Control and Estimation Techniques for High-Bandwidth
Dynamic Mode Atomic Force Microscopy

Kai Karvinen
B.Eng. (Hons)(Electrical) & B.Sc. (Applied Physics)

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

School of Electrical Engineering and Computer Science
The University of Newcastle
Callaghan NSW 2308
AUSTRALIA

March, 2014
Acknowledgments

I would like to acknowledge my supervisor Reza Moheimani for his useful comments, invaluable advice and interesting ideas pertaining to this research. Furthermore, I would like to express my gratitude to my colleagues Steven Moore, Philipp Müller and particularly Michael Ruppert, who were always willing to help and contributed numerous ideas through many stimulating and thought-provoking discussions. I’d like to thank Kaushik Mahata for his expertise and assistance in the formulation of the algorithm for the tip-sample force estimation technique. I am privileged to have enjoyed this experience and to have been a member of this vibrant and dynamic research team.
Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

Kai Karvinen
March, 2014
Statement of Collaboration

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

- In Chapter 5, the formulation of the tip-sample force estimation algorithm was performed in collaboration with A/Prof. Kaushik Mahata (of the University of Newcastle). The new insights into the modeling of the microcantilever in dynamic mode atomic force microscopy were proposed in collaboration with Mr. Michael Ruppert (of the University of Newcastle).

Kai Karvinen
March, 2014
Patents and Publications

The research performed throughout the duration of my candidature has resulted in an Australian patent and the following peer-reviewed conference and journal papers.

Patents

Journal Articles

Conference Papers

Abstract

The atomic force microscope is possibly one of the greatest scientific inventions of the twentieth century. Owing to its ability to non-invasively image a range of surfaces with sub-nanometer resolution, the atomic force microscope is found in laboratories across the world. For the past 25 years it has also been the focus of significant research interest. This research outlines several control and estimation techniques, which are compatible with next generation atomic force microscopes, that are designed to enable high-speed and multifrequency imaging.

The first section proposes the application of a novel high-bandwidth controller implementation, namely the modulated-demodulated controller, to the Q control of an atomic force microscope microcantilever. A mathematical analysis highlights that modulated-demodulated controllers are linear time invariant. Furthermore, the modulated-demodulated control architecture can be configured to produce both positive position feedback and resonant controllers. The usefulness of these fixed structure controllers becomes evident in the context of negative imaginary systems theory, which can be utilized to ensure robust stability of the closed-loop system – a clear advantage over alternative Q control techniques. Mathematical models have also been presented to enable the analysis of more complex modulated-demodulated controllers. The modulated-demodulated controller is verified experimentally on a microcantilever and AFM images are presented. One significant advantage of this technique is the reduction of the bandwidth requirements of the baseband controller which simplifies the controller implementation. Modulated-demodulated control appears to be well suited to the control of high-frequency resonant dynamics and may find additional applications in high-frequency MEMS and applied optics.

The second section outlines two novel high-bandwidth amplitude estimation techniques, including the invention of the high-bandwidth lock-in amplifier and the proposal of a high-speed discrete Kalman filter approach. These techniques are designed to improve the performance of dynamic mode AFM imaging techniques which rely on amplitude estimation in the feedback loop by significantly increasing the bandwidth of the estimation technique. Furthermore, both techniques are robust against noise and harmonics making them suitable for multifrequency atomic force microscopy. Experimental verification highlights fast amplitude estimation in several oscillation cycles – a significant improvement over conventional techniques.
Finally, new insights into the modeling of a microcantilever in dynamic mode atomic force microscopy are outlined. Using these results, a novel tip-sample force estimation technique is proposed and experimentally verified. Assuming that the tip-sample force takes the form of an impulse train, the estimation problem can be formulated using a Kalman filter. The technique potentially offers significant improvements in the bandwidth of the z-axis control loop through high-bandwidth tip-sample force estimation, which eliminates the requirement for amplitude demodulation and the dependence of the imaging bandwidth on microcantilever transients. The estimation technique is numerically robust and converges quickly. Previous improvements to z-axis control in dynamic mode atomic force microscopy have focused on the development of model-based controllers. Still limited by the microcantilever dynamics and amplitude demodulation technique, these controllers require accurate models of the nanopositioner; nonlinearities such as creep and hysteresis complicate the design of these controllers. The proposed technique is potentially advantageous as it only requires accurate knowledge of the microcantilever.

The application of systems and control theory has, to date, revolutionized the capabilities of the atomic force microscope. The techniques outlined and implemented as part of this research serve to further enhance the performance of an instrument, which has a vital role in the scientific world.
Contents

List of Figures xv

1 Introduction 1
 1.1 An Overview of Microcantilever Technology 1
 1.2 Atomic Force Microscopy . 2
 1.2.1 A Historical Perspective . 2
 1.2.2 Tapping Mode Atomic Force Microscopy 4
 1.2.3 Limitations of Tapping Mode Atomic Force Microscopy . . . 5
 1.2.4 High-Speed Atomic Force Microscopy 9
 1.2.5 Multifrequency Atomic Force Microscopy11
 1.3 Research Contributions and Thesis Outline 13

2 A Review of Q Control 15
 2.1 Q Control in Atomic Force Microscopy 15
 2.2 Q Control Techniques . 18
 2.2.1 Time Delay Q Control . 18
 2.2.2 Advanced Techniques . 21
 2.3 A Novel High-Bandwidth Control Technique for Q Control 28

3 Modulated-Demodulated Control:
 A New Concept in High-Frequency Control 29
 3.1 An Overview of Modulated-Demodulated Control 29
 3.2 LTI Controller Models . 32
 3.2.1 SISO Transfer Function . 32
 3.2.2 SISO State Space Representation 34
 3.2.3 Poles and Zeros . 35
 3.3 Positive Position Feedback Control 36
 3.3.1 Baseband Controller . 36
 3.3.2 Controller Parameterization 38
 3.4 Resonant Control . 39
 3.5 Closed-Loop Stability: Negative Imaginary Theory41
 3.6 Controller Design . 44
CONTENTS

3.7 Controller Implementation .. 45
3.8 Experimental Results .. 48
 3.8.1 Microcantilever Characterization 48
 3.8.2 Positive Position Feedback Control 49
 3.8.3 Resonant Control ... 51
3.9 Control of the Higher Modes of a Microcantilever 53
 3.9.1 Image Artefacts in Atomic Force Microscopy 53
 3.9.2 Excitation of the Higher Modes of a Microcantilever ... 54
 3.9.3 Controller Design and Experimental Results 55
 3.9.4 Applications in Atomic Force Microscopy 59
3.10 Critical Analysis .. 61

4 High-Bandwidth Amplitude Estimation 63
 4.1 Amplitude Estimation Techniques in Atomic Force Microscopy 64
 4.2 High-Bandwidth Lock-In Amplifier 70
 4.2.1 Theory of Operation 70
 4.2.2 Simulation Results 72
 4.2.3 Circuit Implementation 73
 4.2.4 FPGA Implementation 75
 4.2.5 Comparison with a Commercial Lock-In Amplifier 77
 4.3 Amplitude Estimation using a Kalman Filter 79
 4.3.1 An Overview of Optimal Linear Estimation 79
 4.3.2 System Modeling 81
 4.3.3 Kalman Filter ... 83
 4.3.4 Amplitude Estimation of Sinusoidal Signals 83
 4.3.5 Simulation Results 84
 4.3.6 FPGA Implementation 87
 4.4 Critical Analysis .. 89

5 A Novel Tip-Sample Force Estimation Technique:
 Progress Towards High-Bandwidth z-Axis Control 91
 5.1 Review of z-Axis Control Schemes 92
 5.1.1 Conventional z-Axis Control 92
 5.1.2 Advanced z-Axis Control Techniques 92
 5.2 Modeling the Microcantilever: New Insights 95
 5.3 z-Axis Control: A New Paradigm 97
 5.3.1 Estimation of the Tip-Sample Force F_{ts} 97
 5.3.2 Kalman Filter Formulation 100
 5.3.3 Identification of $G_{tip}(s)$ 103
 5.3.4 Experimental Results 108
 5.4 Critical Analysis ... 113
CONTENTS

6 Conclusions and Future Work 115

Bibliography 119

A Analog Circuit Implementations 133
 A.1 Modulated-Demodulated Controller 133
 A.2 Anadigm FPAA Interface 136
 A.3 High-Bandwidth Lock-In Amplifier 138

B FPGA Implementations 141
 B.1 High-Bandwidth Lock-In Amplifier 141
 B.2 Kalman Filter 145

C Tip-Sample Force Estimation 149
 C.1 MATLAB Implementation 149
 C.2 Supplementary Results 152
List of Figures

1.1 The nonlinear tip-sample force function 3
1.2 An overview of tapping mode atomic force microscopy 4
1.3 Block diagram of the z-axis feedback loop 4
1.4 Slope detection technique ... 6
1.5 Transient response of the microcantilever 7
1.6 Video-rate images obtained with high-speed atomic force microscopy 9
1.7 Multiharmonic imaging utilizing the first four harmonics 11
1.8 Bimodal imaging utilizing the first and fourth modes 12
1.9 Bimodal imaging highlighting amplitude and phase variations 12
2.1 Images of a grating with and without Q control 16
2.2 DNA imaged with and without Q control 17
2.3 DPPC bilayers imaged in water with and without Q control 17
2.4 An overview of time delay Q control 19
2.5 Time delay Q control may cause instability due to spillover 21
3.1 Modulated-demodulated controller 30
3.2 A frequency domain perspective of modulated-demodulated control . 31
3.3 Poles of the modulated-demodulated controller 35
3.4 Modulated-demodulated positive position feedback controller 37
3.5 Sallen Key low-pass filter ... 38
3.6 Modulated-demodulated resonant controller 40
3.7 Feedback interconnection of negative imaginary systems 42
3.8 Implementation of a modulated-demodulated controller 46
3.9 Anadigm AN221E04 field programmable analog array (FPAA) 47
3.10 Anadigm FPAA configured in the baseband 47
3.11 Bruker DMAP microcantilever ... 48
3.12 Comparison of AFM images with and without Q control 49
3.13 Closed-loop control of the Bruker DMAP microcantilever using the modulated-demodulated PPF controller 50
3.14 Frequency response of a high-bandwidth modulated-demodulated PPF controller .. 50
LIST OF FIGURES

3.15 Closed-loop control of the Bruker DMASP microcantilever using the
modulated-demodulated resonant controller 52
3.16 Frequency response of a high-bandwidth modulated-demodulated res-
onant controller ... 52
3.17 Image artefacts owing to nonlinear coupling of the modes 55
3.18 Frequency response of a Bruker DMASP microcantilever 56
3.19 Control of the second mode of a Bruker DMASP microcantilever .. 56
3.20 The effect of Q control on the measured tip displacement 58
3.21 AFM images highlighting the improvement in image quality with Q
control .. 58
3.22 Comparison of surface profiles with and without Q control 59
3.23 Q factor enhancement .. 60

4.1 Mean absolute deviation ... 65
4.2 Lock-in amplifier ... 65
4.3 Peak-hold amplitude estimation technique 67
4.4 Coherent demodulation using a phase-locked loop 68
4.5 Image rejection techniques ... 69
4.6 High-bandwidth lock-in amplifier ... 71
4.7 Comparison of the conventional and high-bandwidth lock-in amplifier
in the frequency domain ... 71
4.8 Comparison of the conventional and high-bandwidth lock-in amplifier 73
4.9 Implementation of the high-bandwidth lock-in amplifier 73
4.10 Experimental results highlighting performance of the high-bandwidth
lock-in amplifier .. 74
4.11 Comparison of the conventional and high-bandwidth lock-in ampli-
fiers with a high-bandwidth output filter 74
4.12 FPGA implementation of the high-bandwidth lock-in amplifier ... 75
4.13 Photo of the Altera Cyclone III FPGA 76
4.14 Performance of the Zurich Instruments HF2LI lock-in amplifier ... 78
4.15 State variable representation of a periodic signal 82
4.16 Kalman filter equations ... 83
4.17 Performance of the Kalman filter .. 84
4.18 Insight into the Kalman filter ... 86
4.19 FPGA implementation of the Kalman filter 87

5.1 An overview of tapping mode atomic force microscopy 92
5.2 Conventional approach to modeling the nonlinear tip-sample inter-
tion in dynamic mode atomic force microscopy 95
5.3 New insights into the modeling of the microcantilever in dynamic
mode atomic force microscopy ... 95
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Comparison of the conventional and proposed z-axis feedback control schemes</td>
<td>97</td>
</tr>
<tr>
<td>5.5</td>
<td>The tip-sample force is assumed to be an impulse train with period T</td>
<td>98</td>
</tr>
<tr>
<td>5.6</td>
<td>Asynchronous sampling</td>
<td>99</td>
</tr>
<tr>
<td>5.7</td>
<td>Kalman filter equations for tip-sample force estimation</td>
<td>102</td>
</tr>
<tr>
<td>5.8</td>
<td>Estimation of $g_{\text{tip}}(t)$</td>
<td>103</td>
</tr>
<tr>
<td>5.9</td>
<td>The measured output depends on all previous impulses</td>
<td>104</td>
</tr>
<tr>
<td>5.10</td>
<td>Measured displacement $y(t)$</td>
<td>105</td>
</tr>
<tr>
<td>5.11</td>
<td>Least squares estimation of $g_{\text{tip}}(t)$</td>
<td>106</td>
</tr>
<tr>
<td>5.12</td>
<td>Estimated impulse response $g_{\text{tip}}(t)$</td>
<td>106</td>
</tr>
<tr>
<td>5.13</td>
<td>Measured frequency response of $G_{\text{in}}(s)$</td>
<td>107</td>
</tr>
<tr>
<td>5.14</td>
<td>Estimated frequency response of $G_{\text{tip}}(s)$</td>
<td>107</td>
</tr>
<tr>
<td>5.15</td>
<td>Tip-sample force estimate</td>
<td>108</td>
</tr>
<tr>
<td>5.16</td>
<td>Tip-sample force transients</td>
<td>109</td>
</tr>
<tr>
<td>5.17</td>
<td>Convergence of the tip-sample force estimates</td>
<td>110</td>
</tr>
<tr>
<td>A.1</td>
<td>Modulated-demodulated controller circuit schematic</td>
<td>133</td>
</tr>
<tr>
<td>A.2</td>
<td>All-pass filter</td>
<td>134</td>
</tr>
<tr>
<td>A.3</td>
<td>Analog Devices AD835 Multiplier Connections</td>
<td>135</td>
</tr>
<tr>
<td>A.4</td>
<td>Anadigm FPAA interface circuit schematic</td>
<td>136</td>
</tr>
<tr>
<td>A.5</td>
<td>High-bandwidth lock-in amplifier circuit schematic</td>
<td>138</td>
</tr>
<tr>
<td>A.6</td>
<td>Analog Devices AD734 Multiplier/Divider Connections</td>
<td>139</td>
</tr>
<tr>
<td>B.1</td>
<td>VHDL code for generation of internal sinusoidal references</td>
<td>142</td>
</tr>
<tr>
<td>B.2</td>
<td>Sinusoidal reference generated internally by the FPGA</td>
<td>142</td>
</tr>
<tr>
<td>B.3</td>
<td>VHDL code to generate the 90° phase shift</td>
<td>143</td>
</tr>
<tr>
<td>B.4</td>
<td>VHDL code for generating the amplitude estimate</td>
<td>144</td>
</tr>
<tr>
<td>B.5</td>
<td>VHDL code for matrix multiplication</td>
<td>146</td>
</tr>
<tr>
<td>B.6</td>
<td>Top-level schematic of the Kalman filter</td>
<td>147</td>
</tr>
<tr>
<td>C.1</td>
<td>Example 1: Tip-sample force estimate</td>
<td>152</td>
</tr>
<tr>
<td>C.2</td>
<td>Example 1: Tip-sample force transients</td>
<td>152</td>
</tr>
<tr>
<td>C.3</td>
<td>Example 1: Convergence of the tip-sample force estimates</td>
<td>153</td>
</tr>
<tr>
<td>C.4</td>
<td>Example 2: Tip-sample force estimate</td>
<td>154</td>
</tr>
<tr>
<td>C.5</td>
<td>Example 2: Tip-sample force transients</td>
<td>154</td>
</tr>
<tr>
<td>C.6</td>
<td>Example 2: Convergence of the tip-sample force estimates</td>
<td>155</td>
</tr>
</tbody>
</table>