INVESTIGATION OF ARCHING BEHAVIOUR UNDER SURCHARGE PRESSURE IN MASS-FLOW BINS AND STRESS STATES AT HOPPER/FEEDER INTERFACE

Jie Guo
BE (Mech) Central South University, China

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

School of Engineering
The University of Newcastle

April 2014
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or another tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Jie Guo
Acknowledgements

First, I would like to thank my supervisor, Dr Alan Roberts, for leading me during my years at TUNRA Bulk Solids. The merit of this thesis is a demonstration of his diligent effort. The meaningful discussions we have had inspired me to strive to accomplish more than I could alone, not only academically but in all aspects of life. Many of his wise words will stay with me throughout my life. I also wish to express my gratitude to my co-supervisor, Dr Mark Jones, for providing the opportunity to study within the Centre for Bulk Solids and Particular Technologies and for kind words of encouragement when needed.

I am grateful to Jan-Dirk Prigge for his invaluable support over the course of my study. He has provided me with much help over the years, ranging from clearing the jammed screw conveyor during the experiments to offering advice on my publications. His attention to the slightest of details has cemented my idea of the stereotypical German.

Acknowledgement must go to the technical staff at TUNRA Bulk Solids who built my experimental rig. The countless number of times they were asked to negotiate a half tonne of iron ore into a two-metre high hopper was a test of their patience and they handled it professionally. They truly went the extra mile with the help they provided me. Particular thanks are extended to Antony, Greg, Michael, Leo and Paul for their support.

I gratefully acknowledge the Chinese Scholarship Council and the University of Newcastle for providing financial assistance throughout the period of my study. Without financial support, this research would not have been possible.

Last but not least, I would like to thank my parents for the encouragement they have given me throughout my life that has allowed me to follow my dreams. Also, I would like to thank my partner, Vincent, for his remarkable patience and support even when it seemed I was losing it completely. To them I am deeply indebted.
Contents

Declaration .. i
Acknowledgements ... ii
Contents ... iii
List of Figures ... vi
List of Tables .. xi
Abstract .. xii
Nomenclature .. 13

Chapter 1: Introduction ... 18
1.1 Introduction ... 18
1.1.1 Flow regimes ... 18
1.1.2 Stress fields in mass-flow bins and hoppers ... 19
1.2 Scope of the Study ... 21
1.3 Thesis Outline .. 21

Chapter 2: Theoretical Stress Field Analysis and the Critical Outlet Dimension .. 24
2.1 Introduction ... 24
2.2 Literature Review ... 24
2.3 Current Methods of Stress Field Analysis in Mass-flow Structures 30
2.3.1 Initial filling condition .. 31
2.3.2 Flow condition ... 34
2.4 Review of Critical Arch Dimension Determination ... 40
2.4.1 Jenike’s theory ... 40
2.4.2 Enstad’s theory ... 44

Chapter 3: Experimental Setup for the Study of Arching Behaviour in Mass-flow
Hoppers .. 47
3.1 Introduction ... 47
3.2 Experimental Facilities ... 47
3.3 Instrumentation ... 51
3.4 Material Characteristic ... 52
3.4.1 Flow property test ... 52
3.4.2 Particle size distribution test ... 53
3.4.3 Angle of repose ... 53
3.5 Test Procedures ... 54

Chapter 4: Profile Measurements of Arch Surface and Arch Model Investigation59
4.1 Introduction ... 59
4.2 Observations and Discussion .. 59
4.2.1 Variations in arch shape ... 59
4.2.2 Material protrusion ... 66
4.2.3 Influence of the material loading method ... 67
4.2.4 Effects of agglomeration .. 68
4.3 Experimental Arch Profile Measurements ... 69
4.3.1 Two-dimensional scan and de-nosing of the data ... 69
4.3.2 Scan along the width of outlet opening .. 73
4.3.3 Scan along the length of outlet opening.. 73
4.3.4 Profile trace at the end of vertical hopper wall ... 74
4.3.5 Three-dimensional results ... 75
4.3.6 Comparison of the experimental results and current arch models 76
4.4 Arching Behaviour Discussion .. 80
4.5 Conclusion ... 81

Chapter 5: Investigation of Wall Pressure Under Surcharge Pressure in Mass-flow Hoppers ... 83
5.1 Introduction ... 83
5.2 Experimental Results and Analysis ... 84
 5.2.1 Determination of the critical outlet dimensions .. 84
 5.2.2 Wall pressures corresponding to consolidating stress states 87
 5.2.3 Wall pressures in the arching cases ... 89
5.3 Simulation Results ... 101
 5.3.1 With 90 mm initial outlet width .. 102
 5.3.2 With 260 mm initial outlet width .. 106
5.4 Conclusion ... 110

Chapter 6: Basic Design Criteria of the Feeding System .. 113
6.1 Introduction ... 113
6.2 Feeder Performance Characteristics .. 113
 6.2.1 Feeder type .. 113
 6.2.2 Belt and apron feeder .. 114
6.3 Feeder Loads ... 117
 6.3.1 Basic concepts... 118
 6.3.2 Feeder loads in the initial filling condition ... 119
 6.3.3 Feeder loads in flow condition ... 122
6.4 Drive Resistances ... 124
 6.4.1 Force to shear bulk solid... 125
 6.4.2 Skirt plate resistance ... 125
 6.4.3 Load slope resistance .. 127
 6.4.4 Belt or apron load resistance ... 127
 6.4.5 Empty belt or apron resistance .. 127
 6.4.6 Force to accelerate material onto belt or apron ... 127

Chapter 7: Experimental Setup for the Investigation of Feeder Loads at Hopper and Feeder Interface ... 129
7.1 Introduction ... 129
7.2 Experimental Facilities ... 129
 7.2.1 Basic experimental setup .. 129
 7.2.2 Wedged plane-flow hopper with two hopper angles and skirt plates 131
 7.2.3 Wedged plane-flow hopper with one constant hopper angle and without skirt plates .. 132
 7.2.4 Large-scale belt feeder .. 133
7.3 Instrumentation and Calibration ... 135
 7.3.1 Load cell .. 135
 7.3.2 Tekscan tactile sensor ... 136
7.4 Test Procedures ... 139
List of Figures

Figure 1-1 Mass-flow mode ... 18
Figure 1-2 Funnel-flow mode .. 18
Figure 1-3 Expanded flow .. 19
Figure 1-4 Intermediate flow ... 19
Figure 1-5 Stress fields for initial filling and flow in mass-flow bins 20
Figure 2-1 Arch shapes proposed by Mróz and Szymanski [33].................................... 28
Figure 2-2 Pressures acting in mass-flow bins [18].. 30
Figure 2-3 Stress field in mass-flow hoppers [23].. 35
Figure 2-4 Mohr stress diagram referring to the stress state in Figure 2-3 [23]............. 36
Figure 2-5 Design charts for conical hoppers based on $\alpha=\alpha_{\text{critical}}-3^\circ$ for mass-flow limits [3].. 41
Figure 2-6 Design charts for plane-flow hoppers based on α for mass-flow limits [3]. 41
Figure 2-7 Function $H(\alpha)$ [3].. 42
Figure 2-8 Comparison of $H(\alpha)$ [61].. 42
Figure 3-1 Schematic diagram of experiment setup ... 48
Figure 3-2 Safety catch for air jack ... 49
Figure 3-3 Tekscan tactile sensor inside the hopper ... 50
Figure 3-4 Side view of the test rig ... 51
Figure 3-5 Schematic diagram of arch shape scan .. 51
Figure 3-6 Laser scan device .. 52
Figure 3-7 Assembly of the laser rangefinder: 1. Laser; 2. Rotating mirror; 3. Scan window; 4. Enclosure .. 52
Figure 3-8 Load cell used in test rig ... 52
Figure 3-9 Specifications of the load cell ... 52
Figure 3-10 Particle size distribution .. 53
Figure 3-11 Angle of repose test ... 54
Figure 3-12 Consolidation after filling material ... 55
Figure 3-13 Different stages for surface profile scan .. 55
Figure 3-14 Material levels .. 56
Figure 3-15 Extension plate ... 57
Figure 4-1 ‘Circular’ arch shape .. 58
Figure 4-2 ‘Triangular’ arch shape ... 59
Figure 5-13 Normal wall pressure for four outlet widths at 30 kPa......................... 100
Figure 5-14 Normal wall pressure for different filling levels.................................. 101
Figure 5-15 Filling heights with 90 mm hopper outlet width.................................... 103
Figure 5-16 Simulation comparisons for the initial filling case with 90 mm opening
width and 0 kPa surcharge pressure... 104
Figure 5-17 Simulation comparisons for the flow case with 90 mm opening width and
0 kPa surcharge pressure.. 104
Figure 5-18 Simulation comparisons for the initial filling case with 90 mm opening
width and 10 kPa surcharge pressure... 105
Figure 5-19 Simulation comparisons for arching case with 90 mm opening width and
10 kPa surcharge pressure... 106
Figure 5-20 Filling heights with 260 mm hopper outlet width................................. 107
Figure 5-21 Simulation comparisons for the initial filling case with 260 mm opening
width and 0 kPa surcharge pressure... 108
Figure 5-22 Simulation comparisons for the flow case with 260 mm opening width and
0 kPa surcharge pressure.. 108
Figure 5-23 Simulation comparisons for the initial filling case with 260 mm opening
width and 10 kPa surcharge pressure... 109
Figure 5-24 Simulation comparisons for the flow case with 260 mm opening width and
10 kPa surcharge pressure... 110
Figure 6-1 Belt and apron the feeder [67].. 114
Figure 6-2 Belt/apron the feeder—assumed shear zone and velocity profiles [71]..... 116
Figure 6-3 Mass-flow bin for feeder loads calculation.. 121
Figure 6-4 Hopper geometry for feeder load determination [71].............................. 124
Figure 7-1 a) Schematic diagram of experimental setup; b) Photograph of experimental
setup... 129
Figure 7-2 Specific setup with two hopper half-angles: a) Special configuration of the
plane-flow hopper; b) Tekscan tactile sensor (model 5315); c) Method to place the
pressure measurement sensor... 131
Figure 7-3 Specific test setup with one hopper half-angle: a) Wedged plane-flow hopper
without skirt plates; b) Method to position the pressure sensor.............................. 132
Figure 7-4 Specific setup for the bigger scale of belt feeder: a) Bigger scale of belt
feeder; b) Hopper and feeder interface; c) Torque measurement load cell; d) Preload for
the torque measurement... 133
Figure 7-5 a) Support for the trough angle; b) Trough angle of the belt 134
Figure 7-6 a) Flat feeder surface; b) Surface profile of the discharged material........ 135
Figure 7-7 S-type load cell to measure the horizontal shear force during feeder operation
.. 135
Figure 7-8 Bending beam to measure the vertical feeder load during feeder operation136
Figure 7-9 Specifications of Tekscan tactile sensor #5315....................................... 137
Figure 7-10 Drift tests for Tekscan tactile sensor 1 .. 138
Figure 7-11 Drift tests for Tekscan tactile sensor 2 .. 139
Figure 8-1 Observed flow patterns: a) Initial position of marked material layer; b) U-shaped flow pattern at front hopper wall during flow; c) S-shaped top in side view wall during discharge; d) S-shaped flow pattern of marked layer appeared in side hopper wall during flow; e) Top view of the hopper during the middle of flow; f) Top view of hopper during the end of flow ... 143
Figure 8-2 Top view of the flow patterns: a) Earlier time during discharge; b) Later time during discharge .. 144
Figure 8-3 Special flow patterns formed by lowering the clearance during consolidation: a) Front view; b) Top view.. 145
Figure 8-4 Plan views of Tekscan sensor recording for bottom pressure distribution.. 146
Figure 8-5 Trend of bottom pressure distribution .. 146
Figure 8-6 Pressure and force distribution on the feeder for the flow condition 148
Figure 8-7 Pressure and force distribution on the feeder for the initial filling condition ... 149
Figure 8-8 Plan views of Tekscan sensor recording for bottom pressure distribution.. 151
Figure 8-9 Pressure and force distribution on the feeder for the initial filling condition ... 152
Figure 8-10 Pressure and force distribution on the feeder for the flow condition 153
Figure 8-11 Plan views of Tekscan sensor recording for bottom pressure distribution154
Figure 8-12 Pressure and force distribution on the feeder for the initial filling condition ... 155
Figure 8-13 Pressure and force distribution on the feeder for the flow condition 156
Figure 8-14 Theoretical calculations based on different approaches 158
Figure 8-15: Theoretical calculations based on different approaches..................... 159
Figure 8-16 Theoretical calculations based on different approaches 160
Figure 8-17 Vertical feeder loads with different clearances .. 166
Figure 8-18 Comparison of flow parameters for the feeder at different clearances 166
Figure 8-19 Pressure distribution measurements from the Tekscan tactile sensor in the initial condition ... 167
Figure 8-20 Geometry model with two hopper half-angles for DEM analysis........... 168
Figure 8-21 Initial filling condition .. 168
Figure 8-22 Flow patterns during discharge at different points of time 170
Figure 8-23 Vertical loads on the feeder at varying filling heights and clearances..... 172
Figure 8-24 Vertical loads on the feeder at varying belt speed and particle size 174
Figure 8-25 Comparison of the simulation results with the theoretical and experimental results .. 175
Figure 8-26 Geometry model with one constant hopper half-angle for DEM analysis 176
Figure 8-27 Initial filling condition ... 176
Figure 8-28 Flow patterns during discharge at different points of time 177
Figure 8-29 Vertical loads on the feeder at varying belt speeds 178
Figure 8-30 Comparison of vertical feeder loads at different belt speeds for initial and flow conditions ... 179
Figure 8-31 Comparison of the vertical feeder loads at different clearances for the initial condition ... 180
Figure 8-32 Comparison of the vertical feeder loads at different clearances for the flow condition ... 180
Figure 8-33 Stress field in the hopper and feeder system 181
Figure 8-34 Validation of the proposed theory on the feeder loads in the flow case ... 185
Figure 9-1 Summarised flow chart of the thesis study 188
Figure 9-2 Stress states at the hopper/feeder interface 194
List of Tables

Table 3-1 Material properties of the test material ... 53
Table 3-2 Test results of angle of repose .. 54
Table 3-3 Measurements under different surcharge pressures .. 58
Table 3-4 Measurements for various filling levels ... 58
Table 4-1 Angles η and η’ on 11 cross-sections for one actual arch 79
Table 5-1 Critical outlet dimensions from experiments and theories 86
Table 5-2 Critical outlet dimensions regarding to different filling levels at 10 kPa 86
Table 5-3 Modelling parameters for 90 mm hopper outlet width 102
Table 5-4 Modelling parameters for 260 mm hopper outlet width 107
Table 7-1 Material properties of the test material ... 140
Table 7-2 Conducted experiment series .. 140
Table 8-1 Experimental vertical and horizontal feeder loads 157
Table 8-2 Specifications for the torque and horizontal force measurements 162
Table 8-3 Experimental results ... 162
Table 8-4 Comparison of power to shear the material .. 163
Table 8-5 Measured power consumption list .. 163
Table 8-6 Modelling parameters ... 169
Table 8-7 Theoretical results based on the combined passive and active stress fields 184
Abstract

Since the era of industrialisation, the handling of materials in bulk form has become a necessary process for a range of industries throughout the world. Bulk handling and storage facilities should be designed and operated to obtain both maximum reliability and efficiency as well as encourage economy. A better understanding of the stress field and arching behaviour and an accurate assessment of the bin wall pressure are essential steps to achieving reliable design of the storage bins or the feeder system.

To date, the determination of the critical mass-flow hopper opening dimensions to prevent blockages due to the formation of stable, cohesive arches has been based on the radial stress field generated in the lower region of the hopper. The surcharge loads on the hopper have not been taken into account. Non-linear effects caused by the hopper surcharge loads in mass-flow analysis need to be addressed. In this study, a large number of experiments were conducted to investigate the influence of the surcharge pressure and the filling level on the hopper wall pressure during arching. The failure mechanism of the arches is discussed by means of studying the arch profile in the mass-flow hopper.

In this study, to ensure efficient feeding, the hopper and feeder geometry are designed as an integral unit. The stress field at the hopper/feeder interface is of particular interest due to the role that it plays in estimating the feeder loads. In reality, the two-dimensional stress field assumed in the mass-flow hopper is influenced by the shear force due to the feeder operation. The combination of the active stress field and the passive stress field in the mass-flow hopper is suggested. This study also attempts to provide an accurate estimation of the feeder loads by investigating the feeder loads given by a combination of two methods.

Apart from the comparisons between the experimental and theoretical results, numerical simulations using the discrete element method were carried out additionally to assist in the investigation of the hopper wall pressures and feeder loads. The influences of the various parameters on the hopper wall pressure, such as filling heights and outlet dimensions, are presented in this thesis. For the feeder system, the effects of the clearance between the hopper and feeder, the belt speed and other areas are also studied.
Nomenclature

A(x) = cross-sectional area [m²]

B = hopper outlet width or diameter [m]

B = hopper outlet width at the front [m]

B = average hopper outlet width [m]

B'av = average width between skirt plates [m]

C₁ = factor defined by Equation 2.30

C₂ = factor defined by Equation 2.18

cc = 1 for axisymmetric flow \(c_c = 1.2 \) for plane-flow

Cₙ = factor defined by Equation 2.26

D = width of the cylindrical section [m]

Fₜ = the force applied for the torque [N]

fₜ = constant part of the flow function

g = acceleration due to gravity [m/s²]

H = the head of bulk solid in cylinder [m]

H = distance between the front end of the hopper outlet and belt [m]

hₕ = hₙ + hₜ = total effective height of stored solid, referring to Figure 2-1

hₙ = surcharge head acting at transition of cylinder and hopper [Pa·m³/N]

hₜ = distance from apex to the transition of hopper [m]

hₕ = filling height [m]

hₙ = bin surcharge head [m]

hₜ = effective surcharge [m]
Hs = actual surcharge head
K = ratio of pnv for hopper
k = pnhf/pni = lateral pressure ratio for initial condition in the cylinder
k0 = coefficient in the linear flow function
khf = pressure ratio in the flow case
khi = pressure ratio in the initial filling condition
Kj = pressure ratio in Janssen equation

Kv = ratio of lateral to vertical pressure at skirt plates
L = hopper outlet length [m]
Llever = the lever arm [m]
Lₙ = total length of belt ≥ 2(Lₙ+Le+xₜ)+1.5 m [m]
Le = length of skirt plates for extended section [m]
Lₙ = length of skirt plates form hopper section [m]

m = symmetry factor, m=0 for plane-flow hopper, m=1 for axisymmetric or conical hopper

mₛ = 0 for triangular surcharge; mₛ = 1 for conical surcharge

n = the idler revolution [r/min]

P₁ = the total output power from motor [w]

pn = normal wall pressure [Pa]

pnhf = normal wall pressure at hopper wall for the flow condition [Pa]

pnhf = normal wall pressure in the hopper for the initial filling condition [Pa]

pₙi = Janssen pressure given by Equation 2.8 [Pa]

pₛ = surcharge pressure from passive stress field in the hopper at distance zₙ or transition [Pa]
$p_{s0} =$ surcharge pressure at datum transition

$p_v =$ average vertical pressure [Pa]

$p_{s0} =$ average surcharge pressure due to natural surcharge of material caused by filling [Pa]

p_{vft} = average vertical pressure for the flow condition [Pa]

p_{vhi} = average vertical pressure in the hopper for the initial filling condition [Pa]

p_{vi} = average vertical pressure in the cylinder for initial condition [Pa]

p_{vx} = vertical pressure at position x [Pa]

$q =$ non-dimensional surcharge factor

$Q =$ mass-flow rate [kg/s]

$r =$ radial coordinate along wall [m]

$R =$ distance from vertex along the hopper wall to the transition [m]

$r_c =$ characteristic radius of container [m]

$r_m =$ distance from vertex to the critical outlet width B_c [m]

$r_{m0} =$ distance from vertex to the critical outlet width B_{c0} [m]

$T =$ the output torque for motor [N*m]

$V =$ vertical load on the shear plane [N]

$V_b =$ velocity of the belt or apron [m/s]

$V_f(x) =$ average feeder velocity at location x [m/s]

$w_{b} =$ belt or apron weight per unit length [m]

$W_c =$ weight of material in extended skirt plate zone [N]

$W_h =$ weight of material in skirt plate zone of hopper [N]

$x =$ distance from the axis of symmetry [m]
\(y = \text{height from the apex of the hopper [m]} \)

\(y_e = \text{average height of material against skirt plates for extended section [m]} \)

\(y_h = \text{average height of material against skirt plates for hopper section [m]} \)

\(z = \text{depth coordinates from hopper transition [m]} \)

\(z_g = \text{height of the hopper [m]} \)

\(z_h = \text{distance from transition at which the passive stress field switches into active stress field [m]} \)

\(z_h = \text{distance from the transition [m]} \)

\(\alpha = \text{hopper half angle [radians]} \)

\(\gamma = \text{bulk specific weight [N/m}^3\text{]} \)

\(\gamma = \text{unit weight of bulk solid } \gamma = \rho g [\text{kg/m}^2\cdot\text{s}^2] \)

\(\delta = \text{effective angle of internal friction [radians]} \)

\(\eta = \text{angle between major consolidation stress at wall and the normal to the wall [radians]} \)

\(\eta' = \text{angle between major consolidation stress at wall and the horizontal [radians]} \)

\(\eta_v(L) = \text{volumetric efficiency at exit} \)

\(\theta = \text{slope angle [°]} \)

\(\lambda = \text{divergence angle [°]} \)

\(\lambda = \text{half divergence angle of skirt plates [°]} \)

\(\mu = \tan \phi_w = \text{coefficient of wall friction [-]} \)

\(\mu_b = \text{idler friction [-]} \)

\(\mu_E = \text{equivalent friction coefficient [-]} \)

\(\mu_{sp} = \text{friction coefficient for skirt plates [-]} \)

\(\mu_{sph} = \text{equivalent skirt plates friction coefficient [-]} \)
\(\rho \) = bulk density \([\text{kg/m}^3]\)

\(\rho \) = bulk density of the material in shear zone \([\text{kg/m}^3]\)

\(\sigma \) = mean stress \([\text{Pa}]\)

\(\sigma_1 \) = major consolidation stress \([\text{Pa}]\)

\(\sigma_2 \) = minor consolidation stress \([\text{Pa}]\)

\(\sigma_R \) = mean surcharge stress \([\text{Pa}]\)

\(\bar{\sigma}_2(R) \) = minor consolidation stress in the critical condition at the transition \([\text{Pa}]\)

\(\phi_w \) = wall friction angle \([\text{radians}]\)

\(\psi \) = release angle \([\degree]\)

\(\omega \) = idler angular velocity \([\text{rad/s}]\)