AVAILABILITY OF ARSENIC IN BREAST MILK, EFFECT OF CHRONIC ARSENIC EXPOSURE ON TYPE 2 DIABETES, HYPERTENSION IN ADULTS AND ON CHILDREN'S NUTRITIONAL STATUS IN BANGLADESH.

MD. RAFIQUL ISLAM
MBBS (Bangladesh), MPH (Australia)

A thesis submitted for the degree of Doctor of Philosophy in ‘Community Medicine and Clinical Epidemiology’
Under
The Center for Clinical Epidemiology and Biostatistics (CCEB)
School of Medicine and Public Health (SMPH)
Faculty of Health
University of Newcastle, NSW 2308
Australia

MARCH 2013
DECLARATION

This thesis contains no material which has been accepted for the award of any degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository**, subject to the provisions of the Copyright Act 1968. (**Unless an Embargo has been approved for a determined period.)

This is hereby confirm that unless otherwise stated, this thesis is my own work, undertaken through the Centre for Clinical Epidemiology and Biostatistics (CCEB), School of Medicine and Public health, The University of Newcastle.

“Also, I hereby certify that this thesis is submitted in the form of a series of published papers of which I am a joint author (1st author). I have included as part of the thesis a written statement from each co-author; and endorsed by the Faculty Assistant Dean (Research Training), attesting to my contribution to the joint publications.”

MD. RAFIQUL ISLAM
ACKNOWLEDGEMENTS

It is my great pleasure to acknowledge the efforts of many people who have contributed to complete the studies and this thesis.

First and foremost I would like to thank Professors John Attia, Academic Director, CReDITSS Unit, Catherine D’Este, Director, Centre for Clinical Epidemiology and Biostatistics (CCEB) and Wayne Smith, former director of CCEB and adjunct Professor, School of Medicine and Public Health, University of Newcastle. John, Cate as senior academic and Wayne as my co-supervisor have always inspired and supported me during my studies. Their continual support and blessings are something very special that I will carry on for long.

I have been very fortunate to have wonderful supervisors like Dr. Abul Hasnat Milton, Mr. Mark McEvoy, Associate Professor. Patrick McElduff and Professor Wayne Smith. Their timely supervision, guidance and encouragement over the last three years made all my tasks much more expedient. I was highly blessed by my principal supervisor Dr. Abul Hasnat Milton and co-supervisor Mr. Mark McEvoy. I learnt a lot from them not only in academic aspect rather in each aspect of life. Dr. Milton showed me the correct path to walk on as an independent researcher, academician and scientist.

I would also like to mention the contribution, guidance and support I received from Dr. Kerry Inder, RHD Student Coordinator, School of Medicine and Public Health and Dr. Margaret Harris, Associate Professor, School of Nursing, University of Newcastle. I understand that words are not enough to express my gratitude and thanks for them.

I would like to thank all the academics and staffs at CCEB especially Associate Professor John Hall, Associate Professor David Sibbritt, Senior Lecturer Steve Bowe, Karren Fergusson, Roseanne Peel, Kerry Raedett and all other staffs and academics for their encouragement and support.
With due respect and honor, I would like to acknowledge the contribution of Dr. Catherine Bennett, Dr. Lyle Gurrin, Dr. Mark Jenkins, Professor Dallas English, Dr. Shyamali Dharmage, Dr. Gillian Dite and Dr. David Dunt of the University of Melbourne and Professor Vivian Lin, Latrobe University, Australia who introduced me the application of Epidemiological and Biostatistical knowledge in Health Research. Also, I would like to acknowledge the role of Professor Charles P Larson, Director, Center for International Child Health, University of British Columbia, Drs. Ahmed Shafiqur Rahman and Ziaul Islam, Associate Scientist, International Centre for Diarrhoeal Diseases Research, Bangladesh (ICDDR,B) who supported me for all my professional and academic developmental works in Epidemiology and Biostatistics. Throughout my academic career, the words from my deceased parents Late Mrs. Sayeda Islam and Late Md. Nurul Islam and my mother in law Mrs. Khawla Khatun have been the source of continual inspiration and support. The sacrifice of my mother in law during my PhD study will be exemplary. They all inspired me after each of my academic achievements and encouraged me for further thrive. My relatives, friends and well-wisher have been waiting as usual for the successful completion of my PhD. I am extremely grateful to my loving wife Dr. Ayesha Akhter for her encouragement, sacrifice and help and also to my only loving daughter Raphah Raysa for her sacrifice of staying alone as I spent many months in overseas for field works. I also express my gratitude to my brothers Md. Shaiful Islam, Md. Aminul Islam, Md. Mirwazul Islam, Md. Asadur Rahman Khan and their wives, my sister Kanij Fatima and her husband Md. Rokonuzzaman, and my brother in law M L Palash for their support during my stay in Bangladesh for field works. I must appreciate and gratefully acknowledge the cordial help I received from Dr. Tahmeed Ahmed, Dr. Md. Munirul Islam, Dr. AM Shamshir Ahmed, and Dr. Masuma
Khanam of ICDDR,B, Dr. Khanrin P Vashum, Dr. Mahfuza Rifat, Mr. Shakhawat Nayan, Dr. Iqbal Kabir of Cceb, University of Newcastle, Dr. Bayzidur Rahman and Syed Azim, University of New South Wales, Australia, Dr. Zahirul Islam of Griffith University, Australia, Professor. Ismail Khan of Dhaka Medical College, Dhaka, Bangladesh, Dr. Sheikh Md. Nazmul Hassan of Atish Dipankar University of Science and Technology, Dhaka, Bangladesh and Mr. Md. Shahidullah of NGO Forum for Drinking Water, Dhaka, Bangladesh for all their supports during my PhD study in Australia and Bangladesh. Only thanks is not enough to express my gratefulness to Drs. Tahmeed Ahmed and Md. Munirul Islam rather I would say that without their encouragement and support it was impossible to complete the field work.

I am extremely grateful to my family friends Ms. Gayle Davis and Judie Morgan for their continuous support to my family in Australia while I was in Bangladesh to conduct field works.

I am also grateful to my colleagues in Bangladesh Mr. Bodrul Alam, Dipika Biswas, Jitu Bain and Mohitul Hasib of Centre for Health and Development (CHAD) who worked hard to complete data and sample collection in time. My special thank and gratitude to Mr. Abul Khayer, Chairman, Centre for Health and Development (CHAD), who always extended his hands and guided us to manage the complex field works and situations. This huge work cannot be done without their active and sincerest support.

I am especially grateful to Dr. G H Rabbani, Senior Scientist, ICDDR,B and Professor Dr. M Alauddin, Wagner College, New York, USA for their cordial support and help to pursue the doctoral study.

I would like to offer special thanks to the Directorate General Health Services and Bangladesh Medical Research Council, Ministry of Health and Family Welfare, Government of Bangladesh; Centre for Clinical Epidemiology and Biostatistics,
University of Newcastle and International Atomic Energy Agency (IAEA), Vienna, Austria for financially supporting the studies. I am extremely grateful to them for their generous support.

Finally, I would like to extend my heartfelt thanks to Dr. Christine Slater of IAEA for all her supports during the whole study period, St. Johns Research Laboratory, India and Department of Chemistry, Wagner College, NY, USA for analyzing samples in time, all the field staffs of Ministry of Health and Family Welfare working in the study area who supported us to identify eligible participants and all the participants of the survey for providing us with the valuable information, samples, time and cooperation. Without their cooperation, we might not be able to conduct this study.
LIST OF PAPERS TO SUBMIT AND PUBLISHED PAPERS

Papers to submit

Papers published:

STATEMENT OF REPRODUCTION:

I warrant that I would have obtain, where necessary, permission from the copyright owners if I use any third party copyright material reproduced in the thesis and obtained necessary permission to use any of my own published work in which the copyright is held by another party.
STATEMENT OF CONTRIBUTION OF OTHERS

CO-AUTHOR STATEMENT:

WE THE UNDERSIGNED CO-AUTHORS ATTEST THAT THE RESEARCH HIGHER DEGREE CANDIDATE MD. RAFIQUIL ISLAM CONTRIBUTED TO DEVELOP THE PROPOSAL AND RESEARCH TOOLS, SUPERVISED DATA COLLECTION, ANALYZED AND INTERPRETED DATA, WROTE BOTH PUBLISHED AND UNPUBLISHED PAPERS ATTACHED IN THIS ‘THESIS BY PUBLICATION’.

SIGNATURE OF CO-AUTHORS:

1. PROF. ISMAIL KHAN, Dhaka Medical College, Dhaka, Bangladesh
2. PROF. JOHN ATTIA, University of Newcastle, Australia
3. SM NAZMUL HASSAN, Atish Dipankar University of Science and Technology, Dhaka, Bangladesh
4. MARK MCEVOY, University of Newcastle, Australia
5. PROF. CATHERINE D’ESTE, University of Newcastle, Australia
6. SYED AZIM, University of New South Wales, Australia
7. DR. AYESHA AKHTER, Tairunessa Memorial Medical College, Gazipur, Bangladesh
8. DR. SHAHNAZ AKTER, Institute of Child of Mother Health, Demra, Dhaka, Bangladesh
9. SM SHAHIDULLAH, NGO Forum for Drinking Water, Dhaka, Bangladesh
10. DR. MD. MUNIRUL ISLAM, Centre for Nutrition and Food Security, ICDDR,B, Dhaka, Bangladesh
11. DR. AM SHAMSIR AHMED, University of Queensland, Australia
12. DR. ABDULLAHEL MARUF FARUQEE, ECPU, ICDDR,B, Dhaka, Bangladesh
13. ROSEANNE PEEL, University of Newcastle, Australia
14. DR. PATRICK MCELDUFF, University of Newcastle, Australia
15. PROF. WAYNE SMITH, University of Newcastle, Australia and Department of Health and Human Services, NSW, Australia
16. DR. ABUL HASNAT MILTON, University of Newcastle, Australia
17. PROF. MOHAMMAD ALAUDDIN, Wagner College, 631 Howard Avenue State Island, NY 10301, United States
18. MUNIRA SULTANA, Center for Health and development (CHAD), Dhaka, Bangladesh

MD. RAFIQUIL ISLAM
Signature of the Candidate
Date: February 28, 2013

Signature of the Assistant Dean Research Training (ADRT)
Full Name of ADRT:
Date:
CANDIDATE'S CONTRIBUTIONS TO CONDUCT THE STUDY

<table>
<thead>
<tr>
<th>Activities</th>
<th>Primary Role</th>
<th>Others involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over all study</td>
<td>MH, MM, MRI</td>
<td>WS, PM, IK</td>
</tr>
<tr>
<td>Grant application to IAEA and Government of Bangladesh</td>
<td>MRI, MH, IK</td>
<td>MM</td>
</tr>
<tr>
<td>Study design</td>
<td>MH, MM, MRI, IK</td>
<td>MI</td>
</tr>
<tr>
<td>Ethical clearance</td>
<td>MH, MM, MRI</td>
<td>RP</td>
</tr>
<tr>
<td>Logistic procurement</td>
<td>MRI, MI</td>
<td>MH, AMS</td>
</tr>
<tr>
<td>Staff recruitment and training</td>
<td>MH, MRI, MI, AMS, SU, NH</td>
<td>Centre for Health and Development (CHAD), BA</td>
</tr>
<tr>
<td>Development of questionnaire</td>
<td>MRI</td>
<td>MH, MI, SA, AA</td>
</tr>
<tr>
<td>Pretesting of the questionnaire</td>
<td>MRI</td>
<td>Centre for Health and Development (CHAD), SA, AA</td>
</tr>
<tr>
<td>Recruitment of the study participants</td>
<td>Centre for Health and Development (CHAD)</td>
<td>MRI</td>
</tr>
<tr>
<td>Data collection</td>
<td>Centre for Health and Development (CHAD)</td>
<td>MRI, SU, MS, NH, SA, AA</td>
</tr>
<tr>
<td>Supervision of field work</td>
<td>MRI, BA</td>
<td>MF, MUH, MI</td>
</tr>
<tr>
<td>Biological sample transfer</td>
<td>MRI, MI</td>
<td>MH, MR</td>
</tr>
<tr>
<td>Laboratory analysis of breast milk, water and urine samples</td>
<td>MA</td>
<td>IAEA</td>
</tr>
<tr>
<td>Laboratory analysis of saliva samples</td>
<td>SJRI</td>
<td>IAEA</td>
</tr>
<tr>
<td>Data entry screen design, data entry</td>
<td>AsA</td>
<td>MRI, MH</td>
</tr>
<tr>
<td>Data cleaning and editing</td>
<td>MRI, AsA</td>
<td>AsA</td>
</tr>
<tr>
<td>Data transformation</td>
<td>AsA</td>
<td>MRI</td>
</tr>
<tr>
<td>Data analysis including analysis of data that was collected previously in another study</td>
<td>MRI, PM, JA, IK, MH, MM</td>
<td>MH, MM</td>
</tr>
<tr>
<td>Scientific write ups and publication</td>
<td>MRI, MH, IK, MM, JA, RP, WS</td>
<td>CD, NH, MS, SA, AA, PM, SU, MA</td>
</tr>
</tbody>
</table>

DEDICATED TO

This thesis is dedicated to my deceased parents late. Mrs. Sayeda Islam and late Md. Nurul Islam and to those who are working for arsenic mitigation as individual or organization in Bangladesh and elsewhere and who are suffering from any adverse health conditions related to arsenic intoxication via drinking water; I firmly believe that our collaborative efforts will bring an easy and affordable mitigation strategy in near future.
LIST OF ADDITIONAL PUBLICATIONS

CONFERENCE PRESENTATION

Published Abstract in the conference:

Title: Association between Hypertension and Chronic Arsenic Exposure in Bangladesh.

Objective: To determine the association between chronic arsenic exposure via drinking water and prevalence of hypertension among rural Bangladeshi adults.

Design, Setting, Participants: This is an analytical cross sectional study among 1004 participants from 1682 eligible men and women (participation rate 60%) aged >30 years living in Bangladesh who had continuously consumed arsenic-contaminated drinking water for at least 6 months.

Main Outcome Measures: Hypertension was defined as systolic blood pressure > 140 mm of Hg or a diastolic blood pressure > 90 mm of Hg or in combination of the both.

Results: A total of 1004 individuals participated in the study. The prevalence of hypertension was 6.6% (95% CI 5.1-8.3%). After adjustment for participant’s age, sex, education, religion, marital status, sign of arsenical skin lesions, monthly household income and BMI, no excess risk of hypertension was observed for drinking water arsenic exposure over 50μg/L. Also, there was no increased risk for higher concentration of arsenic in the drinking water. Arsenic concentration >50μg/L in drinking water showed no association with systolic and diastolic hypertension separately however, it shows a strong relationship with increased pulse pressure when pulse pressure categorized as <55 and ≥55 mmHg (Adjusted OR: 3.06, CI: 1.22-7.65). Also, duration of exposure to arsenic did not show any impact on an increased risk to
hypertension except pulse pressure when exposed to arsenic for \geq10 years (Adjusted OR: 4.74, CI: 1.25-17.88).

Conclusion: Unlike other studies conducted in developing countries that reported a significant association, this study suggests no association between higher drinking water arsenic concentration and hypertension except for pulse pressure.
THESIS STRUCTURE

The thesis is comprises of two separate study outcomes. From the study project 1, we developed two manuscripts that are yet to publish (chapter 3 and 4) while from the study project 2, we developed two manuscripts (chapter 5 and 6) that are published in peer reviewed journals.

Study project 1: The longitudinal study on availability of arsenic in human milk and association between arsenic exposure and nutritional status in children living in arsenic contaminated areas in Bangladesh.

Study project 2: Analysis of previously collected data on association between chronic arsenic exposure and type 2 diabetes and hypertension in adults in Bangladesh

Summary:

The foremost part (chapter 1) describes the introduction of the two studies including literature review and research questions. Chapters 2 describes the detailed methodology of the longitudinal study conducted in an arsenic contaminated upazilla (sub-district) in Bangladesh among a cohort of 120 mother-infant pairs to determine the availability of arsenic in breast milk at 1, 6 and 9 months of child’s age and assessment of nutritional status at 3, 6 and 9 months of age of children living in this area. Chapter 3 and 4 are the outcomes of this longitudinal study.

The second and last part of the thesis (chapters 5 and 6) is based on data analysis for which the data were collected previously in a cross-sectional study among Bangladeshi adults and subsequently publication of papers in scientific journals. The cross-sectional study data were collected between January and July 2009 in Bangladesh to determine the association between chronic arsenic exposure and type 2 diabetes and hypertension in adults.
ABSTRACT

The discovery of extensive arsenic contamination of groundwater remains a public health concern in Bangladesh. Previous studies demonstrated a positive association with arsenic and numerous other diseases and health conditions including type 2 diabetes and hypertension in adults. There is also a growing body of concern on arsenic excretion via breast milk and the health consequences in children.

In the longitudinal study, we observed a low arsenic concentration in breast milk and the concentration was non-normally distributed and the median arsenic concentration in breast milk at all three time points (1, 6 and 9 months of child’s age) were remaining same as 0.5 µg/L. Arsenic in breast milk was non-significantly reduced over time (chapter 3). Arsenite (AsIII), arsenate (AsV), monomethyl arsenic acid (MMA), dimethyl arsinic acid (DMA) and arsenobetaine (AsB) were the constituents of total urinary arsenic; DMA was the predominant arsenic metabolite (approximately 70%) in infant urine at 1 and 6 months.

On the other hand, household’s arsenic exposure did not influence malnutrition in infants in the longitudinal study and the results were presented in chapter 4. Ten-percent infants at 3 month and 44% at 6 and 9 month of age were stunted irrespective of their levels of arsenic exposure. Underweight and wasting were the highest at 3 month. Overall wasting (<-2SD) was 23.3% at 3 month and no children were wasted at 6 and 9 month. While overall underweight (<-2SD) was 25% and 10% at 3 and 6 month respectively regardless of the households arsenic exposure levels. We observed differences in stunting at 9 months of age by arsenic exposure levels which might be due to a statistical incongruity and failure to establish differences in terms of other nutritional indicators such as wasting and underweight at other time points of infant’s age could be the resultant of a smaller sample size.
While in the data analysis project, we demonstrated a significant association between chronic arsenic exposure and type 2 diabetes. For most levels of arsenic exposure, the risk estimates are higher with longer exposure after adjusting all possible confounders; a dose–response pattern was also observed (chapter 5).

On the other hand, we failed to link an association between higher drinking water arsenic or duration with hypertension in the data analysis project (chapter 6) but observed an association with pulse pressure. Arsenic concentration as quartiles and >50 μg/L did show a strong relationship with increased pulse pressure, as did arsenic exposure for ≥10 years. Arsenic as quartiles showed a dose response relationship with increased pulse pressure.
Glossary

DNA Deoxy-ribo Nucleic Acid
RNA Ribo Nucleic Acid
µg/L Microgram per liter
WHO World Health Organization
As Arsenic
As(III) Arsenite or Arsenic in trivalent form
As(V) Arsenate or Arsenic in pentavalent form
AsB Arsenobetaine
AsH₃ Arsine gas
H₂ Hydrogen
MMA Monomethylarsonic Acid
DMA Di-methylarsinic Acid
PML/RAR A fusion protein (RAR-Retinoic Acid Receptor)
BAMWSP Bangladesh Arsenic Mitigation and Water Supply Project
D₂O Deuterium Oxide or Heavy Water
CCEB Centre for Clinical Epidemiology and Biostatistics
CHAD Centre for Health and Development
ICMH Institute of Child and Mother Health
T2D Type 2 diabetes
BMRC Bangladesh Medical Research Council
USA United States of America
HCl Hydrochloric Acid
HNO₃ Nitric Acid
NaBH₄ Sodium boro-hydride
KI Potassium Iodide
FBG Fasting blood glucose
Kg/m² Kilogram per square meter
HbA1C Glycosylated hemoglobin A1C or a type of hemoglobin
HREC Human Research Ethics Committee
HAZ Height for age Z scores or stunting
WAZ Weight for age Z scores or underweight
WHZ Weight for height Z scores or wasting
Coef: Coefficient
BDHS Bangladesh Demographic and Health Survey
FWA Family Welfare Assistant
FPI Family Planning Inspector
AFPI Assistant Family Planning Inspector
IAEA International Atomic Energy Agency
FTIR Fourier transform infrared spectroscopy
GFAAS Graphite furnace atomic absorption spectroscopy
POC bag Point of care bag
HGAFS Hydride generation atomic fluorescence spectroscopy
Km Kilometer
mg/dl Milligram per deciliter
HbA1C Glycosylated haemoglobin A1C
SBP Systolic blood pressure
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBP</td>
<td>Diastolic blood pressure</td>
</tr>
<tr>
<td>FBG</td>
<td>Fasting blood glucose</td>
</tr>
<tr>
<td>mmHg</td>
<td>Millimeter of mercury</td>
</tr>
<tr>
<td>FIHGAAS</td>
<td>Flow injection-hydride generation atomic absorption spectrometry</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>Adj. OR</td>
<td>Adjusted odds ratio</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>MnSOD</td>
<td>Manganese superoxide dismutase</td>
</tr>
<tr>
<td>NCD & OPHI</td>
<td>Non-Communicable Diseases and other Public Health Interventions</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1 CHAPTER 1: INTRODUCTION

1.1 BACKGROUND 26
1.2 LITERATURE REVIEW 30
1.3 GENERAL INFORMATION AND CHEMICAL PROPERTIES OF ARSENIC 30
1.4 ENVIRONMENTAL OCCURRENCE 31
1.5 USE OF ARSENIC 32
1.6 ROUTE OF ENTRY AND BIOTRANSFORMATION OF ARSENIC 34
1.7 GROUND WATER ARSENIC CONTAMINATION AND EXTENT 35
1.8 DRINKING WATER ARSENIC MITIGATION AND PROBLEMS 38
1.9 HEALTH EFFECTS OF ACUTE ARSENIC POISONING 39
1.10 HEALTH EFFECTS OF CHRONIC ARSENIC EXPOSURE IN GENERAL 40
1.11 SPECIFIC HEALTH EFFECTS OF CHRONIC ARSENIC EXPOSURE 41
1.11.1 CANCER EFFECTS 41
1.11.2 NON CANCER EFFECTS 42
1.11.2.1 Skin lesions 42
1.11.2.2 Diabetes 43
1.11.2.3 Hypertension and cardiovascular diseases 44
1.11.2.4 Anaemia 45
1.11.2.5 Neurological effects 45
1.11.2.6 Hepatotoxicity 46
1.11.2.7 Arsenic exposure in pregnancy and effects 46
1.11.2.8 Effects on respiratory illness 47
1.12 BREAST MILK ARSENIC CONTAMINATION AND CONSEQUENCES 47
1.13 JUSTIFICATIONS OF THE 1ST STUDY I.E. AVAILABILITY OF ARSENIC IN HUMAN MILK STUDY PROJECT (LONGITUDINAL STUDY) AND THE 2ND STUDY I.E. PROJECT ON ANALYSIS OF DATA, COLLECTED PREVIOUSLY 48
1.14 RESEARCH QUESTIONS OF THE LONGITUDINAL STUDY PROJECT 50
1.15 AIMS OF THE LONGITUDINAL STUDY 50
1.16 EXPECTED OUTPUTS FROM THE LONGITUDINAL STUDY 51
1.17 RESEARCH QUESTIONS OF THE DATA ANALYSIS STUDY PROJECT 51
1.18 AIMS OF THE DATA ANALYSIS PROJECT 51
1.19 EXPECTED OUTPUTS FROM THE DATA ANALYSIS STUDY PROJECT 51

2 CHAPTER 2: METHODS OF THE 1ST STUDY ON AVAILABILITY OF ARSENIC IN BREAST MILK (LONGITUDINAL STUDY) 53

2.1 DESIGN AND SETTING 53
2.2 SOURCE, STUDY AND SAMPLE POPULATION 53
2.3 ELIGIBILITY 54
2.3.1 INCLUSION CRITERIA 54
2.3.2 EXCLUSION CRITERIA 54
2.4 SAMPLE SIZE ESTIMATION USING ALL THE AIMS OF THE LONGITUDINAL STUDY 55
2.5 LONGITUDINAL STUDY MANAGEMENT 58
2.5.1 RECRUITMENT AND TRAINING OF STUDY PERSONNEL 58
2.5.2 MEETING WITH MINISTRY OF HEALTH AND FAMILY WELFARE FIELD STAFFS AND LOCAL ELITES 59
2.5.3 PRE-TESTING OF QUESTIONNAIRE 60
2.5.4 ENROLMENT AND DATA COLLECTION TECHNIQUE: 60
2.5.4.1 Issues arose during saliva sampling: 62
2.5.5 HEAVY WATER OR D2O OR 2H2O AND MEASUREMENT OF BODY FLUID: 63
2.5.6 ANTHROPOMETRY 64
2.5.7 DIETARY INTAKE 65
2.5.8 BIOCHEMICAL ASSESSMENTS OF SAMPLES 65
2.5.8.1 Drinking Water: 65
2.5.8.2 Urine: 66
2.5.8.3 Breast milk: 66
2.5.8.4 Saliva: 67
2.5.8.4.1 Technique for saliva sampling in the mother and baby [184] 68
2.5.8.4.1.1 From mother 68
2.5.8.4.1.2 From baby 69
2.5.8.4.1.3 Storage of saliva samples 71
2.5.9 QUALITY CONTROL 72
2.6 DATA MANAGEMENT 72
2.7 DATA ANALYSIS 73
2.8 ETHICAL ASSURANCE FOR PROTECTION OF HUMAN RIGHTS 74
2.9 SCIENTIFIC ARTICLES PRODUCED FROM THE LONGITUDINAL STUDY PROPOSAL: 75
2.9.1 PAPER 1: AVAILABILITY OF ARSENIC IN BREAST MILK IN WOMEN LIVING IN ARSENIC CONTAMINATED AREAS IN BANGLADESH 75
2.9.2 PAPER 2: ASSESSMENT OF NUTRITIONAL STATUS AT 3, 6 AND 9 MONTHS OF AGE OF CHILDREN LIVING IN ARSENIC CONTAMINATED AREAS IN BANGLADESH AND ITS RELATION WITH ARSENIC EXPOSURE 75
2.10 FUNDING SOURCE: 75

3 CHAPTER 3: AVAILABILITY OF ARSENIC IN BREAST MILK IN WOMEN LIVING IN ARSENIC CONTAMINATED AREAS IN BANGLADESH 76

3.1 ABSTRACT: 77
3.1.1 BACKGROUND: 77
3.1.2 OBJECTIVE: 77
3.1.3 METHODS: 77
3.1.4 RESULTS: 77
3.1.5 CONCLUSION: 78
3.2 BACKGROUND: 79
3.3 METHODS: 80
3.4 DATA COLLECTION PROCEDURE 81
3.4.1 EXPOSURE MEASUREMENT: 82
3.4.2 SAMPLE COLLECTION AND PRESERVATION: 83
3.4.2.1 Drinking water: 83
3.4.2.2 Breast milk: 83
3.4.2.3 Urine: 84
3.4.2.4 Saliva 84
3.5 SAMPLE ANALYSIS: 85
3.5.1 ARSENIC ANALYSIS IN BREAST MILK 85
3.5.1.1 Sample digestion: 85
3.5.1.2 Analytical technique: Graphite furnace atomic absorption spectroscopy 85
3.5.2 ARSENIC ANALYSIS IN URINE SAMPLES OF MOTHER AND CHILDREN: 86
5.8 ABBREVIATIONS 140
5.9 COMPETING INTERESTS 140
5.10 AUTHORS' CONTRIBUTION 141
5.11 ACKNOWLEDGEMENT 141

6 CHAPTER 6: ASSOCIATION BETWEEN HYPERTENSION AND CHRONIC ARSENIC EXPOSURE IN DRINKING WATER: A CROSS-SECTIOINAL STUDY IN BANGLADESH. 142

6.1 ABSTRACT 143
6.1.1 KEY WORDS 143
6.2 INTRODUCTION 144
6.3 METHODS 146
6.3.1 OVERVIEW 146
6.3.2 DESIGN, STUDY AREA AND POPULATION 146
6.3.3 DATA COLLECTION PROCEDURE 147
6.3.4 EXPOSURE MEASUREMENT 147
6.3.5 OUTCOME DEFINITION AND MEASUREMENT 148
6.3.6 OTHER VARIABLES 148
6.4 STATISTICAL ANALYSIS 149
6.5 RESULTS 150
6.6 DISCUSSION 156
6.7 CONCLUSION 160
6.8 ACKNOWLEDGEMENTS 160
6.9 SOURCE OF FUNDING 160
6.10 CONFLICTS OF INTEREST 160

7 CHAPTER 7: CONCLUSION AND RECOMMENDATION 161

8 REFERENCES: 164

9 APPENDIX: 184

9.1 QUESTIONNAIRE FOR THE LONGITUDINAL STUDY 184
9.2 QUESTIONNAIRE FOR THE DATA ANALYSIS PROJECT 207
LIST OF TABLES

Chapter 3: Availability of arsenic in breast milk in women living in arsenic contaminated areas in Bangladesh

Table 1: Demographic and other characteristics of participating mother baby-pairs (N=29)

Table 2: Specification and quantification of arsenic in infant and maternal urine at 1 month of child’s age

Table 3: Specification and quantification of arsenic in infant and maternal urine at 6 months of child’s age

Chapter 4: Assessment of nutritional status at 3, 6 and 9 months of age of children living in arsenic contaminated areas in Bangladesh and its relation with arsenic exposure

Table 1: Characteristics of infants and their families by arsenic concentration in drinking water of the household (N=120)

Table 2: Prevalence of any degree of malnutrition in infants at 3, 6 and 9 months of age by arsenic exposure (N=120)

Table 3: Prevalence malnutrition (≤-2SD) in infants at 3, 6 and 9 months of age by arsenic exposure (N=120)

Table 4: Comparison of malnutrition data of children in the study area with Bangladesh Demographic and Health Survey 2011 (BDHS 2011) data

Chapter 5: Association between type 2 diabetes and chronic arsenic exposure in drinking water: A cross sectional study in Bangladesh

Table 1: Water arsenic concentration by participant’s characteristics (n=1004)*

Table 2: Distribution of characteristics of the study population by diabetes status (n=1004)
Table 3: Association of arsenic concentration with type 2 diabetes

Table 4: Association of arsenic concentration and duration of exposure with type 2 Diabetes

Chapter 6: Association between Hypertension and Chronic Arsenic Exposure in Drinking Water: A Cross-Sectional Study in Bangladesh.

Table 1: Mean values of systolic blood pressure, diastolic blood pressure and pulse pressure

Table 2: Association of arsenic concentration with overall Hypertension, Systolic Hypertension, Diastolic Hypertension and Pulse pressure (n=994)

Table 3: Association of overall hypertension and increased pulse pressure to that of arsenic concentration by quartiles (N=994)

Table 4: Association of arsenic and duration of its exposure separately with overall hypertension and increased pulse pressure (N=993)
LIST OF FIGURES:

Introduction:

Figure 1: Metabolism of inorganic arsenic in humans

Figure 2: Global arsenic contamination in ground water

In chapter 1: Methods of the 1st study i.e. the longitudinal study

Figure 1: Two compartment steady state model of water flow in a mother–baby pair.

Figure 2: Work completed in 2010-2011

Chapter 3: Availability of arsenic in breast milk in women living in arsenic contaminated areas in Bangladesh

Figure 1: Histogram of arsenic concentration in breast milk at 1, 6 and 9 months (n=29 at 1 month, 25 at 6 month and 19 at 9 month)

Figure 2a: Scatter plot of arsenic in breast milk and urinary arsenic in children at 1 month of child’s age (n=29)

Figure 2b: Scatter plot of arsenic in breast milk and urinary arsenic in children at 6 months of child’s age (n=25)

Figure 3a: Histogram of children urinary arsenic concentration at 1 and 6 month of child’s age (n=29 at 1 month and 27 at 6 month)

Figure 3b: Histogram of maternal urinary arsenic concentration at 1 and 6 month of child’s age (n=29 at 1 month and 27 at 6 month)

Chapter 4: Assessment of nutritional status at 3, 6 and 9 months of age of children living in arsenic contaminated areas in Bangladesh and its relation with arsenic exposure

Figure 1: A comparison graph of stunting (HAZ), wasting (WHZ) and underweight (WAZ) by age.