DEVELOPMENT OF NEW RETRACKING METHODS FOR MAPPING SEA LEVELS OVER THE SHELF AREAS FROM SATELLITE ALTIMETRY DATA

NURUL HAZRINA IDRIS
B.Sc. Remote Sensing (Universiti Teknologi Malaysia)
M.Sc. Remote Sensing (Universiti Teknologi Malaysia)

This thesis is presented for the Degree of Doctor of Philosophy
The University of Newcastle

September 2014
DECLARATION

STATEMENT OF ORIGINALITY
The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository**, subject to the provisions of the Copyright Act 1968.

**Unless an Embargo has been approved for a determined period.

ACKNOWLEDGEMENT OF AUTHORSHIP
I hereby certify that the work embodied in this thesis contains a published paper/s/scholarly work of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publication/s/scholarly work.

‘I, Dr. Xiaoli Deng, attest that the Research Higher Degree Candidate, Nurul Hazrina Idris contributed as a joint author to the papers as listed in the list of publications’.

__________________________ _______________________
Nurul Hazrina Idris Dr. Xiaoli Deng
September, 2014 September, 2014
ACKNOWLEDGEMENTS

I wish to express my utmost appreciation to my principal supervisor, Dr. Xiaoli Deng, and co-supervisor, Dr. Harvey Mitchell, for the patient guidance, encouragement and advice they have provided throughout my time as their student. I have been extremely lucky to have supervisors who cared so much about my work, and who responded to my questions and queries so promptly.

I am most grateful to Dr. Ole Andersen (Denmark Technical University, Denmark), Dr. Yongcun Cheng (Denmark Technical University, Denmark), Dr. Wang Xiaochun (Jet Propulsion Laboratory, California Institute of Technology, USA) and Carolyn Roesler (University of Colorado, USA) for their help and guidance during much of this research, and for providing some references and useful discussions.

I also wish to thank all of the friends, staff and students in the discipline of Civil, Surveying and Environmental Engineering at the University of Newcastle for their help and encouragement. My thanks also go to all of my colleagues in the Department of Geoinformation, Universiti Teknologi Malaysia, and the staff in the Human Capital Development Division, Universiti Teknologi Malaysia.

This research was funded by the Australian Endeavour International Postgraduate Research Scholarship, the University of Newcastle Research Scholarship, and the University of Technology Malaysia Scholarship.

I would like to thank my parent, family, and children: Muhammad Aish Amsyar and Zulfaa Aishy, to whom I dedicate this work, for their love and constant support. Special thanks and love to my husband, Mohammad Khalil Mohd Saaid whose patient love enabled me to complete this work. His unflinching courage and conviction will always inspire me. Thanks to all those who were helpful and took considerable trouble to provide exactly what was required to make my work perfect. I am extremely grateful to them.
ABSTRACT

Through research carried out in the last few years, sea level anomalies (SLAs) from altimeter range measurements have been improved in the near coastal zone between 50-100 km from the coastline using waveform retracking techniques. However, closer than about 10 km from the coastline, the improvement of altimetry data accuracy is still challenging due to the complex nature of the coastal topography and rougher coastal sea states. Although there is a healthy diversity of waveform retracking algorithms that have been beneficial to the coastal community, there is a lack of clear recommendations and guidelines on which retracker should be used under the various conditions. This dissertation presents a waveform retracking system that improves the accuracy of coastal altimetry data through the optimal selection and seamless switching of retrackers.

The principles of the system are twofold. The first is to reprocess altimeter waveforms using the optimal retracker, which is sought, based on the analysis from a fuzzy expert system. The second is to minimise the relative offset in the retrieved SLAs caused by switching from one retracker to another, using a neural network. With the retracking system, the risk of assigning the waveform to an inappropriate retracker is minimised by including information about the waveform shapes and statistical features of the retracking results in the fuzzy expert system. The system also reduces inconsistency in the retracked SLAs when switching retrackers by employing the neural network to handle the nonlinear relationship between the retracker and the scattering surface, thus providing seamless transition from the open ocean to coast, or vice versa.

The retracking system has been demonstrated to 20 Hz waveforms of Jason-1 and Jason-2/OSTM missions from 2009 to 2011. It has been applied to areas of the Great Barrier Reef in Australia and the Prince William Sound in Alaska. The regional investigations have demonstrated that the retracking system can effectively improve the quality of the altimeter derived SLAs in coastal regions. It reduces the standard deviation of the unretracked sea levels by up to 500 cm for Jason-1 and 300 cm for Jason-2. It extends the SLA profiles further (1-7 km) to the coastline and recovers up to 70% more data than the existing retrackers from the Sensor Geophysical Data Records.
Comparison with the SLAs from the tide gauges indicates that the SLAs from the retracking system are more reliable than those of from the SGDR products, in the sense that it has a higher (>0.8) temporal correlation and smaller (<17 cm) RMS errors. The retracked SLAs from the retracking system also produce reliable geostrophic velocities as they are consistent with those of the high frequency radar velocities in the Great Barrier Reef region. Comparison with the Regional Ocean Modelling System (ROMS) at Prince William Sound shows good agreement between the SLA patterns from the retracking system and the ROMS.

The results obtained in this dissertation, therefore, present a significant improvement in the accuracy and precision of the estimated SLAs and efficiently reduce the altimetry no-data gap in coastal regions. In addition, it also addresses the systematic validation protocol for validating the altimetry retracked SLAs using the HF radar in the region of the Great Barrier Reef, and using the ROMS in the region of Prince William Sound.
TABLE OF CONTENTS

DECLARATION.. I
ACKNOWLEDGEMENTS .. II
ABSTRACT .. III
TABLE OF CONTENTS ... V
LIST OF FIGURES .. VIII
LIST OF TABLES .. XVI
LIST OF ABBREVIATIONS ... XVII
LIST OF SYMBOLS .. XX
LIST OF PUBLICATIONS ... XXV

CHAPTER 1 INTRODUCTION .. 1

1.1 A BRIEF INTRODUCTION TO SATELLITE ALTIMETRY .. 1
1.2 COASTAL ALTIMETRY DATA .. 5
1.3 ISSUES WITH COASTAL ALTIMETRY DATA .. 7
 1.3.1 Issues Related to the Accuracy of Coastal Altimetry Data 8
 1.3.2 The Effect of Land Topography on Coastal Waveforms 9
 1.3.3 Issues Related to Waveform Retracking Techniques .. 13
 1.3.4 Coastal Topographic Effects on Geophysical and Environmental Corrections 14
 1.3.5 Challenges for Validating Coastal Altimetry Data .. 16
1.4 OBJECTIVES OF THE STUDY ... 17
1.5 SIGNIFICANCE OF THE STUDY ... 18
1.6 THE STUDY AREAS .. 19
1.7 THESIS OUTLINE .. 21

CHAPTER 2 WAVEFORM RETRACKING METHODS AND DATA SOURCES .. 26

2.1 INTRODUCTION ... 26
2.2 RETRACKING ALGORITHMS FOR OCEAN WAVEFORMS 27
 2.2.1 The Brown Model Retracker .. 27
 2.2.2 The Offset Centre of Gravity (OCOG) Retracker ... 31
 2.2.3 The Threshold Retracker ... 33
2.3 RETRACKING ALGORITHMS FOR COASTAL WAVEFORMS 34
2.3.1 Retracking Waveforms with Reduced Gates ... 36
2.3.2 Waveform Retracking Systems from Previous Research 38
2.3.3 The Waveform Retracking System to be Developed in this Study 39

2.4 DATA SOURCES .. 42
2.4.1 Satellite Altimetry Data .. 42
2.4.2 Other External Data .. 44

2.5 SUMMARY ... 47

CHAPTER 3 THE DEVELOPMENT OF RETRACKING TECHNIQUE FOR
MULTI-PEAK AND QUASI-SPECULAR WAVEFORMS ... 49

3.1 INTRODUCTION ... 49
3.2 THE METHODOLOGY OF SUB-WAVEFORM RETRACKING 51
3.3 EVALUATING THE SUB-WAVEFORM RETRACKER USING SIMULATED DATA 53
3.3.1 The Impact of Using Fewer Waveform Gates .. 54
3.3.2 Retracking Simulated Multi-Peak and Quasi-Specular Waveforms 56
3.4 EVALUATING THE SUB-WAVEFORM RETRACKER USING JASON-1 AND JASON-2/OSTM ALTIMETER DATA .. 59
3.5 RETRACKING RESULTS FROM COMBINED RETRACKERS 62
3.6 SUMMARY ... 69

CHAPTER 4 THE DEVELOPMENT OF A NEURAL NETWORK FOR REDUCING
THE OFFSETS AMONG VARIOUS RETRACKERS ... 71

4.1 INTRODUCTION ... 71
4.2 UNDERSTANDING THE BEHAVIOUR OF THE OFFSET BETWEEN RETRACKERS 73
4.3 REDUCING THE OFFSET BETWEEN VARIOUS RETRACKERS 76
4.3.1 A Brief Introduction to Neural Network .. 77
4.3.2 The Design and Implementation of a Neural Network ... 80
4.3.3 Results and Analysis .. 84
4.4 SUMMARY ... 90

CHAPTER 5 A COASTAL WAVEFORM RETRACKING STRATEGY BASED ON
A FUZZY EXPERT SYSTEM .. 92

5.1 INTRODUCTION ... 92
5.2 DESIGN OF THE COASTAL WAVEFORM RETRACKING SYSTEM 93
5.2.1 The Neural Network .. 96
5.2.2 Waveform Classification .. 97
5.2.3 Identifying the Optimal Retracker via the Fuzzy Expert System 105
5.3 SUMMARY ... 115
CHAPTER 6 THE VALIDATION STRATEGY OF THE WAVEFORM RETRACKING SYSTEM USING IN-SITU DATA

6.1 INTRODUCTION ... 117
6.2 VALIDATING OF THE WAVEFORM RETRACKING SYSTEM AND EXISTING RETRACKERS USING GEOID HEIGHTS 120
6.3 VALIDATING OF THE WAVEFORM RETRACKING SYSTEM USING TIDE GAUGE DATA ... 124
 6.3.1 Pre-processing of Altimeter and Tide Gauge SLAs .. 125
 6.3.2 Results and Analysis ... 130
6.4 VALIDATING OF THE WAVEFORM RETRACKING SYSTEM USING HIGH FREQUENCY RADAR 137
 6.4.1 Comparison with HF Radar Derived SLAs ... 140
 6.4.2 Comparison with HF Radar Velocities .. 148
6.5 SUMMARY .. 158

CHAPTER 7 APPLICATION OF THE RETRACKING SYSTEM TO PRINCE WILLIAM SOUND, ALASKA .. 161

7.1 INTRODUCTION ... 161
7.2 BRIEF INFORMATION ABOUT REGIONAL OCEAN MODELLING SYSTEM (ROMS)... 163
7.3 COMPARISON WITH GEOID HEIGHTS AND EXISTING RETRACKERS .. 165
7.4 COMPARISON WITH SEA LEVELS FROM THE TIDE GAUGE .. 170
7.5 COMPARISON WITH SEA LEVELS FROM THE ROMS ... 175
7.6 SUMMARY ... 184

CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 186

8.1 SUMMARY OF THE DISSERTATION ... 186
8.2 SPECIFIC CONCLUSIONS .. 189
 8.2.1 The Development of the Sub-waveform Retracking Method 190
 8.2.2 The Neural Network for Reducing the Relative Offset in the Retracked SLAs 191
 8.2.3 The Implementation and Validation of the Retracking System 192
 8.2.4 The Application of the Retracking System in PWS, USA ... 195
8.3 RECOMMENDATIONS FOR FUTURE WORK .. 198

REFERENCES ... 200
LIST OF FIGURES

Figure 1-1. Schematic altimeter waveform with the geophysical parameters that correspond to different parts of waveform over a homogeneous ocean surface..................3

Figure 1-2. Range correction that compensates for deviation of the Jason-2/OSTM waveform’s leading edge from the on-board altimeter nominal tracking gate...............6

Figure 1-3. (Top panel) Schematic representation of a pulse-limited altimeter short pulse propagating from the altimeter to the sea surface in the case of an ocean to land transition. (Lower panel) Top-down view of the pulse-limited footprint corresponding to each waveform gate. B is the bandwidth of the altimeter in unit of Hertz, c is the speed of light, $c/(2B)$ is the altimeter sampling rate, H is the altimeter height, τ_1 and τ_2 are the epoch of the first and last measurements, and τ_0 is the epoch with respect to the nominal tracking position (adapted from Gommenginger et al. 2011). ..10

Figure 1-4. Waveform shape classes obtained for Jason-2 from the PISTACH project (adapted from Gommenginger et al. 2011). ...11

Figure 1-5. (a) Jason-2/OSTM Ku-band ascending pass 99 over the Great Barrier Reef, Australia. (b) Along-pass waveforms corresponding to (a). (c) Waveform shapes related to locations and colours in (a) around the Cape Bedfort..12

Figure 1-6. SLA profiles over the open ocean derived from different retrackers showing the offset among them..14

Figure 1-7. Jason-1 and Jason-2/OSTM satellite passes in the Great Barrier Reef, Australia. The red stars show the tide gauge stations. The background contours show the ocean depth (in units of metres) in the area. ...20

Figure 1-8. Jason-1 and Jason-2/OSTM satellite passes in Prince William Sound, Alaska, USA. The red star shows the tide gauge station. ..21

Figure 2-1. Schematic diagram of the OCOG method (adapted from Deng 2003). The x-axis is given in units of ns or gate number, and the y-axis is given in units of counts..32

Figure 2-2. Flowchart of the retracking waveform with reduced number of gates........38

viii | P a g e
Figure 2-3. The basic architecture of a fuzzy expert system.................................41

Figure 3-1. (a) An example of a multi-peak waveform near the coast (in black). The leading edge peak, land-like peak and land-like trough are shown in red, blue and magenta circles, respectively. The sub-waveform (in red) is extracted from gate 1 to the magenta circle (corresponds to the land-like trough). (b) Power differences between two successive waveform samples (difference I). (c) Power differences between a gate and the gate after next (difference II). ..53

Figure 3-2. The root mean square errors of parameters estimated by the sub-waveform retracker from ocean-like waveforms with varying number of gates: (a) thermal noise, (b) amplitude, (c) arrival time, (d) rise-time, and (e) squared off-nadir angle..............55

Figure 3-3. Fitting results from retracking simulated multi-peak (top panels), and quasi-specular (bottom panels) waveforms. ..57

Figure 3-4. Fitting results from retracking Jason-1 real multi-peak (top panels), and quasi specular (bottom panels) waveforms...60

Figure 3-5. Fitting results from retracking Jason-2 real multi-peak (top panels), and quasi-specular (bottom panels) waveforms...60

Figure 3-6. Sea level anomaly profiles of Jason-1 altimetry along pass 99 from (a) cycle 331, (b) cycle 346, (c) cycle 347; and along pass 175 from (d) cycle 332 and (e) cycle 333. An arbitrary constant of -100 cm is added to MLE4-retracked SLAs from SGDR for visual effect. ..64

Figure 3-7. Sea level anomaly profiles from Jason-2 altimetry along pass 73 from (a) cycle 95; and along pass 175 from (b) cycle 93, (c) cycle 108, (d) cycle 109 and (e) cycle 110. An arbitrary constant of -100 cm is added to MLE4-retracked SLAs from SGDR for visual. ..65

Figure 3-8. Comparisons of recovered along-track SLAs (top panels), and mean distances of the cycles from the coastline (bottom panels).................................66
Figure 4-1. Relationship between offset 1 (in cm) with varying (a) SWH and (c) \(\sigma_0 \), and offset 3 (in cm) with varying (b) SWH and (d) \(\sigma_0 \), computed from Jason-2 data over the Great Barrier Reef. .. 75

Figure 4-2. Relationship between offset 1 (in cm) with varying (a) SWH and (c) \(\sigma_0 \), and offset 3 (in cm) with varying (b) SWH and (d) \(\sigma_0 \), computed from Jason-2 data over the Prince William Sound. .. 76

Figure 4-3. A multi-layer feed forward neural network (top panel), and situation during the training mode (bottom panel). ... 79

Figure 4-4. Implementation of the MLF neural network for offset reduction during the training (top panel) and prediction (bottom panel) modes. In the training mode, the training samples of sub-waveform (or full-waveform) and modthreshold30 retracked SLAs are supplied to the input and output layers, respectively, to optimise the weight coefficients. In the prediction mode, the new set of sub-waveform (or full-waveform) retracked SLAs are supplied to the input layer to predict the modthreshold30 retracked SLAs in the output layer based on the optimised weights obtained from the training mode. The predicted modthreshold30 retracked SLAs correspond to the realigned/unbiased sub-waveform (or full-waveform) retracked SLAs. In practice, the SWH is not supplied in both the training and prediction modes to avoid errors in the analysis of the neural network. .. 83

Figure 4-5. Jason-2 retracked SLAs before and after the offset reductions using the MLF neural network and the mean method along pass (a) 214 from cycle 50, and (b) 175 from cycle 40. The box indicates the area where retracking algorithms are switched. The vertical line (in grey) shows the coastline. No arbitrary constant is added to the SLA profiles. ... 85

Figure 4-6. The value of offsets estimated from the neural network (in red) and the mean method (in blue) with respect to the sub-waveform retracked SLAs, computed from Jason-1 and Jason-2 data. ... 86
Figure 5-1. Block diagram of the coastal waveform retracking system, consisting of four major parts: waveform classification, neural network, waveform retracking and fuzzy expert system...95

Figure 5-2. Altimetric waveform shape classes in the Great Barrier Reef, Australia, obtained using the k-mean clustering. The class 1 shape normally appears over the open ocean, while class 2-6 shapes normally appear near the coast..100

Figure 5-3. Illustration of a one-class support vector machine implementation (adapted from Christianini and Shawe-Taylor 2000; Hastie et al. 2008). ...101

Figure 5-4. Flow of the fuzzy inference process using the Mamdani-type inference (adapted from MathWorks 2012). ..108

Figure 5-5. (Top panel) Fuzzy set of the goodness of fit (r^2) consists of two fuzzy sets: poor (in magenta) and good (in yellow). The r^2 of 0.82 is a member of the poor set with a degree of membership of 0.03, and at the same time, it is also a member of the good set with a degree of 0.1. (Bottom panel) Fuzzy set of the differences between two successive retracked SLAs ($Dif_{ssh prev1}$) consists of two fuzzy sets: small (in cyan) and large (in blue). ...110

Figure 5-6. Example of using fuzzy inference to determine the quality of retracked SLAs. The x-axis is the range of all possible values applicable to the variables. The y-axis is the membership value of the fuzzy set. 13 fuzzy rules (shown as 1-13 in the y-axis) have been placed together to describe the output (rank) value. The ranking value of 9.16 is given to the retracker, which produces parameters of $r^2=0.9$, $Dif_{ssh}=1$ m, $Dif_{ssh prev1}=5$ m, and $Dif_{ssh prev2}=2$ m..114

Figure 5-7. The retracked SLA profiles (top panel) and their ranking values (bottom panel) during three iterations. An arbitrary constant of 5 and 10 was added to the second and third iterations, respectively, for visual clarity. Red circles (top panel) show problematic areas where ‘low ranking’ retracked SLAs are found..115

Figure 6-1. Sea level anomaly profiles of Jason-2 altimetry along (a) pass 175 from cycle 80, (b) pass 214 from cycle 100, and (c) pass 149 from cycle 120. An arbitrary
constant of -2 m, -1 m, 1 m, and 2 m was added to MLE4, Oce3, Ice3 and Red3 retracked SLAs, respectively, for visual clarity. No constant value was added to Ice1 retracked SLAs.

Figure 6-2. Time series of retracked sea level anomalies from the retracking system with different detiding models from the Jason-2 satellite along pass 175 for three points at distances of 5 km, 9 km, and 28 km from the coastline.

Figure 6-3. Spatial plots of the temporal correlation and the RMS error of sea level anomaly from different retracking methods with respect to the Townsville tide gauge station.

Figure 6-4. Spatial plots of the temporal correlation and the RMS error of sea level anomaly from different retracking methods with respect to the Bundaberg tide gauge station.

Figure 6-5. Time series of sea level anomalies from different retracking methods detided using the pointwise response method. They are from the Jason-2 satellite along pass 175 for the same points as those in Figure 6-2 at distances of 5 km, 9 km, and 28 km from the coastline. The SLA time series from Townsville station is also shown.

Figure 6-6. Map of the HF radar coverage in the southern Great Barrier Reef showing the location of the two radar stations: Tannum Sand and Lady Elliot Island. The ocean depth, which is not shown, is less than 400 m. The area is divided into 2 sections indicated as A1 and A2, to study the variation of covariance scales. The Jason-1 satellite pass 149 crosses the area, and the HF u (east-west) velocities (23/3/2010 at 01:00 UTC) are also indicated.

Figure 6-7. The extraction of geostrophic current in u and v directions based on the information from the geostrophic current normal to the track, u_g, and satellite inclination angle, for the descending track.

Figure 6-8. The processing steps for retrieving the HF SLAs.

Figure 6-9. The observed covariance function of HF radar velocities (in unit of cm2s$^{-2}$) over the A1 (left) and A2 (right) regions at zero time lag, binned according to spatial
lag, normalised relative to the maximum covariance values, and averaged over the year 2010. \((X=0, Y=0)\) refer to the centre of each region.. 145

Figure 6-10. Temporal covariance of the total \((uv)\) HF velocity data at zero spatial lag averaged over 2010 in the A1 (left) and A2 (right) regions... 146

Figure 6-11. SLAs derived from HF radar and Jason-1 along pass 149 over different periods. The 20 Hz Jason-1 SLAs are smoothed using the moving average filter with cut-off frequencies of 7 km (in blue) and 14 km (in red). The coast is on the left, the open ocean is on the right. ... 147

Figure 6-12. Temporal variations of \(u\) (top panel) and \(v\) (bottom panel) velocity components from HF radar at a location on the continental shelf near Heron Island (-23.22°, 152°) for the period between 31/1/2010 and 30/5/2010. The small figures show the signals during a 3-day period (in blue)... 150

Figure 6-13. Temporal variations of the filtered \(u\) (top panel) and \(v\) (bottom panel) velocity components from HF radar at the same location and time period as those in Figure 6-11. Those velocities have been filtered using the Loess low pass filter with a 40 hour cut-off wavelength to remove tidal signals. The small figures show the signals during a 3-day period (in blue).. 150

Figure 6-14. The monthly HF and altimeter geostrophic \(u\) (east) velocity components from 2009-2011. The altimeter geostrophic velocities are filtered with a cut-off wavelength of 56 km. The latitude between -24° and -23° is situated on the continental shelf with the latitude -24° being the closest point to the coastline, while the latitude >-23° is situated on the continental shelf break. ... 153

Figure 6-15. The monthly HF and altimeter geostrophic \(v\) (north) velocity components from 2009-2011. The altimeter geostrophic velocities are filtered with a cut-off wavelength of 56 km. The latitude between -24° and -23° is situated on the continental shelf with the latitude -24° being the closest point to the coastline, while the latitude >-23° is situated on the continental shelf break. ... 154
Figure 6-16. Spatial plots of the monthly temporal RMS error (top panels) and the standard deviation of differences (bottom panels) of geostrophic velocity calculated from altimeter and HF radar. 155

Figure 6-17. Time series of the geostrophic u (left panels) and v (right panels) velocities from HF radar (in red) and altimeter (in black) along the satellite track 149 with different distance from the coastline. 157

Figure 7-1. Jason-1 and Jason-2/OSTM satellite passes in Prince William Sound, Alaska. The red star shows the tide gauge station. The blue box indicates the local scale boundary for the analysis with the tide gauge. 162

Figure 7-2. Spatial plot of the difference of SLA data recovered (in percentage) by the retracking system and the MLE4 retracker. A positive value means the fuzzy retracking system retrieves more data than the MLE4 retracker. 167

Figure 7-3. Sea level anomaly profiles of the Jason-1 altimetry from cycle 262 along (a) pass 28, (b) pass 104, and (c) pass 123. The vertical bar (in grey) shows the coastline. Note that no arbitrary constant was added to the retracted SLAs. The offset values in the retracted SLAs are caused by the retracking method itself (for details, see Chapter 4). 168

Figure 7-4. Sea level anomaly profiles of the Jason-2 altimetry along (a) pass 28 from cycle 21, where part of the MLE4 retracted SLAs are missing within longitudes -147.7° to -147.4°, (b) pass 47 from cycle 20, and (c) pass 123 from cycle 22. The vertical bar (in grey) shows the coastline. Note that no arbitrary constant was added to the retracted SLAs. The offset values in the retracted SLAs are caused by the retracking method itself (for details, see Chapter 4). 169

Figure 7-5. Spatial plots of the temporal correlation (left panels) and RMS error (right panels) of the sea level anomalies from the retracking system and the Seward tide gauge station. The SLA time series at locations a-h (black dots in a) is shown in Figure 7-6. 172
Figure 7-6. Time series of the sea level anomalies from different retracking methods and tide gauge at eight locations around the PWS (see Figure 7-5a). The retracted SLAs shown in a-e are from the Jason-1 mission, while the retracted SLAs shown in f-i are from the Jason-2 mission. The retracted SLAs from the Ice retracker are not shown in a-e because they are unavailable from the Jason-1 SGDR product. The retracted SLAs from the MLE4 retracker are unavailable in d. ... 174

Figure 7-7. The SLA profiles from the ROMS (in black) and the Jason-1 (in red) along (a) pass 28 in May 2010, where part of the ROMS SLAs are missing within longitudes -147.65° to -147.55°, (b) pass 104 in January 2009, and (c) pass 123 in July 2010, and from the Jason-2 mission (in red) along (d) pass 28 in August 2009, (e) pass 47 in April 2010, and (f) pass 123 in September 2009. The filtering with a 20 km cut-off wavelength has been applied to the Jason-1 and Jason-2 SLA profiles. The left and right axes show the amplitude of the SLA from the altimetry and the ROMS, respectively. The vertical line (in grey) shows the coastline. The spatial correlation, r^2, shows the degree of agreement between both SLA profiles... 178

Figure 7-8. The monthly SLA profiles of Jason-1 (in red) and the ROMS (in black) along pass 104 in the Central Basin from February 2009 to December 2011. The filtering with a 20 km cut-off wavelength has been applied to the Jason-1 profiles. The left and right axes show the amplitude of the SLA from the altimetry and the ROMS, respectively. The spatial correlation, r^2, shows the degree of agreement between both SLA profiles... 179

Figure 7-9. Spatial plot of the SLA standard deviation of difference (top panel) and the RMS error (bottom panel) between the SLAs from the retracking system and the ROMS. The SLA time series at locations a-h in the top panel is shown in Figure 7-10. ... 181

Figure 7-10. Time series of sea level anomalies from the retracking system (in red) and the ROMS (in black) in eight locations around the PWS region (see Figure 7-9 top panel). The time series of sea level anomalies from the tide gauge are also shown (in blue). The left axis shows the SLA amplitude from the altimetry and the tide gauge, while the right axis shows the SLA amplitude from the ROMS................................... 183
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Operating characteristics of altimeters (adapted from Gommenginger et al. 2011)</td>
<td>4</td>
</tr>
<tr>
<td>2-1</td>
<td>Summary of adopted models for deriving geophysical corrections in Jason-1 and Jason-2 SGDR products (AVISO 2009; AVISO 2012)</td>
<td>43</td>
</tr>
<tr>
<td>3-1</td>
<td>Descriptive statistics of estimated parameters from two cases of simulated multi-peak waveforms retracked by the sub-waveform retracker</td>
<td>59</td>
</tr>
<tr>
<td>3-2</td>
<td>Descriptive statistics of estimated parameters from 6,000 simulated quasi-specular waveforms retracked by the sub-waveform retracker</td>
<td>59</td>
</tr>
<tr>
<td>3-3</td>
<td>Mean of square of correlation (r^2) of fitting the multi-peak and quasi-specular waveforms of Jason-1 and Jason-2</td>
<td>61</td>
</tr>
<tr>
<td>3-4</td>
<td>STDs and IMPs of retrackers calculated from six cycles of Jason-1 data</td>
<td>68</td>
</tr>
<tr>
<td>3-5</td>
<td>STDs and IMPs of retrackers calculated from six cycles of Jason-2 data</td>
<td>68</td>
</tr>
<tr>
<td>4-1</td>
<td>Offsets between retrackers computed from 15,000 samples of Jason-1 retracked SLAs. The highest means of offset and SWH are indicated by bold numbers</td>
<td>74</td>
</tr>
<tr>
<td>4-2</td>
<td>Offsets between retrackers computed from 15,000 samples of Jason-2 retracked SLAs. The highest means of offset and SWH are indicated by bold numbers</td>
<td>74</td>
</tr>
<tr>
<td>4-3</td>
<td>Summary of the t-test analysis</td>
<td>87</td>
</tr>
<tr>
<td>4-4</td>
<td>STDs and IMPs of SSH profiles before and after offset reduction using the MLF neural network and mean method calculated from 5,000 samples of Jason-1</td>
<td>89</td>
</tr>
<tr>
<td>4-5</td>
<td>STDs and IMPs of SSH profiles before and after offset reduction using the MLF neural network and mean method calculated from 5,000 samples of Jason-2</td>
<td>89</td>
</tr>
</tbody>
</table>
Table 5-1. Confusion matrix of the classification results. The number of correct predictions is located in the diagonal of the table, which is shown in bold and italics.

Table 5-2. The group of waveforms and their prioritised retrackers. The smaller the number, the higher the priority.

Table 5-3. Characteristics of the fuzzy sets. The range of the universe of discourse is given in units of metre for variables D_{ssh}, $D_{ssh_{prev1}}$ and $D_{ssh_{prev2}}$.

Table 5-4. Summary of the method used in the fuzzy inference processes.

Table 6-1. STDs and IMPs** of retrackers calculated from seven passes of Jason-1 data.

Table 6-2. STDs and IMPs** of retrackers calculated from six passes of Jason-2 data.

Table 6-3. Standard deviations of differences between SLAs from the retracking system and tide gauge using different ocean tide models for the Jason-2 satellite along pass 175 at distances of 5 km, 9 km, and 28 km from the coastline.

Table 6-4. Mean of temporal correlation and RMS error in local and regional scales from different retracking methods.

Table 7-1. STDs and IMPs** between the Jason-1 retracked SSHs and the geoid heights.

Table 7-2. STDs and IMPs** between the Jason-2 retracked SSHs and the geoid heights.

Table 7-3. Mean of the temporal correlation and RMS error at local and regional scales between different retracking methods and the Seward tide gauge.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVISO</td>
<td>Archiving, Validation, and Interpretation of Satellite Oceanographic</td>
</tr>
<tr>
<td>AMSR-E</td>
<td>Advanced Microwave Scanning Radiometer Earth Observing System</td>
</tr>
<tr>
<td>COG</td>
<td>Gate Position of Centre Area</td>
</tr>
<tr>
<td>ECMWF</td>
<td>European Centre for Medium-Range Weather Forecasts</td>
</tr>
<tr>
<td>EGM2008</td>
<td>Earth Gravitational Model</td>
</tr>
<tr>
<td>FES</td>
<td>Finite Element Solution</td>
</tr>
<tr>
<td>FSSR</td>
<td>Flat Sea Surface Response</td>
</tr>
<tr>
<td>GDR</td>
<td>Geophysical Data Record</td>
</tr>
<tr>
<td>GIM</td>
<td>General Ionospheric Model</td>
</tr>
<tr>
<td>GOES</td>
<td>Geostationary Operational Environmental Satellite</td>
</tr>
<tr>
<td>GOT</td>
<td>Global Ocean Tide Model</td>
</tr>
<tr>
<td>HF</td>
<td>High Frequency</td>
</tr>
<tr>
<td>IMOS</td>
<td>Integrated Marine Observing System</td>
</tr>
<tr>
<td>IMP</td>
<td>Improvement of Percentage</td>
</tr>
<tr>
<td>LEP</td>
<td>Leading Edge Position</td>
</tr>
<tr>
<td>MLE</td>
<td>Maximum Likelihood Estimator</td>
</tr>
<tr>
<td>MLF</td>
<td>Multi-layer Feed Forward</td>
</tr>
<tr>
<td>MODIS</td>
<td>Moderate Resolution Imaging Spectroradiometer</td>
</tr>
<tr>
<td>MOG2D</td>
<td>Two-dimensional Gravity Waves Model</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>MSS</td>
<td>Mean Sea Surface</td>
</tr>
<tr>
<td>OceanMAPS</td>
<td>Ocean Model Analysis and Prediction System</td>
</tr>
<tr>
<td>OCOG</td>
<td>Offset Centre of Gravity</td>
</tr>
<tr>
<td>OI</td>
<td>Optimal Interpolation</td>
</tr>
<tr>
<td>PDF</td>
<td>Probability Density Function</td>
</tr>
<tr>
<td>PTR</td>
<td>Radar Point Target Response</td>
</tr>
<tr>
<td>PWS</td>
<td>Prince William Sound</td>
</tr>
<tr>
<td>ROMS</td>
<td>Regional Ocean Modelling System</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>SGDR</td>
<td>Sensor Geophysical Data Record</td>
</tr>
<tr>
<td>SLA</td>
<td>Sea Level Anomaly</td>
</tr>
<tr>
<td>STD</td>
<td>Standard Deviations of Difference</td>
</tr>
<tr>
<td>SSB</td>
<td>Sea State Bias</td>
</tr>
<tr>
<td>SWH</td>
<td>Significant Wave Height</td>
</tr>
<tr>
<td>WRF</td>
<td>Weather Research and Forecasting</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

B : Bandwidth of altimeter

c : Speed of light

H : Altimeter height above referenced ellipsoid

τ : Waveform epoch

H₀ : Distance between the satellite and nadir point

v : Spacecraft speed

σₚ : Width of the radar point target response function

rₜ : Time resolution

ξ : Off-nadir pointing angle

σₛ : Standard deviation of sea surface elevation related to significant wave height

I₀ : Bessel function

A : Waveform amplitude

G₀ : Gain of radar antenna

Lₚ : Two-way propagation loss

λ : Radar carrier wavelength

h : Modified satellite altitude

Rₜ : Radius of the Earth

γ : Antenna beam width parameter
\(P_N \): Waveform thermal noise

\(t \): Time of altimeter measurement

\(t_0 \): Arrival time of the half power point of the radar return

\(\sigma \): Waveform rise time

\(g_0 \): Expected tracking gate

\(T \): Altimeter sampling time

\(P_1 \): Waveform power

\(N \): Total number of samples in the waveform

\(n_1 \): Number of bins affected by aliasing at the beginning of the waveform

\(n_2 \): Number of bins affected by aliasing at the end of the waveform

\(W \): Width of waveform

\(\sigma_0 \): Sea surface roughness

\(T_h \): Threshold level

\(q \): Threshold value

\(G_r \): Retracking location on the leading edge of the waveform

\(G_k \): Location of the first gate exceeding threshold level

\(r^2 \): Square of correlation coefficient

\(C_{xy}^2 \): Covariance of variables \(x \) and \(y \)

\(S_x \): Standard deviation of variable \(x \)

\(S_y \): Standard deviation of variable \(y \)
\(\sigma_{\text{raw}} \): Standard deviations of the difference between raw SSHs and geoid heights

\(\sigma_{\text{retracked}} \): Standard deviations of the difference between retracked SSHs and geoid heights

\(x_k \): Vector of current weights

\(g_k \): Current gradient

\(\alpha_k \): Learning rate

\(\bar{a} \): Mean of samples a

\(\bar{b} \): Mean of samples b

\(n_a \): Size of sample a

\(n_b \): Size of sample b

\(s_a^2 \): Variance of samples a

\(s_b^2 \): Variance of samples b

\(\phi \): Degree of freedom

\(\alpha \): Significance level

\(\sigma_x \): Standard deviations of the differences between retracked SSHs before the offset reduction and geoid heights

\(\sigma_y \): Standard deviations of the differences between retracked SSHs after the offset reduction and geoid heights

\(k \): Number of clusters

\(z_k \): Cluster centres

\(\sigma^2 \): Kernel parameter
x_i: Set of data vectors

y_i: Class of data vectors

α_i: Lagrange multipliers

f_t: Compressed pulse shape by a Gaussian function

$\mu_A(x)$: Membership function of set A

u_g: Surface velocity in a direction 90° clockwise from the orbital track

G: Gravitational acceleration

f: Coriolis parameter

y: Along-track distance

C: Covariance of the variable being estimated with the data

e_i: Measurement error

e_u: Noise error

$\frac{\psi}{2}$: Variance of ψ

C_{uu}: Covariance in across-shelf direction

C_{vv}: Covariance in along-shelf direction

C_{uv}: Covariance in uv direction

r: Spatial separation

τ_0: Surface wind stress

A_v: Eddy viscosity

u: Velocity in east-west direction
\textbf{v} : Velocity in north-south direction

\textbf{D}_E : Ekman depth

\textbf{z} : Water depth
LIST OF PUBLICATIONS

