Uncertainty Issues in Deterministic and Stochastic Nonlinear Systems

Diego S. Carrasco Yáñez
Ingeniero Civil Electrónico
M.Sc. in Electronics Engineering

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

March, 2014
The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

I hereby certify that the work embodied in this thesis contains published papers of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publications.

Diego S. Carrasco Yáñez

March, 2014
Acknowledgements

First and foremost, I would like to thank Prof. Graham Goodwin, for without him, none of this would have been possible. I have learned many things from his passion, drive and determination for research, but the most important things I have learned are from his genuine care and worry towards the people around him. Thank you.

Secondly, I would like to thank Prof. Mario Salgado, who introduced me to the world of research. I have always appreciated his fatherly advice and care. Above all, he has always been a huge influence to me, not only as an academic, but as a person.

I would like to thank, with all my heart, my parents Gloria and Luis and my siblings Pablo and Nicolás for their constant love and support. Distance takes a toll on every relationship, but I have never felt more loved than those times we have been reunited. I cannot stop mentioning my grandparents, Olivia and Guillermo, Maria and Luis. I love you all.

Very special thanks to Rocío, Ramón, Katherine and Ricardo, for welcoming me into their families and allowing me to be part of them. I would also like to thank Laura and Antonella, for being the constant reminder that a smile, a kiss and a hug can change a person’s heart. I hope one day you can understand how much that meant to me.

To my Australian family: Emma and Luke, Jeni and Lincoln, Kash and Katie, Murat, Pierre and Elisa, Aurelio and Vi, Hope and Eduardo. Thank you for your love and companionship, time and advice when I needed it most.

I would like to thank specially Yoyi and Mauricio, for helping me stand on my own two feet when all this adventure began. I would also like to thank Boris, Alejandro, Steven and Jay for their friendship, help and advice during all these years.

Many thanks to Jayne and Dianne, for their help and advice throughout my time at the university. They made me feel at home and I could not have done it otherwise. Thank you.

To the many friends I have made during my years in Newcastle, I say thanks for making this period of my life memorable. Special thanks to Alain Yetendje, Andrés López, Daniel Quevedo, Daniel
Dolz, Damián and Bea, Erik Henriksson, Francisco Gordín, Fernando López-Caamal, Hani Abaase, He Kong, Hessam, Pouria, Juan Carlos, Marcus Reble, Robert Palma, Sonja and Edwin, Steffi and Florian, Koen Van der Mijle, Yuzhe Li, Juan Alvarez, Esteban Osella, Isabella and Denis, Cinthya and Mauricio, Elizabeth and Shane, Emma, Blake, Kate, Beth, Duncan, Brenton, Lyneece, Javier and Margarida.

To the many friends back home: Stjpe, Maria Claudia and Sebastian, Marcela and Nelson, Valeria and Pedro, Virginia, Pedro, Jaime, Sebastian, Hernán, Luna, Patricio and Daniela, Francisco, Andrés, Andrea and Tomás. I have always kept you in my heart. Thank you.

Finally, I would like to thank Eduardo Silva. You were my friend, colleague and teacher. You will be missed. Rest in peace.

I sincerely apologise to anyone I have forgotten to mention. Everyone I have ever met has played a role in my life. Thank you, from the bottom of my heart.

I acknowledge financial support from CONICYT Chile through their program “Becas Chile”.

Diego Carrasco
August 2014
Robustness issues arise in every real world control problem. The objective of any robust control strategy is to preserve closed-loop stability in situations where the real plant differs from the model used to design the controller, i.e. the real system is, in some sense, unknown. There are different ways to quantify, or describe, the uncertainty of a model. It is the amount of uncertainty, or lack of confidence in the model, that ultimately determines, and constrains, what the closed-loop can achieve.

In this thesis we address particular issues concerned with how to quantify and reduce the impact of uncertainty. To this end, the present thesis is divided in two parts:

The first part is aimed at linear systems. We propose two ideas on how to improve closed-loop performance in the face of general uncertainty, namely, (i) augmenting the control architecture with a feedforward component and (ii) augmenting the observer architecture by using the more general class of unbiased observers. We then illustrate the first strategy applied to an Artificial Pancreas problem.

The second part is aimed at nonlinear systems. A common source of uncertainty in this area is the use of approximate sampled-data models of continuous time systems, be it for control design or system identification. This is due to the fact that, contrary to the linear case, exact discretisations are not generally possible in the nonlinear case. In particular, we deal with the sampled-data scenario in both deterministic and stochastic cases and focus our attention on accuracy and related properties of sampled-data models.

We first study the accuracy properties, or error dynamics, of a particular deterministic sampled-data model, and show that it possesses an improved order of accuracy when compared to the usual Euler approximation. We then demonstrate the usefulness of having such a quantification via several applications, namely, (i) obtaining better bias-variance tradeoffs in the parameter estimation of continuous-time systems from sampled-data, (ii) obtaining a sampled-data model that depends only on input-output data that retains the improved order of accuracy, and (iii) obtaining better performance in high-gain sampled-data feedback control of nonlinear systems, via feedback
In addition, we extend the analysis to stochastic sampled-data nonlinear systems. In this case, we show that the error dynamics are tightly intertwined with other system properties that arise due to the sampling process. In particular, we show the existence of stochastic sampling zero dynamics that are closely related to the sampling zero dynamics associated with the deterministic case.
Contents

Acknowledgements v

Abstract vii

Contents ix

1 Introduction 1

1.1 Thesis outline 3

1.2 Publications 5

I Linear Systems 7

2 Feedforward Model Predictive Control 9

2.1 Motivation 10

2.2 Basic Definitions 13

2.3 Observer Design 14

2.4 Feedforward Design 14

2.4.1 Constrained Nominal Design 15

2.4.2 Comments 15

2.5 Feedback Design 15

2.5.1 Constrained Feedback Design 16
2.5.2 Discussion .. 16

2.6 Examples ... 17

2.6.1 Example 1: Model Delay Mismatch 18
2.6.2 Example 2: Effects of Constraints 21
2.6.3 Example 3: Model Pole Mismatch 22

2.7 Conclusions .. 25

3 Feedforward MPC in Artificial Pancreas 29

3.1 Blood Glucose Regulation and Diabetes 30

3.1.1 Glucose Regulation 30
3.1.2 Glucose Regulation Disorders 32

3.2 Fundamental Limitations Due to Model Uncertainty in Artificial Pancreas 33

3.3 Type 1 Diabetes Model 34

3.3.1 Actuator .. 34
3.3.2 Patient .. 35
3.3.3 Sensor ... 35
3.3.4 Food absorption .. 36
3.3.5 Exercise .. 36

3.4 Model Approximation 36

3.5 Insights into Performance Limitations 37

3.6 Illustrating the advantages of Feedforward MPC 39

3.6.1 Robust Feedback MPC 40
3.6.2 Feedforward MPC (FFMPC) 40
3.6.3 Performance quantification 41
5.3 A sampled-data model for nonlinear systems .. 66

5.4 Sampling Zeros .. 67

5.4.1 Euler-Frobenius Polynomials .. 67

5.4.2 Deterministic Linear Systems ... 68

5.4.3 Deterministic Nonlinear Systems .. 69

5.4.4 Stochastic Linear Systems ... 69

6 Vector Measures of Accuracy for Sampled-data Models 71

6.1 Vector Truncation Error Definitions ... 72

6.2 Error Analysis of Truncated Taylor Series Sampled Data Model 74

6.3 Examples ... 78

6.4 Conclusions ... 80

7 An Input-Output Sampled Data Model .. 83

7.1 An input-output model ... 83

7.2 Conclusions ... 86

8 Bias and Variance Issues in the Identification of Nonlinear Systems 87

8.1 Preliminaries ... 88

8.2 Approximate Sampled Data Models .. 88

8.2.1 Euler Integration .. 89

8.2.2 Truncated Taylor Series ... 89

8.3 Maximum Likelihood Estimation .. 89

8.4 Finite Data Length Interpretation ... 92

8.5 Conclusions ... 93
9 High Gain Control with Feedback Linearisation under Sampling
 9.1 Feedback Linearisation ... 97
 9.2 Illustrative Examples .. 97
 9.2.1 A simple linear example 97
 9.2.2 A nonlinear example ... 99
 9.3 Conclusions .. 102

10 A Sampled-Data Model for Stochastic Nonlinear Systems
 10.1 Motivation ... 104
 10.2 Truncation Errors .. 106
 10.3 A Stochastic Sampled Data Model 108
 10.4 Defining the Errors of the STTS Model 110
 10.5 Truncation Errors of the STTS Model 112
 10.6 Example I: Truncation Errors 117
 10.7 Stochastic Sampling Zero Dynamics 119
 10.8 Example II: Application to Nonlinear Parameter Estimation 127
 10.9 Conclusions .. 129

11 Conclusions and Suggestions for Future Research 131
 11.1 Summary of Contributions by Chapter 132
 11.2 Future Research .. 134

A Euler-Frobenius Polynomials ... 137
 A.1 Euler-Frobenius relationship 137
 A.2 Euler-Frobenius polynomials 138
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2.1</td>
<td>Definition</td>
<td>138</td>
</tr>
<tr>
<td>A.2.2</td>
<td>Properties</td>
<td>139</td>
</tr>
<tr>
<td>A.3</td>
<td>Euler-Frobenius numbers</td>
<td>140</td>
</tr>
<tr>
<td>A.3.1</td>
<td>Definition</td>
<td>140</td>
</tr>
<tr>
<td>A.3.2</td>
<td>Combinatorial interpretation of Eulerian numbers</td>
<td>141</td>
</tr>
<tr>
<td>A.4</td>
<td>Euler-Frobenius fractions</td>
<td>142</td>
</tr>
<tr>
<td>A.4.1</td>
<td>Definition</td>
<td>142</td>
</tr>
<tr>
<td>A.4.2</td>
<td>Properties</td>
<td>142</td>
</tr>
<tr>
<td>A.5</td>
<td>Generalised Eulerian polynomials</td>
<td>143</td>
</tr>
<tr>
<td>A.5.1</td>
<td>Definition</td>
<td>143</td>
</tr>
<tr>
<td>A.5.2</td>
<td>Properties</td>
<td>144</td>
</tr>
<tr>
<td>A.6</td>
<td>Euler polynomials and numbers</td>
<td>144</td>
</tr>
<tr>
<td>A.7</td>
<td>Bernoulli polynomials and numbers</td>
<td>145</td>
</tr>
<tr>
<td>A.8</td>
<td>Summary</td>
<td>146</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>147</td>
</tr>
</tbody>
</table>