Respiratory Innate Immune Factors Regulate Steroid-resistant Airway Hyperreactivity and Asthma

By

Jingjing Li

Master of Science

Research Center for Asthma and Respiratory Disease,

Discipline of Immunology and Microbiology,

School of Biomedical Sciences and Pharmacy,

Faculty of Health,

The University of Newcastle

NSW, Australia

A dissertation submitted as fulfillment of the requirements for the award of a PhD degree (Immunology and Microbiology).

January, 2014
LIST OF PUBLICATIONS

PUBLICATION #1

Jing Jing Li, Wan Wang, Katherine J. Baines, Nikola A. Bowden, Philip M. Hansbro, Peter G. Gibson, Rakesh K.Kumar, Paul S. Foster and Ming Yang. IL-27/IFN-γ Induce MyD88-Dependent Steroid-Resistant Airway Hyperresponsiveness by Inhibiting Glucocorticoid Signalling in Macrophages. J. Immunol. 2010; 185; 4401-4409

PUBLICATION #2

Jing Jing Li, Hock L. Tay, Maximilian Plank, Ama-Tawiah Essilfie, Philip M. Hansbro, Paul S. Foster, Ming Yang. Activation of olfactory receptors on mouse pulmonary macrophages promotes monocyte chemotactic protein-1 production. Plos One. 2013 Nov 21; 8(11)

PUBLICATION #3

LIST OF ADDITIONAL PUBLICATIONS WITH RELEVANCE TO THIS THESIS

THESIS STATEMENTS

This thesis contain no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Jingjing Li
January 2014
ACKNOWLEDGEMENTS

Firstly I would like to thank my primary supervisor, Dr. Ming Yang, and co-supervisor, Prof. Paul Foster, whose encouragement, support and supervision made this work possible. Thank you also to Prof. Philip M. Hansbor, Dr. Nicole Hansbro, Dr. Steven Maltby, Ms Fiona Eyers and Dr. Jay Horvat. Your expertise, knowledge and advice have been proven invaluable during my studies. Special thanks to Prof. Paul D. Allen of Harvard Medical School and Prof. Rakesh K. Kumar of The University of New South Wales for their stimulating discussions and critical suggestions.

Thank you also to all the staff and students in the groups of Foster, Hansbro and Mattes, who have provided their kindly assistance and friendship throughout these years. Special thanks to Mr. Hock L. Tay, Mr. Maximilian Plank, Dr. Gerard Kaiko, Dr. Eric Lam, and Dr. Adeline Foo. I am very lucky to have a brother-sister-hood friendship with you guys.

I would very much like to thank my family, my parents and my brother, who inspired, encouraged and supported me throughout my study. Also thanks to my dear friends, Prof. Xudong Zhang, Dr. Nagaraj Gopisetty and Ms. Donna Meredith, who have provided their generous helps and guides.

At last I would like to thank University of Newcastle and Asthma CRC who provided scholarships to make this work possible.
TABLE OF CONTENTS ..5

LIST OF FIGURES AND TABLES ...11

ABBREVIATIONS ..13

ABSTRACT ..16

Chapter 1: Introduction ...18

1.1 Overview of Asthma Disease ...19

1.2 Immunology of Asthma ..19

1.3 Asthma Management ...24

1.3.1 Glucocorticoids ...25

1.3.1.1 Molecular Basis of GC Function ...26

1.3.1.1.1 GC Receptor Structure and Expression ..26

1.3.1.2 GR Nuclear Translocation ...28

1.3.1.3 GRs and Gene Transcription ...29

1.4 Asthma and Steroid Resistance ..31

1.4.1 Steroid Resistant Asthma ..31

1.4.2 Molecular Basis of Steroid Resistance ...33

1.4.2.1 Defect of GRs Expression and Ligand Binding ...33

1.4.2.2 Impaired GRs Nuclear Translocation and GR-GRE Binding34

1.4.2.3 Crosstalk with Other Transcription Factors ..35

1.5 Asthma Phenotype ..36

1.5.1 Non-eosinophilic Asthma ..37

1.5.2 Innate Immune Response in Steroid Resistant Asthma37

1.5.3 Infection and Asthma ..38

1.5.3.1 Toll-like Receptors (TLRs) ..39

1.5.4 Interferon-γ (IFN-γ) ...42
1.5.5 Chemosensors and Asthma

1.5.5.1 Olfactory Receptor (OR)

1.5.6 Innate Immune Cells

1.5.6.1 Macrophages

1.5.6.2 Alveolar Macrophages

1.5.6.3 Macrophage Polarization

1.5.6.4 Macrophage Recruitment and Chemotaxis

1.6 MicroRNAs in Immune Response and Asthma

1.6.1 Biogenesis of microRNA

1.6.2 Modulation of miRNAs Expression

1.6.3 Emerging Role of microRNA in Asthma

1.6.4 Therapeutic Potential of Targeting miRNAs as New Approach to Treat Asthma

1.7 Study rational

Chapter 2: IL-27/IFN-γ Induce MyD88- Dependent Steroid-Resistant Airway Hyperresponsiveness by Inhibiting Glucocorticoid Signalling in Macrophage

2.1 Abstract

2.2 Introduction

2.3 Materials and Methods

2.3.1 Animals

2.3.2 Administration of IL-27, IFN-γ, and/or LPS, and Ab neutralization of IL-27

2.3.3 Analysis of induced sputum samples from human asthma patients

2.3.4 Administration of dexamethasone

2.3.5 Measurement of lung function
2.3.6 Isolation of adherent cells, epithelial cells, and nonadherent cells..............66
2.3.7 Analysis of cytokines by ELISA..66
2.3.8 Quantitative PCR...67
2.3.9 Inhibition of NF-κB, JNK, or p38 activation...67
2.3.10 Depletion of IFN-γ, CD4⁺, CD8⁺, and NK cells and pulmonary Macrophages...68
2.3.11 Flow cytometry..69
2.3.12 Transfer of isolated wild-type macrophages into MyD88−/− mice...............70
2.3.13 Immunofluorescence detection of GRs...70
2.3.14 Data analysis..71

2.4 Results...72

2.4.1 IFN-γ/LPS increases activation and numbers of CD11b⁺ pulmonary macrophage..72
2.4.2 IFN-γ/LPS administration induces increased expression of IL-27 in pulmonary macrophages...73
2.4.3 Levels of IL-27 p28 and IFN-γ are concurrently increased in neutrophilic but not eosinophilic asthma..74
2.4.4 Cooperative interaction between IL-27 and IFN-γ contributes to the development of AHR...76
2.4.5 IL-27/IFN-γ–induced AHR is abolished by the depletion of pulmonary macrophages...78
2.4.6 IL-27/IFN-γ–induced AHR is not inhibited by the suppression of NF-κB, JNK, or p38...80
2.4.7 IL-27/IFN-γ–induced AHR is underpinned by the activation of MyD88 in pulmonary macrophages..82
2.4.8 IL-27/IFN-γ induces steroid-resistant AHR and suppresses the translocation of the GR to the nucleus of pulmonary macrophages.............84
2.5 Discussion

Chapter 3: Activation of Olfactory Receptors on Mouse Pulmonary Macrophages Promotes Monocyte Chemotactic Protein-1 Production

3.1 Abstract

3.2 Introduction

3.3 Materials and Methods

3.3.1 Mice

3.3.2 Administration of IFN-γ, LPS or γ/LPS

3.3.3 Gene chip microarray

3.3.4 Pulmonary macrophage isolation and treatment

3.3.5 Preparation of peritoneal macrophages and macrophage migration assay

3.3.6 Bone marrow derived macrophage (BMDM) culture and polarization

3.3.7 Quantitative polymerase chain reaction (q-PCR)

3.3.8 Immunofluorescence detection of OR622

3.3.9 ELISA

3.3.10 Macrophage phagocytosis of non-typeable Haemophilus influenzae (NTHi)

3.3.11 Data analysis

3.4 Results

3.4.1 Treatment with γ/LPS up-regulates OR expression levels in mouse airway tissue

3.4.2 γ/LPS synergistically enhance the expression levels of ORs in pulmonary macrophage

3.4.3 Olfactory agonists stimulate MCP-1 production by pulmonary macrophages
3.4.4 Octanal exposure promotes γ/LPS-induced MCP-1 macrophage migration..116

3.4.5 Octanal does not influence macrophage polarization...118

3.4.6 Octanal does not affect the phagocytosis of NTHi by pulmonary macrophages..121

3.5 Discussion..125

Chapter 4: MiR-9 Induction Contributes to Steroid-resistant Airway Hyperresponsiveness By Reducing PP2A Activity..129

4.1 Abstract...130

4.2 Introduction..131

4.3 Methods ..134

4.3.1 Mice...134

4.3.2 Pulmonary macrophage isolation and stimulation...134

4.3.3 Collection of induced sputum samples from human asthma patients.........................134

4.3.4 In vivo administration of IFN-γ, LPS or γ/LPS or DEX or AAL(s)135

4.3.5 Induction of allergic airway inflammation and prolonged airway hyperresponsiveness..135

4.3.6 AHR measurement..136

4.3.7 MiRNA target prediction and luciferase reporter assay..136

4.3.8 Quantitative assessment of miRNA expression..137

4.3.9 Quantitative assessment of mRNA expression..137

4.3.10 Western Blot..138

4.3.11 Immunofluorescent detection of GR localisation...138

4.3.12 PP2A activity assay...139

4.3.13 Data analysis..139

4.4 Results...139
4.4.1 MiR-9 expression in upregulated under conditions that induce steroid-resistant AHR ...139

4.4.2 Inhibition of miR-9 restores steroid-sensitivity, reducing AHR induced by γ/LPS ...142

4.4.3 MiR-9 expression inhibits PP2A activity by targeting the regulatory subunits PPP2R5D and PPP2R2A ...145

4.4.4 MiR-9 reduces GR nuclear translocation ...150

4.4.5 Altered PP2A activity effects induced AHR ..152

4.4.6 Ant-9 treatment reduces AHR in LPS co-exposure and exacerbation models of OVA-induced allergic AHR ..154

4.5 Discussion ...156

Chapter 5: Discussion ..162

Chapter 6: Future Directions ...169

REFERENCES ...174
LIST OF FIGURES AND TABLES

Fig.1.1: Immune system activation in the induction of asthma..23
Fig.1.2: Structure of the GR gene and proteins. ..28
Fig.1.3: Mechanism of glucocorticoid action...31
Fig.1.4: Multiple patterns of agonist-ORs combination...45
Fig.1.5: The biogenesis process and function of miRs..51
Fig.2.1: Exposure of the airway to IFN-γ and LPS induces recruitment and activation of CD11b+ macrophages, with increased production of IL-27 from macrophages......75
Fig.2.2: Synergism between IL-27 and IFN-γ contributes to the development of AHR independently of neutrophilia...77
Fig.2.3: Macrophages are critical for IL-27/IFN-γ–induced AHR...............................79
Fig.2.4: The development of IL-27/IFN-γ–induced AHR does not involve NF-κB, JNK, or p38..81
Fig.2.5: The induction of AHR by IL-27/IFN-γ is dependent on MyD88 signalling in pulmonary macrophages. ..83
Fig.2.6: IFN-γ/LPS and IL-27/IFN-γ administration leads to the development of DEX-resistant AHR. ..85
Fig.2.7: IFN-γ/LPS and IL-27/IFN–γ administration impair steroid induced nuclear translocation of GR in pulmonary macrophages...86
Fig.3.1: OR expression in the lung is induced by IFN-γ + LPS stimulation.................106
Fig.3.2: OR expression in different mouse tissues..107
Fig.3.3: ORs are expressed by mouse pulmonary macrophages and upregulated by IFN-γ + LPS stimulation...109
Fig.3.4: OR622 protein expression in mouse pulmonary macrophages.................110
Fig.3.5: Effects of macrophage OR activation on the expression of proinflammatory genes, chemokines and cytokines..113
Fig.3.6: Octanal stimulation increases IFN-γ and LPS-induced MCP-1 expression in mouse pulmonary macrophages..114
Fig. 3.7: OR agonists induce MCP-1 expression in mouse pulmonary macrophages.

Fig. 3.8: Supernatants from macrophage cultures stimulated with octanal, IFN-γ and LPS induce macrophage migration.

Fig. 3.9: OR activation has no effect on cultured pulmonary macrophage polarization.

Fig. 3.10: OR activation has no effect on cultured bone marrow derived macrophage polarization.

Fig. 3.11: Exposure to OR agonist has no effect on macrophage phagocytic capacity for NTHi.

Fig. 4.1: miR-9 expression is induced by γ/LPS stimulation.

Fig. 4.2: Inhibition of miR-9 restores DEX sensitivity attenuating AHR induction by γ/LPS.

Fig. 4.3: Effect of ant-9 on airway cell infiltration following γ/IFN administration.

Fig. 4.4: Targeting of PPP2R5D and PPP2R2A mRNA by miR-9.

Fig. 4.5: Targeting miR-9 restores PPP2R5D expression and PP2A activity.

Fig. 4.6: Effect of miR-9 on PPP2R2A expression.

Fig. 4.7: Inhibition of miR-9 restores DEX-induced GR nuclear translocation.

Fig. 4.8: Increasing PP2A activity restores steroid-sensitivity and GR nuclear translocation.

Fig. 4.9: Inhibition of miR-9 restores steroid sensitivity, thus blocking the development of AHR in allergen-induced models of steroid-resistant AHR.

Fig. 4.10: Schematic representation of miR-9 effects on glucocorticoid function in pulmonary macrophage following LPS+IFN-γ exposure.

Fig. 5.1: Proposed mechanism of steroid-resistance induced by LPS and IFN-γ.

Fig. 5.2: Proposed mechanism of interaction between OR pathway and IFN-γ/LPS pathway in inducing MCP-1 production.

Table 3.1: Primer sequences of ORs.

Table 3.2: Primer sequences of other genes.
<table>
<thead>
<tr>
<th>ABBREVIATION</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAL(S)</td>
<td>2-amino-4-(4-heptylophenol)-2-methylbutanol</td>
</tr>
<tr>
<td>AAVs</td>
<td>adeno-associated viruses</td>
</tr>
<tr>
<td>Ant-9</td>
<td>antagonomir-9</td>
</tr>
<tr>
<td>AHR</td>
<td>airway hyperresponsiveness</td>
</tr>
<tr>
<td>AP-1</td>
<td>activator protein 1</td>
</tr>
<tr>
<td>APCs</td>
<td>antigen presenting cells</td>
</tr>
<tr>
<td>ARG1</td>
<td>arginase-1</td>
</tr>
<tr>
<td>BALF</td>
<td>broncho alveolar lavage fluid</td>
</tr>
<tr>
<td>pCAF</td>
<td>p300/CBP-associated factor</td>
</tr>
<tr>
<td>CBP</td>
<td>cyclic AMP response element-binding protein</td>
</tr>
<tr>
<td>CDK</td>
<td>cyclin-dependent kinase</td>
</tr>
<tr>
<td>CSF-1</td>
<td>colony-stimulating factor</td>
</tr>
<tr>
<td>DAMPs</td>
<td>damage associated molecular patterns</td>
</tr>
<tr>
<td>DC</td>
<td>dendritic cell</td>
</tr>
<tr>
<td>DEX</td>
<td>dexamethasone</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's Modified Eagle Medium</td>
</tr>
<tr>
<td>EBI3</td>
<td>EBV-induced gene 3</td>
</tr>
<tr>
<td>FCS</td>
<td>fetal calf serum</td>
</tr>
<tr>
<td>FEV1</td>
<td>forced expiratory volume in one second</td>
</tr>
<tr>
<td>FGR</td>
<td>familial GC resistance</td>
</tr>
<tr>
<td>FIZZ1</td>
<td>resistin-like molecule-α</td>
</tr>
<tr>
<td>GCs</td>
<td>glucocorticoids</td>
</tr>
<tr>
<td>GM-CS</td>
<td>granulocyte macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>GLIZ</td>
<td>GC-induced leucine zipper protein</td>
</tr>
<tr>
<td>GP</td>
<td>G protein-coupled receptor</td>
</tr>
<tr>
<td>GR</td>
<td>Glucocorticoid receptor</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>GREs</td>
<td>GC response elements</td>
</tr>
<tr>
<td>GSK3</td>
<td>glycogen synthase kinase 3</td>
</tr>
<tr>
<td>HAT</td>
<td>histone acetyltransferase</td>
</tr>
<tr>
<td>HAD</td>
<td>CHAT activity and recruit histone deacetylase</td>
</tr>
<tr>
<td>HDM</td>
<td>house dust mite</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank's buffered salt solution</td>
</tr>
<tr>
<td>HPRT</td>
<td>hypoxanthine-guanine phosphoribosyl transferase</td>
</tr>
<tr>
<td>Hsps</td>
<td>heat shock proteins</td>
</tr>
<tr>
<td>IκB</td>
<td>inhibitor of nuclear factor-κB</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>interferon-gamma</td>
</tr>
<tr>
<td>IFNγR</td>
<td>IFN-γ receptor</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>IRFs</td>
<td>interferon regulatory factors</td>
</tr>
<tr>
<td>i.t.</td>
<td>intratracheally</td>
</tr>
<tr>
<td>KC</td>
<td>keratinocyte-derived chemokine</td>
</tr>
<tr>
<td>LBD</td>
<td>ligand-binding domain</td>
</tr>
<tr>
<td>lipo-C12MDP</td>
<td>liposome-encapsulated clodronate</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MCP-1</td>
<td>monocyte chemotactic protein-1</td>
</tr>
<tr>
<td>miR</td>
<td>microRNA</td>
</tr>
<tr>
<td>miRISC</td>
<td>miRNA-induced silencing complex</td>
</tr>
<tr>
<td>MIP</td>
<td>macrophage inflammatory protein</td>
</tr>
<tr>
<td>MKP</td>
<td>mitogen-activated protein kinase phosphatase</td>
</tr>
<tr>
<td>NF-κB</td>
<td>nuclear factor-kappaB</td>
</tr>
<tr>
<td>iNOS</td>
<td>nitric oxide synthase</td>
</tr>
<tr>
<td>NLRs</td>
<td>NOD-like receptors</td>
</tr>
<tr>
<td>NTHi</td>
<td>non-typeable Haemophilus influenzae</td>
</tr>
</tbody>
</table>
OR olfactory receptor
OVA ovalbumin
PAMPs pathogen associated molecular patterns
PBMC peripheral blood mononuclear cell
PMN polymorphonuclear neutrophil
PP2A protein phosphatase 2A
PPP2R5D protein phosphatase 2, regulatory subunit B
PRRs pattern recognition receptors
Raw airway resistance
RLRs RIG-I-like receptors
pri-miRNA primary RNA
RSV respiratory syncytial virus
RT room temperature
SABAs beta2-adrenoceptor agonists
SCFAs short chain fatty acids
SEB staphylococcus aureus enterotoxin B
SLPI secretory leukoprotease inhibitor
SRC steroid receptor co-activator
STATs signal transducer and activator of transcriptions
Th T helper cell
Ticam-1 Toll-interleukin 1 receptor domain (TIR)-containing adaptor molecule-1
TIR Toll / interleukin-1 receptor-like domain
TLRs Toll-like receptors
(TNF)-α tumor necrosis factor-α
Tirap TIR domain-containing adaptor protein
Trif TIR-domain-containing adapter-inducing interferon
UTR untranslated regions
ABSTRACT

Asthma is a chronic inflammatory disease of the airways and a combination of genetic and environmental factors underpin the pathogenesis. The clinical symptoms of asthmatics most mild to moderate, allergic asthma patients can be effectively managed by combination therapy with broad-spectrum anti-inflammatory agents and bronchodilators (typically inhaled glucocorticoids and long acting β-agonists). Indeed, glucocorticoids remain the forefront therapeutical approaches for the treatment of asthma. However, 5-10% of asthmatics who have severe asthma do not respond to treatment, and these patients account for almost 50% of asthma-related healthcare costs. Thus it is essential to understand the pathogenesis of steroid resistance in severe asthma for the development of more efficient therapies for those patients. With well-established animal models of steroid resistant airway hyper-responsiveness (AHR, a hallmark feature of asthma) and in vitro culture systems of pulmonary macrophages, the underlying mechanisms regulating steroid resistance and exacerbation of asthma have been thoroughly investigated, particularly on the causative roles of innate immune factors. This thesis consists of three publications. The first publication identifies changes in the expression of key innate immune molecules and their signalling pathways in a mouse model of steroid-resistant AHR and demonstrates the central role of pulmonary macrophages in the induction of steroid-resistant AHR. The second publication investigates the expression of olfactory receptors in the respiratory system and on immune cells in response to innate immune activation, and identifies a potential
role of olfactory receptors in regulating the function of pulmonary macrophages. The final publication discusses the modulation of small non-coding RNAs, microRNA, expression by innate immune activation in a steroid-resistant mouse model of asthma and evaluates the role of key microRNAs involved in the induction of steroid-resistant AHR by regulating the activity of a critical phosphatase, protein phosphatase-2A, which further affected the function of glucocorticoid.