Immune mechanisms that underpin early-life
Chlamydia respiratory infection-induced chronic lung
disease

Malcolm Ronald Starkey
B. Biomed Sci (Hons)

Discipline of Immunology and Microbiology
School of Biomedical Science and Pharmacy
Faculty of Health
The University of Newcastle
Newcastle, NSW, Australia

Submitted in the fulfilment of the requirements for the award of a Doctor of Philosophy
This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository.

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers, or carried out in other institutions. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

I hereby certify that the work embodied in this thesis contains published papers of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publications.

I hereby certify that this thesis is in the form of a series of published papers of which I am a joint author. I have included as part of the thesis a written statement from each co-author, endorsed by the Faculty Assistant Dean (Research Training), attesting to my contribution to the joint publications.

Malcolm Ronald Starkey
December 2013
Acknowledgements

With all endeavours of this nature others provide a great deal of time and support. I would like to briefly acknowledge these individuals and express my sincerest gratitude.

Firstly, I would like to thank my primary supervisor Prof. Phil Hansbro, whose encouragement, support and supervision made this work possible. Thank you also to my co-supervisors Laureate Prof. Paul Foster and Dr. Jay Horvat. Your expertise, knowledge and advice have proven invaluable during my studies.

Thank you also to all the staff and students in the Microbiology, Asthma and Airways Research Group, the discipline of Immunology and Microbiology, the School of Biomedical Sciences and Pharmacy and members of the Hunter Medical Research Institute who have provided their assistance and friendship throughout the last several years. Special thanks go to Richard Kim, Dr. Ama-Tawiah Essilfie and Duc Nguyen.

I would very much like to thank my wife Nikalla, and two children Evanna and Xavier, who have inspired, encouraged, and supported me throughout my PhD. To these people I dedicate my thesis.
Table of Contents

Synopsis.. 12
Publications arising from this thesis ... 14
List of Figures.. 20
List of Tables .. 22
Abbreviations ... 23

Chapter 1: Introduction

1.1 Asthma... 26
 1.1.1 The asthma epidemic ... 26
 1.1.2 Asthma pathophysiology ... 27
 1.1.3 Immunology of allergic airway disease (AAD).. 29
 1.1.3.1 Early phase response ... 29
 1.1.3.2 Late phase response ... 30
 1.1.3.3 An innate immune axis promotes AAD independent of adaptive immunity .. 32

1.2 Early-life infections and the development of asthma ... 34

1.3 Chlamydial infections.. 38
 1.3.1 Life cycle of Chlamydiae ... 38
 1.3.2 Immune responses to Chlamydia respiratory infection 39

1.4 Early-life Chlamydia respiratory infections and the development of asthma 40
 1.4.1 Prevalence of early-life Chlamydia respiratory infections 40
 1.4.2 Clinical association between early-life Chlamydia respiratory infection and asthma .. 42
1.4.2 Experimental evidence for the association between early-life Chlamydia respiratory infection and asthma ... 43

1.5 Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) 46
 1.5.1 TRAIL biology ... 46
 1.5.2 Role of TRAIL in respiratory infections .. 48
 1.5.3 Role of TRAIL in alveolar epithelial cell apoptosis 48
 1.5.4 Role of TRAIL in airway hyperresponsiveness (AHR) and AAD 49

1.6 Interleukin 13 (IL-13) .. 50
 1.6.1 IL-13 biology .. 50
 1.6.2 Role of IL-13 in chlamydial infections .. 52
 1.6.3 Role of IL-13 in AHR and AAD ... 53

1.7 Effect of infection on hematopoietic cells ... 54

1.8 Study rationale ... 55

Chapter 2: Tumor necrosis factor-related apoptosis-inducing ligand translates neonatal respiratory infection into chronic lung disease

2.1 Abstract ... 58

2.2 Introduction ... 59

2.3 Methods .. 60
 2.3.1 Ethics statement ... 60
 2.3.2 Neonatal C. muridarum respiratory infection ... 61
 2.3.3 Chlamydia load ... 61
 2.3.4 Histopathology ... 61
 2.3.5 Flow cytometry ... 62
 2.3.6 Enzyme linked immunosorbent assay (ELISA) 63
2.3.7 Quantification of mRNA expression by real-time qPCR 64
2.3.8 Lung function... 64
2.3.9 Alveolar enlargement.. 64
2.3.10 In vivo administration of rTRAIL, agonistic anti-DR5, and anti-DcR1 and anti-DcR2 blocking antibodies... 65
2.3.11 In vivo neutralisation of TRAIL.. 65
2.3.12 Statistics.. 65

2.4 Results.. 66
2.4.1 The absence of TRAIL results in reduced neonatal Chlamydia respiratory infection-induced histopathology and mucus hyper-secretion 66
2.4.2 Absence of TRAIL results in reduced pulmonary inflammation following neonatal Chlamydia respiratory infection ... 69
2.4.3 Neonatal Chlamydia respiratory infection increases TRAIL production and DR5 expression in the lung... 71
2.4.4 Neonatal Chlamydia respiratory infection induced DR5 expression and apoptosis, which is associated with alveolar enlargement......................... 74
2.4.5 Neonatal Chlamydia respiratory infection promotes persistent AHR in a TRAIL-dependent manner... 77
2.4.6 Blockade of DcR2 during neonatal Chlamydia respiratory infection reduces histopathology, NF-κB activation and AHR 79
2.4.7 Neutralisation of TRAIL during neonatal Chlamydia respiratory infection reduces histopathology, mucus hyper-secretion, alveolar enlargement and persistent AHR ... 81

2.5 Discussion .. 83

2.6 Supplementary methods and data ... 90
Chapter 3: Constitutive production of IL-13 promotes early-life Chlamydia respiratory infection and allergic airway disease

3.1 Abstract .. 99

3.2 Introduction ... 100

3.3 Methods .. 102

3.3.1 Ethics statement ... 102

3.3.2 C. muridarum respiratory infection .. 102

3.3.3 Chlamydia load .. 102

3.3.4 Histopathology ... 103

3.3.5 Flow cytometry ... 103

3.3.6 mRNA expression ... 103

3.3.7 ELISA .. 104

3.3.8 Lung function .. 104

3.3.9 In vivo administration of rIL-13 .. 105

3.3.10 In vivo neutralisation of IL-13 and induction of AAD .. 105

3.3.11 Statistics .. 105

3.4 Results ... 106

3.4.1 The absence of IL-13 reduces Chlamydia respiratory infection in early life and associated histopathology, mucus hyper-secretion and inflammation .. 106

3.4.2 Chlamydia respiratory infection in early life does not increase IL-13 levels .. 110

3.4.3 Chlamydia respiratory infection in early life reduces IL-13 decoy receptor production .. 112
3.4.4 IL-13 promotes the expression of alternatively activated macrophage (AAM) genes in the lung during Chlamydia respiratory infection........ 114
3.4.5 Early-life Chlamydia respiratory infection-induced AHR is IL-13-dependent... 116
3.4.6 Administration of rIL-13 to Il13−/− mice during Chlamydia respiratory infection in early life increases infection, and infection-induced histopathology, mucus hyper-secretion, and persistent AHR.............. 118
3.4.7 IL-13-mediated effects during Chlamydia respiratory infection in early life are both STAT6-dependent and –independent.. 120
3.4.8 Inhibition of IL-13 during Chlamydia respiratory infection in early life prevents infection-induced increases in the severity of AAD in later life.. 122

3.5 Discussion ... 124

Chapter 4: Chlamydia muridarum lung infection in infants alters hematopoietic cells to promote allergic airway disease in mice

4.1 Abstract ... 130
4.2 Introduction .. 131
4.3 Methods .. 133

4.3.1 Ethics statement .. 133
4.3.2 Animals ... 133
4.3.3 C. muridarum lung infection ... 133
4.3.4 Generation of bone marrow chimeras and induction of AAD................. 133
4.3.5 Determination of mediastinal lymph node (MLN) cytokine release 134
4.3.6 Quantification of airway mucus secreting cells (MSCs) 135
4.3.7 Assessment of lung function ... 135
4.3.8 Quantification of IL-13 protein in lung homogenates 135
4.3.9 Statistics ... 135

4.4 Results .. 136
4.4.1 Establishment of AAD in bone marrow chimeras 136
4.4.2 C. muridarum lung infection in infants, but not neonates, alters hematopoietic cells to increase ovalbumin (Ova)-specific Th2 cytokine release from MLN cells during AAD .. 139
4.4.3 C. muridarum lung infection in infants, but not neonates, alters hematopoietic cells to induce MSC hyperplasia 141
4.4.4 C. muridarum lung infection in infants, but not neonates, alters hematopoietic cells to increase AHR during AAD 143
4.4.5 C. muridarum lung infection in infants, but not neonates, alters hematopoietic cells to increase IL-13 in the lung during AAD 145

4.5 Discussion ... 147

Chapter 5: General Discussion and Conclusions

5.1 Significance of research .. 153
5.2 C. muridarum respiratory infection in mice 154
5.3 TRAIL and IL-13 modulate the severity of early-life Chlamydia respiratory infection .. 155
5.3.1 TRAIL promotes more severe neonatal Chlamydia respiratory infection ... 156
5.3.2 IL-13 promotes more severe chlamydial infection 158
5.4 Early-life *Chlamydia* respiratory infection promotes permanent emphysema-like alveolar enlargement .. 160

5.4.1 TRAIL promotes alveolar epithelia cell apoptosis and emphysema-like alveolar enlargement.. 160

5.4.2 Potential role of *Chlamydia*-induced IL-13 responses in emphysema-like alveolar enlargement.. 162

5.5 Early-life *Chlamydia* respiratory infection promotes persistent AHR.. 163

5.5.1 The emerging role of TRAIL in AHR .. 164

5.5.2 IL-13 is a critical mediator of infection-induced AHR............................ 166

5.6 Early-life *Chlamydia* respiratory infection increases the severity of AAD .. 168

5.6.1 IL-13 responses during early-life infection promote increased severity of AAD in later-life.. 168

5.6.2 Differential effects of age of infection on hematopoietic cells............. 170

5.6.3 Potential mechanisms of infection-induced alterations in hematopoietic cells .. 171

5.7 Future directions ... 173

5.7.1 Further investigation of the role of TRAIL in early-life *Chlamydia* respiratory infection-induced chronic lung disease ... 173

5.7.2 Further investigation of the role of IL-13 in early-life *Chlamydia* respiratory infection-induced chronic lung disease ... 174

5.7.3 Further investigation of the mechanisms of early-life infection-induced emphysema-like alveolar enlargement ... 175

5.7.4 Further investigation of the underlying mechanisms of *Chlamydia*-induced persistent AHR .. 176
5.7.5 Further investigation of the mechanisms of increased severity of AAD

5.7.6 Novel therapeutic strategies for early-life *Chlamydia* respiratory infection

5.7.7 Chlamydial vaccination as a prevention strategy

5.8 Conclusion

6 References

7 Appendix: Publications
Synopsis

Asthma is a chronic allergic inflammatory condition of the airways that affects >300 million people worldwide. The inflammatory responses that induce asthmatic episodes, at least in allergic asthmatics, are driven predominantly through the actions of activated mast cells, eosinophils and type 2 T helper (Th2) lymphocytes. These activated inflammatory cells and the mediators they release promote inflammatory responses that damage the airways and result in structural changes in lung tissue, and mucus secreting cell (MSC) hyperplasia and metaplasia. The inflammatory response is accompanied by exaggerated sensitivity of the airways to non-specific stimuli, a phenomenon known as airway hyperresponsiveness (AHR). These pathological processes result in a narrowing of the airways leading to widespread airflow obstruction and breathing difficulties associated with asthma.

Chlamydiae are atypical obligate intracellular bacteria that commonly cause asymptomatic infection and acute respiratory disease in human infants and adults. *Chlamydia* respiratory infections in early-life have been associated both clinically and experimentally with the development of reduced lung function and more severe asthma in later-life. Previous studies from our laboratory have shown that neonatal and infant, but not adult, *Chlamydia* respiratory infections in mice permanently alter the inflammatory phenotype and lung physiology to increase the severity of allergic airway disease (AAD) by increasing pulmonary interleukin-13 (IL-13) expression, mucus secreting cell (MSC) numbers and AHR. The aim of my PhD was to investigate the immune mechanisms that underpin these observations.

The first study identified a novel role for tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) in promoting *Chlamydia* respiratory infection-induced pathology in early life and subsequent chronic lung disease. Genetic deletion
or inhibition of TRAIL using neutralising antibodies protected against neonatal *Chlamydia* respiratory infection-induced histopathology, inflammation and MSC hyperplasia, as well as subsequent alveolar enlargement and impaired lung function.

The second study investigated the role of IL-13 in promoting early-life *Chlamydia* respiratory infection, infection-induced persistent AHR and severe AAD. IL-13-deficient mice had reduced infection, inflammation, MSC hyperplasia and AHR, which were restored by reconstitution of IL-13-deficient mice with exogenous IL-13. Surprisingly, infection of wild-type mice did not increase IL-13 production, but reduced IL-13 decoy receptor levels. Furthermore, neutralisation of IL-13 during infection prevented subsequent infection-induced severe AAD.

The third study investigated the role of hematopoietic cells in driving early-life infection-induced severe AAD, using bone marrow chimera studies. Neonatal, infant and adult mice were infected with *Chlamydia* and nine weeks after infection bone marrow was collected and transferred into recipient irradiated naïve mice. AAD was induced eight weeks after adoptive transfer. Reconstitution of irradiated naïve mice with bone marrow from mice infected as neonates suppressed the hallmark features of AAD including IL-13 levels in the lung, MSC hyperplasia and AHR. In stark contrast, reconstitution with bone marrow from mice infected as infants increased the severity of AAD by increasing IL-13 levels, MSCs and AHR. Reconstitution with bone marrow from infected adult mice had no effects.

Our novel findings indicate that neonatal and infant *Chlamydia* respiratory infections induce the development of chronic lung disease via distinct mechanisms at different ages. Our studies significantly contribute to understanding the association between early-life respiratory infections and the development of more severe asthma and may facilitate the development of more tailored treatments.
Publications arising from this thesis

Publications included in this thesis

Other publications included as an appendix at the end of this thesis

* denotes equal contribution to manuscript (i.e. co-first author)
Conference publications, presentations and awards

Conference publications

Conference presentations/invited seminars

1. Special seminar presentation at National Heart and Lung Institute, Imperial College London, United Kingdom. Title: Mechanisms of early-life infection-induced chronic lung disease.

2. Oral presentation (New Investigator award session) at 42nd Australasian Society of Immunology Annual Meeting, Melbourne, Australia 2012. Title: Tumor necrosis factor-related apoptosis-inducing ligand translates neonatal respiratory infection into chronic lung disease.

3. Oral presentation (block symposia) at the 8th Annual Newcastle Asthma meeting, Newcastle, Australia 2012. Title: Tumor necrosis factor-related apoptosis-inducing ligand translates neonatal respiratory infection into chronic lung disease.

4. Special Seminar presentation at Brigham and Women’s Hospital, Division of Rheumatology, Immunology, and Allergy, Harvard University, Boston, USA 2012. Title: Mechanisms of early-life infection-induced asthma.

5. Oral presentation (block symposia) at 99th American Association of Immunologists, Boston, USA 2012. Title: Constitutive IL-13 promotes respiratory chlamydial infection and infection-induced chronic airway hyper-responsiveness.
6. Oral presentation (BD Science communication prize) at 41st Australasian Society Immunology Annual Meeting, Adelaide, Australia 2011. Title: Constitutive IL-13 promotes respiratory chlamydial infection and infection-induced chronic airway hyper-responsiveness.

7. Oral presentation (block symposia) at the 7th Annual Newcastle Asthma meeting, Newcastle, Australia 2011. Title: Constitutive IL-13 promotes susceptibility to respiratory chlamydial infection and infection-induced severe asthma.

8. Oral presentation (block symposia) at the 6th Annual Newcastle Asthma meeting, Newcastle, Australia 2010. Title: Role of IL-13 in chlamydial infection and infection-induced asthma.

Fellowships and awards

1. National Health and Medical Research Council (NHMRC) early career fellowship. Awarded October 2013, starts January 2014, ends December 2017

2. International laboratory exchange award to visit the National Heart and Lung Institute Imperial College London. September 2013

3. Hunter Medical Research Institute education prize to visit Brigham and Women’s Hospital and Harvard Medical School, Boston. May 2012

5. CRC for asthma and airways travel award. July 2008
List of Figures

Figure 1.1: Asthma pathophysiology

Figure 1.2: Immune responses in AAD

Figure 1.3: An innate immune axis promotes AAD independent of adaptive immunity

Figure 1.4: Role of early-life infections in predisposition to asthma

Figure 1.5: Life cycle of Chlamydiae

Figure 1.6: TRAIL and TRAIL receptors in mice

Figure 1.7: IL-13 and IL-13 receptor function in mice

Figure 1.8: Infections ‘push’ and ‘pull’ hematopoietic cells to differentiate into specific immune cell types

Figure 2.1: The absence of TRAIL results in reduced neonatal Chlamydia respiratory infection-induced histopathology and mucus hyper-secretion

Figure 2.2: Absence of TRAIL results in reduced pulmonary inflammation following neonatal Chlamydia respiratory infection

Figure 2.3: Neonatal Chlamydia respiratory infection increases TRAIL production and DR5 expression in the lung

Figure 2.4: Neonatal Chlamydia respiratory infection induces DR5 expression and apoptosis, which is associated with alveolar enlargement

Figure 2.5: Neonatal Chlamydia respiratory infection promotes persistent AHR in a TRAIL-dependent manner

Figure 2.6: Blockade of DcR2 during neonatal Chlamydia respiratory infection reduces histopathology, NF-κB activity and AHR
Figure 2.7: Neutralisation of TRAIL during neonatal *Chlamydia* respiratory infection reduces infection-induced histopathology, mucus hyper-secretion, alveolar enlargement and persistent AHR

Supplementary Figure 2.1: Gating strategy for determining TRAIL and DR5 expression on lung epithelial and endothelial cells

Supplementary Figure 2.2: Gating strategy for determining TRAIL expression on lung macrophages and monocytes

Supplementary Figure 2.3: Gating strategy for determining TRAIL expression on lung neutrophils

Supplementary Figure 2.4: Gating strategy for determining TRAIL expression on lung dendritic cells

Supplementary Figure 2.5: Gating strategy for determining TRAIL expression on lung T cells

Supplementary Figure 2.6: Gating strategy for determining apoptotic epithelial and endothelial cells

Supplementary Figure 2.7: Unmanipulated transpulmonary resistance and dynamic compliance data

Figure 3.1: The absence of IL-13 reduces *Chlamydia* respiratory infection in early life and infection-induced histopathology

Figure 3.2: The absence of IL-13 reduces *Chlamydia* respiratory infection-induced pulmonary inflammation

Figure 3.3: *Chlamydia* respiratory infection in early life does not increase IL-13 levels

Figure 3.4: *Chlamydia* respiratory infection in early life reduces IL-13 decoy receptor production
Figure 3.5: IL-13 promotes the expression of AAM genes in the lung following *Chlamydia* respiratory infection in early life

Figure 3.6: Early-life *Chlamydia* respiratory infection-induced persistent AHR is IL-13-dependent

Figure 3.7: Administration of recombinant IL-13 to *Il13*−/− mice during *Chlamydia* infection in early life increases infection, and infection-induced histopathology, mucus hyper-secretion and persistent AHR

Figure 3.8: IL-13-mediated effects during *Chlamydia* respiratory infection in early life are both STAT6-dependent and -independent

Figure 3.9: Inhibition of IL-13 during *Chlamydia* respiratory infection in early life prevents infection-induced increases in the severity of AAD in later-life

Figure 4.1: Experimental protocol

Figure 4.2: Characterisation of AAD in bone marrow chimeras

Figure 4.3: *C. muridarum* lung infection in infants, but not neonates, alters hematopoietic cells to increase Th2 cytokine release from MLN cells

Figure 4.4: *C. muridarum* lung infection in infants, but not neonates, alters hematopoietic cells to induce MSC hyperplasia

Figure 4.5: *C. muridarum* lung infection in infants, but not neonates, alters hematopoietic cells to increase AHR during AAD

Figure 4.6: *C. muridarum* lung infection in infants, but not neonates, alters hematopoietic cells to increase IL-13 in the lung during AAD

List of Tables

Table 2.1: Histopathological scoring system for mouse lungs

Table 2.2: Characterisation of inflammatory cell subsets
Abbreviations

AAD: Allergic airway disease
AHR: Airway hyperresponsiveness
APC: Antigen presenting cell
Arg-1: Arginase-1
BAL: Bronchoalveolar lavage
BALF: Bronchoalveolar lavage fluid
CD: Cluster of differentiation
cDNA: Complementary DNA
C. muridarum: Chlamydia muridarum
C. pneumonia: Chlamydia pneumoniae
C. trachomatis: Chlamydia trachomatis
DC: Dendritic cell
DcR1: Decoy receptor 1
DcR2: Decoy receptor 2
DNA: Deoxyribonucleic acid
Dpi: Days post infection
DR4: Death receptor 4
DR5: Death receptor 5
EB: Elementary body
ELISA: Enzyme linked immunosorbent assay
FACS: Fluorescence activated cell sorting
FeRI: The high affinity IgE receptor
FIZZ-1: Found in inflammatory zone 1
HDM: House dust mite
HPRT: Hypoxanthine-guanine phosphoribosyltransferase
H&E: Hematoxylin and eosin
Ig: Immunoglobulin
IFN: Interferon
ifu: Inclusion forming unit
IL: Interleukin
IL-4Rα: IL-4 receptor alpha
IL-13Rα1: Interleukin-13 receptor alpha 1
IL-13Rα2: Interleukin-13 receptor alpha 2
ILC2: Type 2 innate lymphoid cell
i.n: Intranasal
iNKT cell: Invariant NKT cell
iNOS: Inducible nitric oxide synthase
i.p: Intraperitoneal
JAK: Janus kinase
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>mDC</td>
<td>Myeloid dendritic cell</td>
</tr>
<tr>
<td>MID1</td>
<td>Midline-1</td>
</tr>
<tr>
<td>MLN</td>
<td>Mediastinal lymph node</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix metalloproteinase</td>
</tr>
<tr>
<td>MOMP</td>
<td>Major outer membrane protein</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>MSC</td>
<td>Mucus secreting cell</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor kappa-light-chain-enhancer of activated B cells</td>
</tr>
<tr>
<td>NKT cell</td>
<td>Natural killer T cell</td>
</tr>
<tr>
<td>Ova</td>
<td>Ovalbumin</td>
</tr>
<tr>
<td>PAS</td>
<td>Periodic acid–Schiff</td>
</tr>
<tr>
<td>PB</td>
<td>Persistent body</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-buffered saline</td>
</tr>
<tr>
<td>pDC</td>
<td>Plasmacytoid dendritic cell</td>
</tr>
<tr>
<td>PP2A</td>
<td>Protein phosphatase 2A</td>
</tr>
<tr>
<td>PVM</td>
<td>Pneumonia virus of mice</td>
</tr>
<tr>
<td>qPCR</td>
<td>Quantitative polymerase chain reaction</td>
</tr>
<tr>
<td>RB</td>
<td>Reticulate body</td>
</tr>
<tr>
<td>rIL-13</td>
<td>Recombinant interleukin-13</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>rTRAIL</td>
<td>Recombinant tumor necrosis factor-related apoptosis-inducing ligand</td>
</tr>
<tr>
<td>RSV</td>
<td>Respiratory syncytial virus</td>
</tr>
<tr>
<td>RV</td>
<td>Rhinovirus</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>siRNA</td>
<td>Small interfering RNA</td>
</tr>
<tr>
<td>SPG</td>
<td>Sucrose phosphate glutamate</td>
</tr>
<tr>
<td>STAT6</td>
<td>Signal transducer and activator of transcription 6</td>
</tr>
<tr>
<td>TCR</td>
<td>T cell receptor</td>
</tr>
<tr>
<td>Th</td>
<td>T helper lymphocyte</td>
</tr>
<tr>
<td>Tg</td>
<td>Transgenic</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Tranforming growth factor beta</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
</tr>
<tr>
<td>Tnfsf10</td>
<td>Tumor necrosis factor superfamily member 10</td>
</tr>
<tr>
<td>TRAIL</td>
<td>Tumor necrosis factor-related apoptosis-inducing ligand</td>
</tr>
<tr>
<td>WT</td>
<td>Wild-type</td>
</tr>
<tr>
<td>Ym-1</td>
<td>Chitinase 3-like 3</td>
</tr>
<tr>
<td>Ym-1/−</td>
<td>Knockout/factor deficient mouse</td>
</tr>
</tbody>
</table>