Mechanisms of Cardiac Ryanodine Receptor Inhibition by Anti Arrhythmic Drugs

By
Divya Rajendra Mehra
Bachelor of Pharmacy

Thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy (PhD) in Human Physiology
January 2014

School of Biomedical Sciences and Pharmacy
University of Newcastle
Statement of Originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Divya Rajendra Mehra

University of Newcastle
Statement of Authorship

I hereby certify that the work embodied in this thesis contains a published paper/s/scholarly work of which I am a joint author. I have included as part of my thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publications/scholarly work.

Divya Rajendra Mehra

University of Newcastle
Acknowledgements

I look back on my time as a PhD student as a period of great aspiration, a time upon which I will always reflect with gratitude and sentiment. First I would like to express immense gratitude to the ‘spiritual force’ behind each one of us that empowers us daily to do our best. This same force from the Almighty gave me an opportunity and strength to pursue my dream of doing research in the area of my deep interest. Thank you Lord for the courage you bestowed on me to face the ups and downs in life away from home which has not only made me a good researcher but also a humble human being. I am truly indebted and content as I come out at the other end of this journey with an enriched mind and soul.

To my supervisors, Asst/Prof. Derek Laver, Prof. Dirk Van Helden and Dr. Mohammad Imtiaz, I am forever grateful for your unrelenting enthusiasm for science which motivated me throughout. The support you offered when I was fighting my way through experiments, data analysis and writing up not only shaped my brain but also allowed me to be an independent researcher. I would also like to extend my gratitude to you for believing in me and supporting my candidature upgrade examination from Masters to PhD in 2010. Special thanks to Jennie Thomas who awarded more than a scholarship during the candidature. Your generous love and support has encouraged me to think big and achieve it too.

My special thanks to Paul Johnson, Peter Dorson and late Meegan Jones who kindly supported and helped me in the laboratory work. Your assistance has been a very warm friendship especially with tips on living in Australia.

To my colleagues from all over the globe sharing just more than office space, Fernanda and Ramatis, Osamu, Mutalip and Kafa – thank you for walking the path together and sharing the smiles and tears along the way. Thank you to my friends here in Australia, especially Frida who taught me swimming which back home dint feel like an important skill to have. To Swaroop, my roommate who patiently shared my PhD journey while pursuing his own dream of being a
Pharmacist and also supplied endless dinners when I did not want to hear how much fun others had on their weekends. I sincerely thank you all for coming into my life at a stage where your inputs only made the path worth walking.

To all my friends at home (yes, India is still home) and overseas who have not forgotten me and even more keep reminding me of my roots. Thank you for sending little reminders proving that distance is no barrier for strong friendships. I owe my interest in science and tenacity to persevere in life to my teachers from school and college in India. Thank you for shaping me into a determined individual (it really helped to push through in the end).

Last but not the least a special thanks to my Mummy, Papa and Rajiv who have supported me from the other side of the globe in every possible way. I know you were a bit waivered when I left to embark on the journey downunder but I am confident you will be happy to know I did my best to manage it well. You are the ones who have taught me to believe in myself and that I can achieve anything if I put my heart to it for which I will be forever grateful. This has given me the faith to live in any part of the world yet be connected to our home and values which have made my life so much richer and meaningful.
List of Publications

Peer Reviewed Publications

- Hyun Seok Hwang, Can Hasdemir, Derek Laver, Divya Mehra, Kutsal Turhan, Michela Faggioni, Huiyong Yin, Bjorn C. Knollmann: Inhibition of Cardiac Ca$^{2+}$ Release Channels (RyR2) Determines Efficacy of Class I Antiarrhythmic Drugs in Catecholaminergic Polymorphic Ventricular Tachycardia. *Circ Arrhythm Electrophysiol* 2011;4;128-135

- Divya Mehra, Mohammad Imtiaz, Dirk van Helden, and Derek Laver. Flecainide and magnesium block of the ryanodine receptor of the heart. Manuscript for submission to *British Journal of Pharmacology*. (Manuscript in preparation)

- Divya Mehra, Mohammad Imtiaz, Dirk van Helden and Derek Laver. Class I anti arrhythmic drug blocking kinetics of the ryanodine receptor of the heart. Manuscript for submission to *Molecular Pharmacology*. (Manuscript in preparation)

- Divya Mehra, Mohammad Imtiaz, Dirk van Helden and Derek Laver. Effect of K201, carvedilol and verapamil blocking kinetics on the ryanodine receptor of the heart. (Manuscript in preparation)

Conference Oral Presentations

2012 Divya Mehra, Dirk van Helden, Bjorn Knollmann and Derek Laver; talk on “Role of cardiac Na$^+$ channel blockers and Mg$^{2+}$ in inhibiting the cardiac calcium release channel” abstract accepted for presentation at *Australian Physiological Society* on 2nd Dec at Sydney.

2011 Divya Mehra, Dirk van Helden, Bjorn Knollmann and Derek Laver; talk on “Role of cardiac Na$^+$ channel blockers in inhibiting the cardiac calcium release channel” at *Australian Physiological Society* at Perth.

2009 Divya Mehra, Dirk van Helden, Bjorn Knollmann and Derek Laver; Poster vignette on “Flecainide prevents CPVT induced cardiac arrhythmias by open state block of Ca$^{2+}$ release channels” at the *33rd Annual Conference of the Australian Society for Biophysics in Ballarat*.

Conference Poster Presentations

2012 Divya Mehra, Dirk van Helden, Hyun S. Hwang, Bjorn Knollmann, and Derek Laver; “Mechanism of Cardiac Na$^+$ channel blockers in inhibiting cardiac calcium release channel” abstract selected for Poster presentation on the 4th June at the *Gordon Research Conference* at Geneva, Switzerland.

2011 Divya Mehra, Dirk van Helden, Bjorn Knollmann, and Derek Laver; “Inhibition of cardiac Ca$^{2+}$ release channels by class I anti arrhythmic drugs as therapy for arrhythmia”
abstract selected for Poster presentation on the 6th March at the Biophysical Society Meeting at Baltimore. Finalist for the SRAA event.

2011 Divya Mehra, Dirk van Helden, Bjorn Knollmann and Derek Laver; “Effect of Class I anti arrhythmic drugs on Ca\(^{2+}\) release channels associated with CPVT- induced cardiac arrhythmias” at the 10 of the Best Research Showcase event at the University of Newcastle.

2010 Divya Mehra, Dirk van Helden, Bjorn Knollmann, Hyun S. Hwang and Derek Laver; “Inhibition of cardiac ca\(^{2+}\) release channels as therapy for arrhythmia” Poster presentation on the 29th Nov at the Australian Physiological Society/Australian Society for Biophysics meeting at Adelaide.

2010 Divya Mehra, Dirk Van Helden, Bjorn Knollmann and Derek Laver; “Class I anti arrhythmic drugs block Ca\(^{2+}\) release channels associated with CPVT- induced cardiac arrhythmias” abstract selected for Poster presentation on the 17th Sept at the 10 of the Best Research Showcase event at the University of Newcastle.

2010 Divya Mehra, Dirk van Helden, Bjorn Knollmann and Derek Laver; “Flecainide blocks Ca\(^{2+}\) release channels associated with CPVT induced cardiac arrhythmias” abstract selected for poster presentation on the 31st Jan. at Australian Neuroscience Society / Australian Physiological Society scientific meeting at Sydney.

2010 Divya Mehra, Hyun Seok Hwang, Huiyong Yin, Sung I Kim, Bjorn C. Knollmann, Derek Laver; “Propafenone and flecainide inhibit cardiac ryanodine receptors and prevent catecholaminergic polymorphic ventricular tachycardia (CPVT) in mice” at the 20th World Congress of the International Society for Heart research due on 13th May.

2010 Hyun Seok Hwang, Divya Mehra, Huiyong Yin, Sung I Kim, Derek Laver, Bjorn C. Knollmann; “Propafenone inhibits cardiac ryanodine receptor Ca\(^{2+}\) release channels and prevents catecholaminergic polymorphic ventricular tachycardia (CPVT) in mice.” Abstract submitted for acceptance at the Heart Rhythm Congress, UK.

2010 Divya Mehra, Bjorn Knollmann, Dirk van Helden and Derek Laver; “Class I anti arrhythmic drugs block Ca\(^{2+}\) release channels associated with CPVT-induced cardiac arrhythmias.” at the Australian Society for Medical Research, Sydney

2009 Divya Mehra, Dirk van Helden, Bjorn Knollmann and Derek Laver; “Flecainide prevents CPVT induced cardiac arrhythmias by open state block of Ca\(^{2+}\) release channels” at the 33rd Annual Conference of the Australian Society for Biophysics in Ballarat.
List of Awards

2012 Awarded the Travel Scholarship Grant at the Gordon Research Conference: Excitation Contraction coupling meeting Switzerland in June.

2010 Awarded Travel Grant at the Australian Physiological Society/Australian Society of Biophysics meeting, Adelaide.

2010 Awarded the Travel Grant at the International Society of Heart Research Conference at Kyoto, Japan.

2010 Awarded the Best Student Presentation and Best Poster at the Australian Physiological Society/Australian Society of Biophysics scientific meeting at Adelaide.

2010 Awarded the Best Student Presentation and Best Poster at the Australian Neurological Society/ Australian Physiological Society scientific meeting at Sydney.

2009 Awarded the Best Student Presentation and Best Poster at the 33rd Annual Conference of the Australian Society, for Biophysics in Ballarat.

2009 Awarded The University of Newcastle Postgraduate Research Scholarship (UNRS Central 50 50) and The University of Newcastle International Postgraduate Research Scholarship (UNIPRS) by the University of Newcastle, Australia.

2009 Awarded the Emlyn and Jennie Thomas Postgraduate Medical/Cardiovascular Research Scholarship in cardiovascular health research by donor Mrs. Jennie Thomas at the University of Newcastle.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>adenosine-triphosphate</td>
</tr>
<tr>
<td>BAPTA</td>
<td>1,2- bis(2-aminophenoxy) ethane- N,N,N’-N’- tetraacetic acid</td>
</tr>
<tr>
<td>CICR</td>
<td>Ca$^{2+}$ - induced Ca$^{2+}$ release</td>
</tr>
<tr>
<td>CASQ2</td>
<td>calsequestrin</td>
</tr>
<tr>
<td>CH$_3$O$_3$S</td>
<td>methanesulfonate</td>
</tr>
<tr>
<td>EC-coupling</td>
<td>excitation-contraction coupling</td>
</tr>
<tr>
<td>GSH</td>
<td>glutathione</td>
</tr>
<tr>
<td>GSSG</td>
<td>glutathione disulfide</td>
</tr>
<tr>
<td>IC$_{50}$</td>
<td>half-inhibiting concentration</td>
</tr>
<tr>
<td>K$_i$</td>
<td>half-inhibiting concentration</td>
</tr>
<tr>
<td>mM</td>
<td>minimolar (mmol/l)</td>
</tr>
<tr>
<td>ms</td>
<td>millisecond</td>
</tr>
<tr>
<td>NaF</td>
<td>sodium fluoride</td>
</tr>
<tr>
<td>NaN$_3$</td>
<td>sodium azide</td>
</tr>
<tr>
<td>NCX</td>
<td>Na$^+$ / Ca$^{2+}$ exchanger</td>
</tr>
<tr>
<td>nM</td>
<td>nanomolar (nmol/l)</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>P$_o$</td>
<td>open probability</td>
</tr>
<tr>
<td>PC</td>
<td>1-palmitoyl-2-oleoyl-sn-Glycero-3-phosphocholine</td>
</tr>
<tr>
<td>PE</td>
<td>1-palmitoyl-2-oleoyl-sn-Glycero-3-phosphoethanolamine</td>
</tr>
<tr>
<td>pS</td>
<td>picosiemens</td>
</tr>
<tr>
<td>RyR2</td>
<td>cardiac ryanodine receptor</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>s$^{-1}$</td>
<td>1/second</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>sarcoplasmic reticulum</td>
</tr>
<tr>
<td>SAN</td>
<td>sinoatrial node</td>
</tr>
<tr>
<td>SERCA</td>
<td>sarcoplasmic/endoplasmic reticulum Ca(^{2+})-ATPase</td>
</tr>
<tr>
<td>TES</td>
<td>N-tris[hydroxymethyl-2-aminoethanesulfonic acid]</td>
</tr>
<tr>
<td>T(_o)</td>
<td>mean open time</td>
</tr>
<tr>
<td>T(_c)</td>
<td>mean closed time</td>
</tr>
<tr>
<td>(\mu l)</td>
<td>microliter</td>
</tr>
<tr>
<td>(\mu M)</td>
<td>micromolar ((\mu)mol/l)</td>
</tr>
</tbody>
</table>
Table of contents

Statement of Originality ... ii
Statement of Authorship ... iii
Acknowledgements .. iv
List of Publications .. vi
List of Awards .. viii
Abbreviations ... ix
List of Figures ... xvi
List of Tables .. xviii
Abstract ... xix

Chapter 1 - General Introduction

1.1 Heart Rhythm .. 2
 1.1.1 Electrophysiology of the heart .. 5
 1.1.1.1 Electrocardiography .. 10
 1.1.2 Channels and transporters in SA node action potential generation and propagation ... 12
1.2 Cardiac Muscle and Excitation Contraction Coupling ... 15
1.3 Ca²⁺ handling in Excitation Contraction Coupling .. 18
 1.3.1 The Ca²⁺ release phenomena ... 20
 1.3.1.1 Autoregulation of the SR calcium release ... 21
1.4 Structure and function of dyad junction .. 21
1.5 Ryanodine receptor ... 24
 1.5.1 Isoforms and Distribution ... 24
 1.5.2 RyR Structure .. 26
 1.5.3 Measurement of RyR function .. 29
 1.5.3.1 RyR Conductance ... 29
 1.5.4 RyR regulation by endogenous factors .. 31
Table of Contents

1.5.4.1 Calcium ... 31

1.5.4.2 Magnesium ... 32

1.5.4.3 ATP ... 33

1.5.4.4 pH ... 34

1.6 Cardiac channelopathies and their prevalence .. 34

1.6.1 Catecholaminergic Polymorphic Ventricular Tachycardia ... 36

1.6.2 Therapy in CPVT .. 38

1.6.2.1 Medical devices used in CPVT .. 38

1.6.2.2 Therapeutic interventions .. 40

1.6.2.2.1 Treatment with β blockers ... 40

1.6.2.2.2 Treatment with Ca²⁺ channel blockers 41

1.6.2.2.3 Treatment with Class I antiarrhythmic agents 41

1.7 Class I antiarrhythmic drugs – affect multiple ion channels ... 42

1.7.1 Class Ia agents .. 44

1.7.2 Class Ib agents .. 45

1.7.3 Class Ic agents .. 45

1.8 RyR2 as antiarrhythmic therapeutic target ... 48

1.9 Summary of Aims and Hypothesis ... 54

Chapter 2 - Materials and Methods ... 56

2.1 Source of Muscle tissue ... 57

2.2 Isolation of SR vesicles ... 57

2.3 The Planar Lipid Bilayer Technique ... 58

2.3.1 Preparation of Lipid mixtures .. 59

2.3.2 Bilayer formation .. 59

2.3.3 Aqueous Solutions .. 62

2.3.4 Vesicle Fusion .. 65

2.3.5 Bilayer Apparatus .. 68

2.4 Analysis of Single Channel Data ... 71
Table of Contents

2.4.1 Determination of dwell times using Channel 2 ... 71
2.4.2 Determination of dwell times using Hidden Markov Model 75
2.4.2.1 Processing options used in HMM Analysis .. 75
2.4.3 Presentation of Dwell times .. 76
2.5 Statistics .. 78

Chapter 3 - Effect of flecainide on RyR2 ... 79
3.1 Introduction ... 80
3.2 Material and Methods ... 83
3.3 Results ... 84
 3.3.1 State dependence of flecainide inhibition on RyR2 .. 84
 3.3.2 Fast flecainide inhibition on RyR2 under systolic Ca^{2+} conditions 87
 3.3.3 Fast flecainide inhibition on RyR2 under diastolic Ca^{2+} conditions 90
 3.3.4 Substate analysis of the fast flecainide inhibition ... 90
 3.3.5 Mg^{2+} and flecainide concentration dependent effects 93
 3.3.6 Mg^{2+} dependence of flecainide inhibition on RyR2 93
 3.3.7 Representation of block using dwell time histograms 97
 3.3.8 Ca^{2+}-dependence of flecainide inhibition on RyR2 99
 3.3.9 Properties of the slow flecainide inhibition .. 99
 3.3.10 Closed state dependent flecainide block ... 101
 3.3.11 Effect of pH on flecainide inhibition .. 105
 3.3.12 Competition between cis and trans flecainide inhibition 108
3.4 Discussion ... 110
 3.4.1 Two flecainide inhibition mechanisms .. 110
 3.4.2 Similarities and differences of flecainide inhibition RyR2 and other cardiac channels .. 116
 3.4.3 Flecainide inhibition in cardiac muscle ... 119

Chapter 4 - Effect of Class I anti arrhythmic drugs on the RyR2 123
4.1 Introduction ... 124
 4.1.1 Cardiac Na^{+} channel ... 124

xiii
Table of Contents

4.1.2 Cardiac Ryanodine Receptor ... 125

4.2 Material and Methods .. 126

4.3 Results .. 128

4.3.1 Fast Class I antiarrhythmic drug inhibition on RyR2 128

4.3.2 Concentration dependent effect of Class I drugs on RyR2 130

4.3.3 Dwell time representation of Class I drug inhibition 132

4.3.4 Current voltage relationships of Class I drugs ... 133

4.3.5 Class I drugs fast inhibition at systolic Ca\(^{2+}\) .. 138

4.3.6 Voltage dependence of Class I drug \(IC_{50}\) .. 141

4.3.7 Hidden Markov Model analysis of Class Ia drug blocking kinetics 141

4.4 Discussion .. 147

4.4.1 Interpretation of inhibition by the Class I drugs 147

4.4.2 Comparison with the local anaesthetic binding site on the Na\(^+\) channel 150

4.4.3 Structural consideration of fast open-channel block 151

4.4.4 RyR2 blockade is antiarrhythmic ... 152

Chapter 5 - Effect of K201, carvedilol and verapamil on RyR2 154

5.1 Introduction .. 155

5.2 Material and Methods .. 160

5.3 Results .. 161

5.3.1 Effect of K201, carvedilol and verapamil on RyR2 gating 161

5.3.2 K201, Carvedilol and verapamil slow inhibition 162

5.3.3 K201 inhibition of RyR2 at systolic Ca\(^{2+}\) ... 165

5.3.4 Carvedilol inhibition of RyR2 at systolic Ca\(^{2+}\) 165

5.3.5 Fast verapamil inhibition of RyR2 at systolic Ca\(^{2+}\) 168

5.3.6 Current voltage relationships of K201, carvedilol and verapamil 168

5.3.7 & 5.3.8 Representation of block using dwell time histograms 171

5.3.9 Properties of the K201, Carvedilol and Verapamil fast inhibition 174

5.3.10 K201, verapamil and carvedilol open duration using dwell time histogram in presence of 1 mM Mg\(^{2+}\) ... 176
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.12</td>
<td>Properties of the slow inhibition caused by K201, Carvedilol and Verapamil</td>
<td>179</td>
</tr>
<tr>
<td>5.3.13</td>
<td>Representation of K201 block using Hidden Markov Model analysis</td>
<td>181</td>
</tr>
<tr>
<td>5.3.14</td>
<td>Substate analysis of fast K201 inhibition</td>
<td>183</td>
</tr>
<tr>
<td>5.4</td>
<td>Discussion</td>
<td>185</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Comparison between the effect of K201, carvedilol and verapamil</td>
<td>185</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Role of K201, carvedilol and verapamil on adrenergic-induced arrhythmia and cardioprotection</td>
<td>188</td>
</tr>
<tr>
<td>Chapter 6 - General Discussion</td>
<td></td>
<td>193</td>
</tr>
<tr>
<td>6.1</td>
<td>Key findings and hypothesis</td>
<td>194</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Mechanism of action of anti arrhythmic drugs compared to tetracaine</td>
<td>194</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Classification of anti arrhythmic drugs</td>
<td>196</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Implications for therapeutic actions of RyR2 inhibitors</td>
<td>199</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Study Limitations</td>
<td>200</td>
</tr>
<tr>
<td>6.2</td>
<td>Conclusions</td>
<td>202</td>
</tr>
<tr>
<td>6.3</td>
<td>Future Directions</td>
<td>204</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Test the effectiveness of these drugs during ischemia-induced arrhythmia</td>
<td>204</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Characterisation of new analogs of flecainide and K201</td>
<td>204</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Molecular docking studies of drugs under investigation</td>
<td>205</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Computational modelling to simulate multi-scale effects of drugs under investigation</td>
<td>206</td>
</tr>
<tr>
<td>6.3.5</td>
<td>The effects of Class I drugs on CPVT clinical trials</td>
<td>206</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>208</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>14</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>17</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>25</td>
</tr>
<tr>
<td>Figure 1.9</td>
<td>28</td>
</tr>
<tr>
<td>Figure 1.10</td>
<td>37</td>
</tr>
<tr>
<td>Figure 1.11</td>
<td>39</td>
</tr>
<tr>
<td>Figure 1.12</td>
<td>50</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>61</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>67</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>70</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>73</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>74</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>77</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>86</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>88</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>89</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>92</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>95</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>96</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>98</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>102</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>103</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>104</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>107</td>
</tr>
<tr>
<td>Figure 3.12</td>
<td>109</td>
</tr>
</tbody>
</table>
List of Figures

Figure 4.1 .. 129
Figure 4.2 .. 131
Figure 4.3 .. 134
Figure 4.4 .. 135
Figure 4.5 .. 136
Figure 4.6 .. 137
Figure 4.7 .. 139
Figure 4.8 .. 140
Figure 4.9 .. 143
Figure 4.10 ... 144
Figure 4.11 ... 145

Figure 5.1 .. 159
Figure 5.2 .. 163
Figure 5.3 .. 164
Figure 5.4 .. 166
Figure 5.5 .. 167
Figure 5.6 .. 169
Figure 5.7 .. 170
Figure 5.8 .. 172
Figure 5.9 .. 173
Figure 5.10 ... 175
Figure 5.11 ... 177
Figure 5.12 ... 178
Figure 5.13 ... 180
Figure 5.14 ... 182
Figure 5.15 ... 184
List of Tables

Table 1.1 ... 43
Table 2.1 ... 58
Table 2.2 ... 62
Table 2.3 ... 64
Table 3.1 ... 86
Table 3.2 ... 95
Table 4.1 ... 127
Table 4.2 ... 131
Table 4.3 ... 146
Table 5.1 ... 163
Table 5.2 ... 164
Table 6.1 ... 198
Abstract

The cardiac ryanodine receptors (RyR2) are the calcium release channel in the sarcoplasmic reticulum (SR). Mutations in RyR2 or calsequestrin are known to cause Catecholaminergic polymorphic ventricular tachycardia (CPVT), an arrhythmia occurs in periods of emotional stress or exercise. Previous work showed that a Class I anti arrhythmic drug, flecainide blocked RyR2, thus reducing the spontaneous Ca\(^{2+}\) release that causes arrhythmia in CPVT. Tetracaine is a classical RyR2 blocker and it might be expected that block of RyR2 via tetracaine could potentially be a solution to arrhythmia due to SR overload. However, contrary to this tetracaine is pro-arrhythmic. This project investigates the mechanisms of RyR2 inhibition by anti arrhythmic drugs with a view to identifying inhibitory mechanisms that are antiarrhythmic. I investigated RyR2 inhibition including nine Class I agents-Na\(^+\) channel blockers, Class II-\(\beta\) blocker carvedilol, Class IV-Ca\(^{2+}\) channel blocker verapamil and K201 (JTV519).

RyR2 was isolated from sheep heart, incorporated in lipid bilayers and investigated by single-channel recordings in presence of diastolic Ca\(^{2+}\) (100 nM cytoplasmic) and systolic Ca\(^{2+}\) (100 \(\mu\)M cytoplasmic). All drugs showed inhibition from both cytoplasmic and luminal sides of the membrane consistent with the ability of the drugs to permeate through the bilayer. Two inhibition modes on RyR2 with distinct kinetics were detected,

1) induction of brief closed events with a mean duration of \(\sim 0.5-4\) ms referred to as the fast block,

2) induction of long closed events with a mean duration of \(\sim 20-600\) ms referred as the slow block.

Binding rates for both forms of block were proportional to concentration and unbinding rates were concentration independent, consistent with bimolecular binding. Drug binding was strongly voltage-dependent (more potent at positive membrane potential) consistent with movement of the cation form of the drug in the trans membrane electric field.

All drugs showed fast block RyR2 but they varied substantially in their potency. The association rates of the drugs fell into two broad classifications. Group A: Flecainide, propafenone, quinidine, encainide, verapamil, K201 and carvedilol have a fast association (exceeding a threshold of \(2 \mu\text{M}^{-1}\text{s}^{-1}\)). The association rates for Group B: mexiletine, procainamide, disopyramide, pilscainide and tocainide lie below this threshold. Drugs in Group A were seen in previous studies to reduce SR Ca\(^{2+}\) release while those in Group B did not. Moreover, the

xix
Abstract

potency of drug block of RyR2 correlated with their IC$_{50}$ for Ca$^{2+}$ wave suppression, spontaneous Ca$^{2+}$ wave rate and the proportion of animals with ventricular tachycardia after exercise.

Fast block for Class I drugs and K201 was to a substate exhibiting 20-50% of full open state conductance. Procainamide and verapamil caused a blocked state, with conductance indistinguishable from baseline. K201 causes two substates with conductances of 40 and 30 % of the open state (+40 mV). Kinetics of block was consistent with substate (or substates in the case of K201) due to binding of one molecule and complete block by a second molecule.

Only flecainide, carvedilol, K201 and verapamil showed slow block. The slow block was amplified by conditions that cause lower levels of channel open probability such as the case with 1 mM Mg$^{2+}$ or Ca$^{2+}$ in the cytoplasm. The binding rate for slow block increased proportionally with channel closed probability indicating a high preference for the closed state of the channel. The duration of the slow block seen for carvedilol, verapamil and K201 (~ 40 ms) was very different to that for flecainide (500 ms).

Class I agents are use-dependent blockers of the Na$^+$ channel as they preferentially bind to these channels in their inactivated (closed) state. Activation of Na$^+$ channels (i.e. their use) leads directly to their inactivation. This work shows that flecainide, K201, verapamil and carvedilol also bind to the RyR2 in its closed state. However, in the physiological context, use of the RyR2 (i.e. Ca$^{2+}$ release) depends on the channel being open so that use of the RyR2 results in loss of drug effect even though in both cases, the drug binds preferentially to the closed channel. The term inverse-use dependence may be used to describe drugs in Group A with respect to their RyR2 inhibition.

This study illustrates two mechanisms: fast and slow block of RyR2 that are specific for each class of drug. Our results show that Mg$^{2+}$, at physiological concentrations, makes flecainide, K201, carvedilol and verapamil a more potent inhibitor of RyR2 by inducing the slow inhibition mechanism. At +40 mV, slow mechanism for all four agents have ~ two-fold lower IC$_{50}$ (41, 10, 17 and 45 µM, respectively) than the fast mechanism (70, 24, 30, 90 µM, respectively). Differences lie in the off rate of flecainide compared to tetracaine, a classical RyR2 blocker. Flecainide off rate is 2 s$^{-1}$ and tetracaine is 20 s$^{-1}$. This could have a direct implication on the control of RyR2-mediated SR Ca$^{2+}$ release and on how the release is terminated on a beat to beat basis given the self-regenerating nature of Ca$^{2+}$ induced Ca$^{2+}$ release.