent predicted FVC (Supplementary information) .. 82

Table 5.8: Adjusted β-coefficient and 95% confidence intervals obtained from a multiple linear regression analysis of Asymmetric dimethylarginine, symmetric dimethylarginine, L-arginine, and L-arginine/asymmetric dimethylarginine ratio with for the ratio FEV1/FVC .. 84

Table 6.1: Range of serum concentrations of ADMA, SDMA, L-arginine, and L-arginine/ADMA ratio in quartiles of each predictor (N=483). ... 98

Table 6.2: Characteristics of study participants according to follow-up depression status in the Hunter Community Study. .. 98

Table 6.3: Unadjusted odds ratios and 95% confidence intervals obtained from simple logistic regression analyses of Asymmetric dimethylarginine (ADMA), Symmetric dimethylarginine (SDMA), L-arginine, and L-arginine/asymmetric dimethylarginine with Depression status at follow-up in the Hunter Community Study ... 100

Table 6.4: Adjusted odds ratio and 95% confidence intervals obtained from a multiple logistic regression analysis of serum Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), L-arginine, and L-arginine/ADMA ratio with 6-year depression status in the Hunter Community Study ... 101

Table 6.5: Adjusted β-coefficient and 95% confidence intervals obtained from a multiple linear regression analysis of Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), L-arginine, and L-arginine/ADMA ratio with 6-year CESD score in the Hunter Community Study ... 103

Table 7.1: Case and control demographic characteristics, established and potential risk factors along with unadjusted and adjusted logistic regression analyses of L-arginine, ADMA, SDMA, and L-arginine/ADMA ratio with IBS ... 116

Table 7.2 Model performance for the association of each primary predictor with IBS-Diarrhoea (IBS-D) and IBS-Constipation (IBS-C) subtypes. .. 117
Synopsis
This thesis by publication is composed of a background, rationale & aims, brief literature review, five papers, and a final chapter providing conclusions. All but one of the papers relate to exploring the role of L-arginine and the endogenous nitric oxide synthesis inhibitors, known as methylarginines, in a number of health and disease outcomes not previously examined in the literature. At the time of submission, four of the five papers have been accepted for publication in peer reviewed journals. The final paper is currently under peer review in an internationally recognised journal.

Chapter 1 outlines the structure of the thesis and describes the rationale and aims of this research. It also describes the candidate’s contribution to this research as well as the candidate’s contribution to the design and conduct of the larger parent cohort study from which the data was derived.

Chapter 2 provides a summary of the general literature relevant to methylarginines; the role of asymmetric dimethylarginine (ADMA) in health and disease in particular. This chapter does not review literature specific to each health outcome investigated – this is presented and discussed in each of the chapters dealing with these health outcomes.

Chapter 3 (Paper 1) is a description of the methods used for the conduct of the Hunter Community Study, the larger cohort study from which the data for each methylarginine sub-study was derived. This paper has been published in the International Journal of Epidemiology.

Chapter 4 (Paper 2), “Memory impairment is associated with serum methylarginines in older adults”, reports the cross-sectional association between serum concentrations of L-arginine and the methylarginines, ADMA and symmetric dimethylarginine (SDMA), with subjective and objective memory impairment in sample of 483 community-dwelling older Australian adults. Multivariate analysis revealed that SDMA and diabetes were significantly associated with objective memory impairment (Adjusted Odd ratio (AOR) = 3.90; 95% CI. 1.21 – 12.52 for fourth quartile (Q4) of
ADMA, SDMA, education, number of general practitioner visits and atrial fibrillation were all statistically significantly associated with **subjective** memory impairment. (AOR = 1.82; 95% CI. 1.04 – 3.18 for Q4 ADMA). This paper has been published in Current Alzheimer’s Research.

Chapter 5 (Paper 3), “Serum methylarginines and spirometry-measured lung function in older adults”, reports the cross-sectional association between serum concentrations of L-arginine and the methylarginines, ADMA and SDMA, with spirometric lung function measures (Forced Expiratory Volume in 1 sec. (FEV1), Forced Vital Capacity (FVC), FEV1/FVC) in sample of 483 community-dwelling older Australian adults. In unadjusted analyses, ADMA and L-arginine/ADMA ratio were both statistically significantly associated with FEV1, FVC, and FEV1/FVC. These associations were attenuated but remained largely significant for ADMA and L-arginine/ADMA ratio with FEV1 and FVC with adjustment for a wide range of potential confounders. In none of the analyses was SDMA associated with any measures of spirometric lung function. This paper has been published in PLOS ONE.

Chapter 6 (Paper 4), “Serum methylarginines and incident depression in a cohort of older adults”, reports the longitudinal association between serum concentrations of L-arginine and the methylarginines, ADMA and SDMA, with incident depression in a sample of 483 community-dwelling older Australian adults over 6-years of follow-up. In adjusted analyses ADMA, SDMA, L-arginine, gender, and asthma remained statistically significant predictors of incident depression at follow-up. Quartile 3 of ADMA concentration was associated with 3.5 times the odds of developing depression compared with Q1 (OR = 3.54; 95% CI. 1.25 – 9.99). This paper has been published in Journal of Affective Disorders.

Chapter 7 (Paper 5), “The role of L-arginine and endogenous methylarginines in irritable bowel syndrome”, reports the results of nested case-control study that examined serum concentrations of L-arginine and the methylarginines, ADMA and SDMA, with incident irritable bowel syndrome in community-dwelling older Australian adults. Cases of irritable bowel syndrome, defined according to Rome III
criteria (N=156), and controls (N=332) were identified from within the cohort at the 5-year follow-up. In adjusted logistic regression analyses, L-arginine, ADMA, SDMA, L-arginine/ADMA ratio, and Kessler-10 psychological distress scores, were statistically significant, independent predictors of irritable bowel syndrome. Higher serum L-arginine concentration had the largest effect on irritable bowel syndrome diagnosis with the odds of IBS in those with serum L-arginine at the 75th (84 µmol/L) versus 25th (46 µmol/L) percentile of 9.03 (95% CI: 5.99-13.62). L-arginine had the best discriminative ability with a bias-adjusted area under the receiver operator characteristic curve of 0.859. This paper is currently under peer review in the journal GUT.

Conclusions (chapter 8). This program of research provided formative assessment of the potential role of L-arginine and endogenous methylarginines in the following NO-dependent health outcomes: cognition, depression, lung function, and the functional gastrointestinal disorder, irritable bowel syndrome. Given that this research mostly utilized exploratory cross-sectional or case-control designs to examine the potential role of L-arginine and methylarginines in these health outcomes, further research is needed to support a causal relationship. Hence, future research designs that employ longitudinal analyses and rigorous randomised controlled trials aimed at determining the effects of modifying L-arginine and/or methylarginine levels are needed to establish if these molecules are markers or mediators of disease within the nervous, respiratory, and gastrointestinal systems.