
Available from: http://dx.doi.org/10.1080/00036846.2011.564154

This is an electronic version of an article published in Applied Economics, Volume 44, Number 9, pp. 2461-2471. Applied Economics is available online at:

Accessed from: http://hdl.handle.net/1959.13/1051658
Market efficiency and continuous information arrival: evidence from prediction markets

Paul Docherty and Steve Easton
Newcastle Business School, University of Newcastle, NSW 2308, Australia

Abstract

Two regularities in financial economics are that prices underreact to news events and that they display short-term momentum. This paper tests for the presence of these regularities in prediction markets offered by the betting exchange Betfair on the 2008 Ryder Cup Golf Competition. Betfair offered in-play prediction markets on the individual match-play pairings and on the Cup result, with trading being virtually continuous in all markets.

Modelled probabilities of the Cup result were updated continuously using trades in the individual match-play pairings. These probabilities were then compared with the probabilities of the Cup result implied by odds in that market.

The odds in the market for the Cup result underreact to both good and bad news that is provided by changes in the odds in the markets for the individual pairings. Further, these modelled probabilities Granger cause changes in the probabilities of the Cup result implied by odds in the market on that outcome. In addition, economically and statistically significant evidence of momentum is found in the odds in the market on the Cup result.

Corresponding Author: Steve Easton, Newcastle Business School, University of Newcastle, NSW 2308, Australia
Email: steve.easton@newcastle.edu.au

1 We thank Betfair Ltd for making this study possible by providing us with the complete transaction file of all trading that occurred in the prediction markets for the 2008 Ryder Cup.
1 Introduction

Empirical research in financial economics has identified a number of regularities. Two of these regularities are that prices underreact to news events and that they display short-term momentum. Examples of the former regularity include analysts’ recommendations (Womack (1996) and Busse and Green (2002)), dividend initiations and omissions (Michaely et al. (1995)), seasoned equity issues (Loughran and Ritter (1995)), and earnings announcements (Bernard and Thomas (1989, 1990)). Examples of studies reporting evidence of short-term momentum include Lo and MacKinlay (1988), Lehmann (1990) and Conrad et al. (1991).²

The cause of these regularities is disputed. Fama (1998) argues that they are not regularities but chance deviations that are to be expected under market efficiency. However, Barberis et al. (1998) and Hong and Stein (1999), amongst others, argue that their strength and pervasiveness rules out the possibility of their being chance deviations. Further, they provide theoretical foundations by developing models of investor sentiment that seek to explain these regularities. While the models vary in levels of sophistication, a central component is the psychological phenomenon of conservatism, defined by Edwards (1968) as the slow updating of expectations in the face of new information. While they differ, both underreaction and momentum are consistent with conservatism. Slow updating of expectations is consistent with underreaction; that is, with prices increasing (decreasing) following good (bad) news events. It is also consistent with momentum whereby past returns are positively correlated with future returns.

² Over very short horizons, negative autocorrelation is found (see Jegadeesh (1990) and Lehmann (1990). This finding is attributed to bid-ask spreads and other measurement problems (see, for example, Kaul and Nimalendran (1990)). While our paper examines a very short horizon the results are robust to these measurement problems.
These models also rely on there being limits to arbitrage, limits that prevent rational investors from undertaking trades that remove biases caused by psychological phenomenon. As detailed by De Long *et al.* (1990) and Shleifer and Vishny, (1997), limits to arbitrage occur due to, inter alia, implementation costs.

This paper tests for the presence or absence of these regularities in a unique laboratory setting where trading is virtually continuous, as is the arrival of information. The market is characterised by limits to arbitrage and the results are robust to market microstructure issues such as bid-ask spreads and other measurement problems.

The laboratory in question is the prediction markets offered by the betting exchange Betfair (www.betfair.com) for the final day’s play in the 2008 Ryder Cup Golf Competition between the United States and Europe. On that day (21 September 2008) Betfair provided prediction markets on each of the twelve single match-play pairings and on the overall Cup result.

With the twelve markets on each pairing each having three possible outcomes (namely a win to the United States player, a win to the European player, or a tie), the probabilities of the three Cup outcomes (namely a win to the United States team, a win to the European team, or a tie) may be determined by the mathematically simple but computationally complex 3^{12} or 531,441 possible outcomes from the twelve pairings. A comparison of these modelled probabilities with the probabilities of each outcome implied by the odds offered on the Cup result provide an examination of whether the market reacts efficiently to the arrival of continuous information.
This paper examines whether the information provided by trades in the twelve markets on the individual pairings was incorporated instantaneously and without bias into the prices in the overall Cup market or whether the regularities observed in security markets were also present in this market.

The paper is structured as follows. Section II presents the methodology and describes the data. Hypotheses are presented in Section III and the effectiveness of the model is analysed in Section IV. Results are reported in Sections V and VI respectively and a summary is presented in Section VII.

II Methodology and Data

The Ryder Cup is a match play golf competition played biennially between teams from the United States and Europe. There are twenty eight matches in the competition with the winner of each match scoring a point for the team. A half a point is awarded for a tied match. The final day’s play comprises twelve matches.

The 2008 Ryder Cup was held from 19 to 21 September in Louisville, Kentucky. The matches played on 19 and 20 September resulted in a score of 9 points to the United States to 7 points to Europe. Therefore on the final day the United States needed to score 5 points from the twelve matches to tie the competition and 5.5 or more points to win the competition.

Using its Internet platform, the betting exchange Betfair offered simultaneous worldwide markets in each of the twelve player pairings, with in each case possible outcomes being a win to the United States player, a win to the European player, or a
tied match. Simultaneously a market was offered on the Cup outcome, again with outcomes being a win to the United States team, a win to the European team, or a tied competition.

Betfair operates as a clearing house and does not take positions itself. It provides markets whereby traders seeking to back outcomes are matched with traders seeking to lay or bet against outcomes. For example, Betfair may match a trader who agrees to pay $1.60 if the United States wins the Cup with another trader who agrees to pay $1 if the United States does not win. Betfair charges a maximum commission of 5 per cent of net profit. The data used in this study was obtained from Betfair, and consists of every trade that occurred on its Internet platform on the final day of the 2008 Ryder Cup in the twelve markets on the individual pairings and the market on the winner of the competition.

The analysis is divided into two periods. The out-of-play period is defined as the period from 4:00 am to 12:03 pm (the tee-off time for the first pairing). The in-play period is defined as the period from 12:03 pm to 5:17 pm.³ The competition was assumed to have ended at 5:17 pm when the modelled probability of the United States winning the Cup exceeded 99 per cent for the first time and trading became thin. Analysis of both out-of-play and in-play periods provides an examination of this market during periods when information arrival would have been in the first period virtually non-existent and in the second period virtually continuous.

³ The time 4:00 am in Kentucky corresponds to 8:00 am London time. The robustness of the results was examined by defining the start of the in-play period as 1:09 pm (the tee-off time of the seventh pairing) and 2:04 pm (the tee-off time of the final pairing). The results were substantively unchanged.
Descriptive statistics for each of the thirteen betting markets (for the twelve individual pairings plus the Cup result) are reported in Table 1. Trading during the in-play period was virtually continuous in the markets for the twelve individual pairings and in the market for the Cup result. A trade in the market for the Cup result occurred on average every 1.84 seconds, while a trade in one of the markets for the individual pairings occurred on average every 1.31 seconds. The maximum period between a trade in one of the markets for the individual pairings was 15 seconds. The liquidity in these markets is also evident in the number and volume of trades. After tee-off time on the final day, there were over 54,000 trades in the market for the Cup result and over 41,000 trades in the markets for the individual pairings. The total dollar volume of trade in the market for the Cup result exceeded $US 34 million, while in the markets for the individual pairings the volume of trade exceeded $US 7 million.

For each of the thirteen markets, using standard methodology from the prediction markets literature, the probability of each outcome is found by dividing the reciprocal of the odds by the sum of the reciprocal of the odds in that markets.\(^4\) Using trinomial distributions, the probabilities of the outcomes from each of the twelve pairings are

\[PROB_{US} = \frac{1}{\text{ODDS}_{US} + \text{ODDS}_{TIE} + \frac{1}{\text{ODDS}_{TIE}}} \]

as:

\[PROB_{US} = \frac{1}{(1/\text{ODDS}_{US}) + (1/\text{ODDS}_{EUR}) + (1/\text{ODDS}_{TIE})} \]

where PROB\(_{US}\) is the probability of the United States winning the overall Cup, OD\(_{US}\) is the overall Cup market odds for a win to the United States, OD\(_{EUR}\) is the overall Cup market odds for a win to Europe and OD\(_{TIE}\) is the overall Cup market odds for a tied outcome. Dividing by the sum of the reciprocal of the odds ensures that the implied probabilities of the three outcomes (United States win, European win and tie) sum to unity. For a detailed discussion of this approach see, for example, Wolfers and Zitzewitz (2006).
then used to provide the probabilities of the 3^{12} or 531,441 possible permutations from these pairings, and in turn to derive the modelled probability of each of the three Cup outcomes.

The only assumption employed in using the trinomial distribution is that the outcomes from the individual pairings are independent, an assumption that is intuitively appealing, especially given that due to the staggered tee-off times each pairing plays on a different hole at a different point in time. Empirical support for this assumption is provided by an examination of the correlation coefficients between changes in the implied probabilities provided by the odds for each of the individual pairings. The average correlation coefficient was 0.008, with a minimum of -0.147 and a maximum of +0.148. None of the 66 coefficients were significantly different from zero at the 0.05 level. The analysis in this paper would therefore appear to suffer less from the joint test problem than the vast majority of studies that examine market efficiency.

Each time there was a trade in one of the markets for the individual pairings (on average every 1.31 seconds) the updated odds were used to compute updated probabilities of the outcomes of the individual pairings. These updated probabilities were in turn used to compute updated modelled probabilities of the Cup result. While trading is virtually continuous, to ensure the results are robust to market microstructure issues such as bid-ask spreads and other measurement problems, the analysis is restricted to a minute-by-minute examination of the relationships between changes in modelled probabilities and changes in the probabilities of each outcome implied by the odds offered on the Cup result.
As noted above, the market is characterised by clear limits to arbitrage. One such limit is that while the odds in the markets for the individual pairings may be used to provide modelled probabilities of the Cup result, if these probabilities differ from the implied probabilities provided by the odds offered on that outcome, arbitrage is not possible.

In order to profit from any mispricing in either market, an arbitrager would need to trade in the market for the overall Cup result and simultaneously in real time establish offsetting positions in each of the three possible outcomes in each of the twelve markets for the individual pairings. Therefore in total 36 offsetting positions would need to be undertaken. Further, the amount of money placed in each of these positions would not be equal but would need to be weighted based on the probabilities of the 3^{12} or 531,441 possible outcomes from those individual pairings. Such arbitrage is not possible in an environment of continuous information arrival in all of these markets.

III Hypotheses

Two hypotheses are examined. Firstly, to examine whether the market on the Cup result is efficient or whether psychological biases and limits to arbitrage result in underreaction to information arrival, the following hypothesis is tested:

Hypothesis 1:

Implied probabilities in the Cup result market change in an unbiased manner with respect to changes in the modelled probabilities provided by the odds from the markets for the individual pairings.
Second, to examine whether psychological biases and limits to arbitrage result in momentum in prices, the following hypothesis is tested:

Hypothesis 2:

Implied probabilities in the Cup result market are not autocorrelated.

IV Descriptive Comparison of Modelled and Implied Probabilities

Panel A of Figure 1 provides the minute-by-minute modelled probabilities of a United States win, together with the probability of a United States win implied by the odds offered in the market on the Cup result. Panels B and C provide these probabilities for a European win and a tied competition respectively. While formal tests are conducted below, the results presented in Figure 1 suggest that during the out-of-play period when information arrival would have been minimal, there was a strong relationship between the modelled and implied probabilities for each of the three possible outcomes. However, this relationship was less apparent for the in-play period, with the results suggestive that the odds in the market on the Cup result and therefore the implied probabilities provided by these odds underreacted to the information provided by the changes in probabilities provided by the individual pairings.

[FIGURE 1 ABOUT HERE]

V Tests for Unbiased Reaction

Decile analysis

The first hypothesis was tested using the following procedure. First, modelled probabilities of the Cup result provided by the odds in the markets for the individual pairings were obtained. While these modelled probabilities were updated each time
there was a trade in one of the markets for the individual pairings (on average every 1.31 seconds), as noted above to ensure that the result are robust to market microstructure only those probabilities pertaining at the beginning of each minute were used. Minute-by-minute changes in modelled probabilities were then obtained and those observations sorted into deciles. These minute-by-minute changes in modelled probabilities were then compared with minute-by-minute changes in implied probabilities provided by the odds in the market for the Cup result. The results are reported in Table 2.5

\textbf{[TABLE 2 ABOUT HERE]}

For the three deciles with the greatest positive changes in modelled probabilities of the United States winning the competition, the average change in implied probabilities were statistically significantly \textit{less positive} at the 0.01 level, with the difference in changes in probabilities decreasing from 3.474 per cent for the first decile to 0.786 per cent for the third decile. These results suggest that the odds in the market for the Cup result underreact to the good news provided by changes in the odds in the markets for the individual pairings. Further, for the three deciles with the greatest negative changes in modelled probabilities of the United States winning the Cup, the average change in implied probabilities provided by the odds observed in the market for the Cup result were statistically significantly \textit{less negative} at the 0.01 level, in this case with the difference in changes in probabilities increasing from -0.886 per cent for the eighth decile to -3.312 per cent for the tenth decile. These results suggest in turn that

5These tests and all subsequent tests reported in the paper were also undertaken for the probabilities of Europe winning the competition and for the probabilities of a tie. These results are substantively the same as those for the United States and for the sake of brevity are not reported.
the odds in the market for the Cup result underreact to the bad news that is provided by changes in the odds in the markets for the individual pairings.

Time series regression analysis

The first hypothesis was also tested by examining the relationship between contemporaneous and lagged changes in the modelled probabilities of the United States winning the Cup, and changes in the implied probabilities provided by the odds in the market for the Cup result. This model may be specified as:

\[
\Delta P_t = \alpha_0 + \alpha_1 \Delta M_t + \alpha_2 \Delta M_{t-1} + \alpha_3 \Delta M_{t-2} + \alpha_4 \Delta M_{t-3} + \alpha_5 \Delta M_{t-4} + \alpha_6 \Delta M_{t-5} + \varepsilon \quad (1)
\]

where \(\Delta P_t \) is the minute-by-minute change in implied probabilities at time \(t \),
\(\Delta M_t \) is the minute-by-minute change in the modelled probabilities at time \(t \), and
\(\Delta M_{t-n} \) are lagged variables representing the minute-by-minute change in the modelled probabilities at time \(t-n \).

Underreaction (overreaction) of the odds in the market for the Cup result would be consistent with positive (negative) estimated coefficients for the lagged independent variables.

Table 3 reports the results of these regressions estimated using data from the in-play period. In addition to the coefficient on the contemporaneous change in modelled probability variable, the coefficients on the first and second order lagged variables are also positive and significantly different from zero at the 0.01 level, with the coefficient on the third order lagged variable being positive and significantly different from zero at the 0.05 level. Further, the inclusion of each of these three lagged
variables increases the adjusted R^2 of the regression. The statistically significant positive coefficients for these lagged variables suggests that the first hypothesis may be rejected and that the odds in the market for the Cup result take up to three minutes to react to the news that is provided by changes in the odds in the markets for the individual pairings.

To examine the causality of the relationship between changes in modelled probabilities and changes in implied probabilities provided by the odds in the market for the Cup result, time-series regressions were also performed with changes in modelled probabilities as the dependant variable and both contemporaneous and lagged values of changes in the implied probabilities as independent variables.

This regression model may be specified as:

$$
\Delta M_t = \alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta P_{t-1} + \alpha_3 \Delta P_{t-2} + \alpha_4 \Delta P_{t-3} + \alpha_5 \Delta P_{t-4} + \alpha_6 \Delta P_{t-5}
$$

(2)

where, in addition to those variables defined above, ΔP_{t-n} are lagged variables representing the minute-by-minute change in the implied probabilities at time $t-n$.

If the results from Equation 1 are due to changes in modelled probabilities causing changes in implied probabilities and not reverse causality, then we would expect the
estimated coefficients for the lagged independent variables to not be significantly different from zero.

Table 4 reports the results of these regressions estimated using data from the in-play period. During the period of continuous information arrival, only the contemporaneous change in implied probabilities of a United States win provided by the odds observed in the market for the Cup result is significant in explaining changes in modelled probabilities. When the model is augmented with lagged variables of implied probabilities none of the coefficients are significantly different to zero at the 0.05 level and the adjusted R^2 doesn’t increase.

[TABLE 4 ABOUT HERE]

Granger causality

To more formally examine causality between contemporaneous and lagged changes in modelled and implied probabilities of a United States win, Granger causality tests were also performed. A time series (x) is said to Granger cause another time series (y) if y can be better forecast using past values of both x and y as opposed to using historical values of y alone. Therefore, a necessary condition for a time series x to be a leading indicator of a time series y is:

$$\sigma^2(y \mid y', x') < \sigma^2(y \mid y')$$
where $\sigma^2(y \mid y', x')$ is the minimum predictive error variance of y given both past y (denoted as y') and past values of x (denoted as x'), and $\sigma^2(y \mid y')$ is the minimum predictive error variance of y given past y.

To test for the existence and direction of causality between changes in the implied probabilities and changes in the modelled probabilities, the following two equations are specified:

$$
\Delta P_t = \alpha_0 + \sum_{i=1}^{m} \beta_i \Delta P_{t-i} + \sum_{j=1}^{n} \gamma_j \Delta M_{t-j} + \varepsilon
$$

(3)

$$
\Delta M_t = \alpha_0 + \sum_{i=1}^{p} \delta_i \Delta M_{t-i} + \sum_{j=1}^{q} \phi_j \Delta P_{t-j} + \varepsilon
$$

(4)

The causality tests to be performed can be expressed in the form of the following hypothesis:

Change in implied probability (ΔP) causes change in modelled probability (ΔM) if $H_0: \gamma_j = 0, j = 1,\ldots, n$ can be rejected.

Change in modelled probability (ΔM) causes change in implied probability (ΔP) if $H_0: \phi_j = 0, j = 1,\ldots, q$ can be rejected.

As results from Granger causality tests are sensitive to the selection of the lag length, the final predictive error (FPE) and Akaike’s Information Criterion (AIC) are calculated. The minimum value of each of these criteria are applied to determine the
optimal lag length to apply to the variables in the equation. The results of the FPE and AIC calculations are reported in Table 5 and indicate that the optimal lag-length is 3.

F-statistics are calculated to test the null hypotheses that the variables are not causally related. The F-statistic corresponding to Equation 3 that has degrees of freedom equal to \(n \) and \(T - (m + n + 1) \) may be specified as:

\[
F = \frac{(SSR_r - SSR_u)/n}{SSR_u/[T - (m + n + 1)]}
\]

where SSR\(_r\) is the sum of squared errors associated with the restricted form of Equation 3 and SSR\(_u\) is the sum of squared errors associated with the unrestricted form of Equation 3.

The results of the Granger causality tests for the in-play period are reported in Table 5. For all lag-lengths examined, the null hypothesis that changes in the modelled probabilities of a United States win do not Granger cause changes in the implied probabilities of a United States win may be rejected at the 0.01 level. In contrast, the null hypothesis that changes in the implied probabilities do not Granger cause changes in the modelled probabilities is not rejected for any of the lag-lengths specified.

The results provided in Tables 2 to 5 are consistent in suggesting that the null hypothesis that implied probabilities in the Cup result market change in an unbiased

\(^6\) For more information regarding FPE and AIC, see Hsiao (1981) and Akaike (1974) respectively. The formulae used to determine the optimal lag length according to each search criteria may be specified as follows:

\[
\text{FPE} = \frac{[T+(n+1)]}{(T-n-1)} \times \frac{\text{SSR}(n)}{T}
\]

\[
\text{AIC} = \ln \left(\frac{\text{SSR}(n)}{T} \right) + \frac{2n}{T}
\]

where \(T \) is the sample size, \(n \) is the lag-length being tested and SSR is the sum of squared residuals.
manner with respect to changes in the modelled probabilities may be rejected. All results are consistent with underreaction in the Cup result market to news provided by changes in modelled probabilities.

TABLE 5 ABOUT HERE

V Tests for Momentum

Autocorrelation

To test the second hypothesis, time-series regressions were performed to test for autocorrelation. Changes in the probability of the United States winning as implied by the odds in the market for the Cup result were regressed against lagged values of this time series. The equation may be specified as:

\[\Delta P_t = \alpha_0 + \alpha_1 \Delta P_{t-1} + \alpha_2 \Delta P_{t-2} + \alpha_3 \Delta P_{t-3} + \varepsilon \] (5)

where \(\Delta P_t \) is the minute-by-minute change in the implied probabilities at time \(t \), and \(\Delta P_{t-n} \) are lagged variables representing the minute-by-minute change in the implied probabilities at time \(t-n \).

Regressions are also estimated to test for the presence of autocorrelation in changes in the modelled probabilities. This equation may be specified as:

\[\Delta M_t = \alpha_0 + \alpha_1 \Delta M_{t-1} + \alpha_2 \Delta M_{t-2} + \alpha_3 \Delta M_{t-3} + \varepsilon \] (6)

where \(\Delta M_t \) is the minute-by-minute change in the modelled probabilities at time \(t \), and
\(\Delta M_{t-n} \) are lagged variables representing the minute-by-minute change in the modelled probabilities at time \(t-n \).

The results of the regressions used to estimate Equation 5 are reported in Panel A of Table 6. In all three equations the coefficient on the variable representing a one-minute lag in implied probabilities is significantly different to zero at the 0.01. None of the other coefficients are significant. There is therefore evidence of momentum in implied probabilities but that momentum is limited to a minute.7

Panel B of Table 6 reports the results of the regressions used to estimate Equation 6. None of the coefficients on the independent variables are significantly different from zero for any of the regressions. Therefore, while there is evidence of momentum in the implied probabilities, there is no evidence of momentum in modelled probabilities.

Trading strategy
To examine whether the statistical evidence of momentum in implied probabilities was also economically significant, a trading strategy was adopted. This strategy was constructed as follows. First, implied probabilities of the United States winning the Cup were obtained at the beginning of each minute. Minute-by-minute changes in those probabilities were then obtained and those observations sorted into quintiles. Second, for those changes in the top quintile, the United States was then backed to win at the traded odds that existed at the beginning of the subsequent minute. Therefore a bet was placed on the United States winning where its implied probabilities of doing

7 As noted at footnote 2 above, this result is not attributable to bid-ask spreads or other measurement problems – problems that result in negative autocorrelation.
so had increased by the most in the previous minute. Further, for those changes in the bottom quintile, a bet was placed against the United States winning at the traded odds that existed at the beginning of the subsequent minute. Therefore a bet was placed against the United States winning where its implied probabilities of doing so had decreased by the most in the previous minute. Third, those positions backing the United States were reversed out one minute later by betting against the United States and conversely those positions betting against the United States were reversed out one minute later by backing the United States. This third step was required to ensure that net positions did not accumulate. Again it should be noted that trades in this market occurred on average every 1.84 seconds and traded prices were used. Therefore the returns from this trading strategy do not require adjustment for any bid-ask spread and are earned virtually instantaneously. To remove any possible transaction costs, all returns were also multiplied by 0.95 to allow for the maximum commission of 5 per cent charged by Betfair.

This momentum-based trading strategy was replicated using the probabilities of a European win and of a tied Cup result. The results are reported in Table 7.

The average return from the 62 bets placed on a United States win, with those bets reversed out one minute later by betting against a United States win, was 0.513 per cent. Further the average return from the 62 bets placed against a United States win, again with those bets reversed out one minute later by in this case backing a United States win, was 0.257 per cent. The average return from all 124 bets was 0.380 percent. The average return for all 124 bets placed using the same strategy but based on probabilities of a European win was 0.171 per cent and the strategy based on
probabilities of a tied Cup provided an average return of 0.209 per cent. For the
strategies based on the probabilities of the United States win and on a tied result the
average returns from the 124 bets placed were both significantly different from zero at
the 0.01 level.

[TABLE 7 ABOUT HERE]

VI Summary

There is evidence from securities markets that prices underreact to news events and
that they display short-term momentum. This paper tests for the presence of these
regularities in a unique prediction-markets setting where trading is virtually
continuous, as is the arrival of information. Underreaction to both good and bad news
is observed in this market. Further, economically and statistically significant evidence
of momentum is found.
References

Table 1: Descriptive statistics

<table>
<thead>
<tr>
<th>Market</th>
<th>Final Day Tee-Off Time</th>
<th>Number of Trades</th>
<th>Average Time Between Trades After Tee-Off (seconds)</th>
<th>Total Volume Traded ($US)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Competition</td>
<td>12:03 PM</td>
<td>54 037</td>
<td>1.84</td>
<td>34 709 399</td>
</tr>
<tr>
<td>Pairing 1</td>
<td>12:03 PM</td>
<td>6200</td>
<td>2.76</td>
<td>1 399 295</td>
</tr>
<tr>
<td>Pairing 2</td>
<td>12:14 PM</td>
<td>5386</td>
<td>3.94</td>
<td>957 306</td>
</tr>
<tr>
<td>Pairing 3</td>
<td>12:25 PM</td>
<td>2732</td>
<td>11.09</td>
<td>482 585</td>
</tr>
<tr>
<td>Pairing 4</td>
<td>12:36 PM</td>
<td>3776</td>
<td>7.31</td>
<td>522 293</td>
</tr>
<tr>
<td>Pairing 5</td>
<td>12:47 PM</td>
<td>2905</td>
<td>8.27</td>
<td>441 975</td>
</tr>
<tr>
<td>Pairing 6</td>
<td>12:58 PM</td>
<td>2854</td>
<td>11.15</td>
<td>452 075</td>
</tr>
<tr>
<td>Pairing 7</td>
<td>1:09 PM</td>
<td>2881</td>
<td>9.56</td>
<td>481 495</td>
</tr>
<tr>
<td>Pairing 8</td>
<td>1:20 PM</td>
<td>2759</td>
<td>10.68</td>
<td>629 249</td>
</tr>
<tr>
<td>Pairing 9</td>
<td>1:31 PM</td>
<td>2597</td>
<td>14.03</td>
<td>392 111</td>
</tr>
<tr>
<td>Pairing 10</td>
<td>1:42 PM</td>
<td>2784</td>
<td>18.43</td>
<td>675 456</td>
</tr>
<tr>
<td>Pairing 11</td>
<td>1:53 PM</td>
<td>2854</td>
<td>10.62</td>
<td>615 374</td>
</tr>
<tr>
<td>Pairing 12</td>
<td>2:04 PM</td>
<td>3579</td>
<td>6.51</td>
<td>666 488</td>
</tr>
<tr>
<td>All Pairings</td>
<td></td>
<td>41 307</td>
<td>1.31</td>
<td>7 715 701</td>
</tr>
</tbody>
</table>

The table provides descriptive statistics for trades that took place during the in-play period in the individual pairings and the overall market. The tee-off times reported are in Kentucky time (Eastern Time Zone). The cumulative data across all pairings is reported in the final row.
Figure 1 - Panel A: Implied and modelled probabilities of United States win

Panel B: Implied and modelled probabilities of European win

Panel C: Implied and modelled probabilities of a tie
Table 2: Test for unbiased reaction to changes in modelled probabilities

<table>
<thead>
<tr>
<th>Deciles</th>
<th>Average Change In Modelled Probability (%)</th>
<th>Average Change In Implied Probability (%)</th>
<th>Average Difference Between Change In Modelled and Implied Probability (%)</th>
<th>t-statistic of difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.630</td>
<td>1.156</td>
<td>3.474</td>
<td>7.081**</td>
</tr>
<tr>
<td>2</td>
<td>2.189</td>
<td>0.493</td>
<td>1.696</td>
<td>7.214**</td>
</tr>
<tr>
<td>3</td>
<td>1.204</td>
<td>0.418</td>
<td>0.786</td>
<td>4.532**</td>
</tr>
<tr>
<td>4</td>
<td>0.607</td>
<td>0.152</td>
<td>0.455</td>
<td>2.827*</td>
</tr>
<tr>
<td>5</td>
<td>0.174</td>
<td>0.311</td>
<td>-0.137</td>
<td>-0.844</td>
</tr>
<tr>
<td>6</td>
<td>-0.261</td>
<td>0.242</td>
<td>-0.503</td>
<td>-2.925*</td>
</tr>
<tr>
<td>7</td>
<td>-0.514</td>
<td>-0.372</td>
<td>-0.142</td>
<td>-0.836</td>
</tr>
<tr>
<td>8</td>
<td>-1.183</td>
<td>-0.297</td>
<td>-0.886</td>
<td>-4.163**</td>
</tr>
<tr>
<td>9</td>
<td>-1.866</td>
<td>-0.212</td>
<td>-1.654</td>
<td>-7.651**</td>
</tr>
<tr>
<td>10</td>
<td>-3.940</td>
<td>-0.628</td>
<td>-3.312</td>
<td>-7.684**</td>
</tr>
</tbody>
</table>

The table reports the results from forming deciles based on changes in modelled probabilities. The average changes in the modelled and implied probabilities are reported in columns 2 and 3 respectively. The final column reports for each decile the t-statistic for the test of whether the differences between the modelled and implied probabilities are different from zero.

**Denotes significance at 0.01 level

*Denotes significance at 0.05 level
Table 3: Time series regressions with implied probability of a United States win as the dependant variable

<table>
<thead>
<tr>
<th>Contemporaneous and Lagged Modelled Probabilities of United States Win</th>
<th>Constant</th>
<th>ΔM_t</th>
<th>ΔM_{t-1}</th>
<th>ΔM_{t-2}</th>
<th>ΔM_{t-3}</th>
<th>ΔM_{t-4}</th>
<th>ΔM_{t-5}</th>
<th>Adjusted R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.233</td>
<td>0.190</td>
<td>0.082</td>
<td>0.066</td>
<td>0.025</td>
<td>0.024</td>
<td>-0.032</td>
<td>0.321</td>
</tr>
<tr>
<td>(1.187)</td>
<td>(8.657**)</td>
<td>(7.062**)</td>
<td>(3.084**)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>0.241</td>
<td>0.190</td>
<td>0.082</td>
<td>0.066</td>
<td>0.025</td>
<td>0.024</td>
<td>-0.032</td>
<td>0.321</td>
</tr>
<tr>
<td>(0.894)</td>
<td>(9.078**)</td>
<td>(7.22**)</td>
<td>(3.118**)</td>
<td>(2.48*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>0.242</td>
<td>0.193</td>
<td>0.082</td>
<td>0.066</td>
<td>0.025</td>
<td>0.024</td>
<td>-0.032</td>
<td>0.321</td>
</tr>
<tr>
<td>(0.836)</td>
<td>(9.088**)</td>
<td>(7.277**)</td>
<td>(3.112**)</td>
<td>(2.484*)</td>
<td>(0.923)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>0.240</td>
<td>0.193</td>
<td>0.078</td>
<td>0.066</td>
<td>0.024</td>
<td>-0.032</td>
<td>0.321</td>
<td></td>
</tr>
<tr>
<td>(0.911)</td>
<td>(9.005**)</td>
<td>(7.264**)</td>
<td>(2.938**)</td>
<td>(2.484*)</td>
<td>(0.917)</td>
<td>(-1.197)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table presents the results from regressing the 312 minute-by-minute changes in the implied probabilities against lagged variables of changes in modelled probabilities. The model that is estimated may be specified as: \(\Delta P_t = \alpha_0 + \alpha_1 \Delta M_t + \alpha_2 \Delta M_{t-1} + \alpha_3 \Delta M_{t-2} + \alpha_4 \Delta M_{t-3} + \alpha_5 \Delta M_{t-4} + \alpha_6 \Delta M_{t-5} + \varepsilon \)

where \(\Delta P_t \) is the minute-by-minute change in implied probabilities at time \(t \), \(\Delta M_t \) is the minute-by-minute change in the modelled probabilities at time \(t \), and \(\Delta M_{t-n} \) are lagged variables representing the minute-by-minute change in the modelled probabilities at time \(t-n \).

The t-statistics are reported in parentheses below their associated coefficients. The right hand column reports the adjusted \(R^2 \) for each of the individual regressions.

**Denotes significance at 0.01 level

*Denotes significance at 0.05 level
Table 4: Time series regressions with modelled probability of a United States win as the dependant variable

<table>
<thead>
<tr>
<th>Constant</th>
<th>∆P_t</th>
<th>∆P_{t-1}</th>
<th>∆P_{t-2}</th>
<th>∆P_{t-3}</th>
<th>∆P_{t-4}</th>
<th>∆P_{t-5}</th>
<th>Adjusted R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.756</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.173</td>
</tr>
<tr>
<td>(0.238)</td>
<td>(8.003**)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.766</td>
<td>-0.051</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.171</td>
</tr>
<tr>
<td>(0.280)</td>
<td>(7.945**)</td>
<td>(-0.527)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.772</td>
<td>-0.040</td>
<td>-0.061</td>
<td></td>
<td></td>
<td></td>
<td>0.169</td>
</tr>
<tr>
<td>(0.326)</td>
<td>(7.96**)</td>
<td>(-0.411)</td>
<td>(-0.626)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>0.774</td>
<td>-0.025</td>
<td>-0.033</td>
<td>-0.160</td>
<td></td>
<td></td>
<td>0.174</td>
</tr>
<tr>
<td>(0.444)</td>
<td>(8.01**)</td>
<td>(-0.253)</td>
<td>(-0.341)</td>
<td>(-1.655)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>0.775</td>
<td>-0.025</td>
<td>-0.035</td>
<td>-0.162</td>
<td>0.016</td>
<td></td>
<td>0.172</td>
</tr>
<tr>
<td>(0.430)</td>
<td>(7.989**)</td>
<td>(-0.257)</td>
<td>(-0.355)</td>
<td>(-1.656)</td>
<td>(0.164)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>0.763</td>
<td>-0.027</td>
<td>-0.032</td>
<td>-0.156</td>
<td>0.026</td>
<td>-0.062</td>
<td>0.170</td>
</tr>
<tr>
<td>(0.484)</td>
<td>(7.709**)</td>
<td>(-0.278)</td>
<td>(-0.325)</td>
<td>(-1.575)</td>
<td>(0.262)</td>
<td>(-0.625)</td>
<td></td>
</tr>
</tbody>
</table>

The table presents the results from regressing the 312 minute-by-minute changes in the modelled probabilities against lagged variables of changes in the implied probabilities. This model may be specified as: \(\Delta M_t = \alpha_0 + \alpha_1 \Delta P_t + \alpha_2 \Delta P_{t-1} + \alpha_3 \Delta P_{t-2} + \alpha_4 \Delta P_{t-3} + \alpha_5 \Delta P_{t-4} + \alpha_6 \Delta P_{t-5} \)

where \(\Delta M_t \) is the minute-by-minute change in the modelled probabilities at time \(t \), \(\Delta P_t \) is the minute-by-minute change in implied probabilities at time \(t \), and \(\Delta M_{t-n} \) are lagged variables representing the minute-by-minute change in the modelled probabilities at time \(t-n \).

The \(t \)-statistics are reported in parentheses below their associated coefficients. The right hand column reports the adjusted \(R^2 \) for each of the individual regressions.

**Denotes significance at 0.01 level

*Denotes significance at 0.05 level
Table 5: Granger causality tests

<table>
<thead>
<tr>
<th>Lag</th>
<th>F-Statistic Modelled probability does not Granger cause implied probability</th>
<th>F-Statistic Implied probability does not Granger cause modelled probability</th>
<th>Final Prediction Error</th>
<th>Akaike Information Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15.812**</td>
<td>0.506</td>
<td>2.88e-07</td>
<td>-9.385</td>
</tr>
<tr>
<td>1</td>
<td>27.112**</td>
<td>0.960</td>
<td>2.54e-07</td>
<td>-9.512</td>
</tr>
<tr>
<td>2</td>
<td>15.812**</td>
<td>0.506</td>
<td>2.50e-07</td>
<td>-9.525</td>
</tr>
<tr>
<td>3</td>
<td>11.112**</td>
<td>1.097</td>
<td>2.44e-07^</td>
<td>-9.548^</td>
</tr>
<tr>
<td>4</td>
<td>8.032**</td>
<td>1.078</td>
<td>2.49e-07</td>
<td>-9.529</td>
</tr>
<tr>
<td>5</td>
<td>6.613**</td>
<td>1.844</td>
<td>2.45e-07</td>
<td>-9.548</td>
</tr>
<tr>
<td>6</td>
<td>6.149**</td>
<td>1.839</td>
<td>2.47e-07</td>
<td>-9.537</td>
</tr>
<tr>
<td>7</td>
<td>5.251**</td>
<td>1.395</td>
<td>2.51e-07</td>
<td>-9.524</td>
</tr>
<tr>
<td>8</td>
<td>4.655**</td>
<td>1.235</td>
<td>2.56e-07</td>
<td>-9.502</td>
</tr>
</tbody>
</table>

The table reports the results from Granger causality tests. The null hypotheses tested are:

- H_0: Changes in modelled probabilities do not Granger cause changes in the implied probabilities; and
- H_0: Changes in implied probabilities do not Granger cause changes in the modelled probabilities

For completeness, the Granger causality tests are reported for 0-8 lags. The second and third columns report the F-statistics used to calculate whether we can reject two null hypotheses outlined above. Columns 4 and 5 report the final prediction error and Akaike Information Criterion for each lag-length.

**Denotes significance at 0.01 level

*Denotes significance at 0.05 level

^ Denotes the minimum value for the FPE and AIC values
Table 6: Time series tests for autocorrelation

Panel A

<table>
<thead>
<tr>
<th>Constant</th>
<th>ΔP_{t-1}</th>
<th>ΔP_{t-2}</th>
<th>ΔP_{t-3}</th>
<th>Adjusted R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.193</td>
<td></td>
<td></td>
<td>0.034</td>
</tr>
<tr>
<td>(1.323)</td>
<td>(3.404**)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>0.174</td>
<td>0.099</td>
<td></td>
<td>0.040</td>
</tr>
<tr>
<td>(1.185)</td>
<td>(3.020**)</td>
<td>(1.715)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.185</td>
<td>3.020</td>
<td>1.715</td>
<td>0.015</td>
<td>0.037</td>
</tr>
<tr>
<td>(1.161)</td>
<td>(2.975**)</td>
<td>(1.644)</td>
<td>(0.252)</td>
<td></td>
</tr>
</tbody>
</table>

Panel B

<table>
<thead>
<tr>
<th>Constant</th>
<th>ΔM_{t-1}</th>
<th>ΔM_{t-2}</th>
<th>ΔM_{t-3}</th>
<th>Adjusted R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>-0.004</td>
<td></td>
<td></td>
<td>-0.003</td>
</tr>
<tr>
<td>(0.944)</td>
<td>(-0.066)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>-0.004</td>
<td>0.006</td>
<td></td>
<td>-0.007</td>
</tr>
<tr>
<td>(0.935)</td>
<td>(-0.066)</td>
<td>(0.111)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>-0.003</td>
<td>0.006</td>
<td>-0.106</td>
<td>0.006</td>
</tr>
<tr>
<td>(1.058)</td>
<td>(-0.052)</td>
<td>(0.103)</td>
<td>(-1.926)</td>
<td></td>
</tr>
</tbody>
</table>

Panel A presents the results from regressing the 312 minute-by-minute changes in the implied probabilities against lagged variables of changes in the implied probabilities. This model may be specified as: $\Delta P_t = \alpha_0 + \alpha_1 \Delta P_{t-1} + \alpha_2 \Delta P_{t-2} + \alpha_3 \Delta P_{t-3}$

Where ΔP_t is the minute-by-minute change in implied probabilities at time t, and ΔP_{t-n} are lagged variables representing the minute-by-minute change in the implied probabilities at time $t-n$.

The t-statistics are reported in parentheses below their associated coefficients. The right hand column reports the adjusted R^2 for each of the individual regressions.

Panel B presents the results from regressing the 312 minute-by-minute changes in the modelled probabilities against lagged variables of changes in the modelled probabilities. This model may be specified as: $\Delta M_t = \alpha_0 + \alpha_1 \Delta M_{t-1} + \alpha_2 \Delta M_{t-2} + \alpha_3 \Delta M_{t-3}$

Where ΔM_t is the minute-by-minute change in modelled probabilities at time t, and ΔM_{t-n} are lagged variables representing the minute-by-minute change in the modelled probabilities at time $t-n$.

The t-statistics are reported in parentheses below their associated coefficients. The right hand column reports the adjusted R^2 for each of the individual regressions.

Denotes significance at 0.01 level

*Denotes significance at 0.05 level
The table reports the results from the trading strategy of betting on (betting against) an outcome if the previous minutes’ change in implied probability of that outcome was in the top (bottom) quintile. The average returns are reported for a United States win, European win and the tie. *t*-statistics are reported in parentheses.

**Denotes significance at 0.01 level

*Denotes significance at 0.05 level

<table>
<thead>
<tr>
<th>Bet on Outcome</th>
<th>Number of Observations</th>
<th>Average Return for United States Win (%)</th>
<th>Average Return for European Win (%)</th>
<th>Average Return for Tie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>62</td>
<td>0.513</td>
<td>0.114</td>
<td>0.257</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.622**)</td>
<td>(0.944)</td>
<td>(2.818**)</td>
</tr>
<tr>
<td>Bet Against Outcome</td>
<td>62</td>
<td>0.257</td>
<td>0.228</td>
<td>0.162</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.507)</td>
<td>(2.219*)</td>
<td>(2.077*)</td>
</tr>
<tr>
<td>All Bets</td>
<td>124</td>
<td>0.380</td>
<td>0.171</td>
<td>0.209</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.868**)</td>
<td>(1.881)</td>
<td>(3.463**)</td>
</tr>
</tbody>
</table>