Enabling Technologies for Biomedical Device Fabrication

Stephan Stiess
Diplom Ingenieur FH (Physikalische Technik)

Submitted in fulfillment
of the requirements for the degree of

Master of Philosophy

School of Mathematical and Physical Sciences
Faculty of Science and Information Technology
The University of Newcastle
Callaghan, N.S.W 2308
Australia

13th August 2013
STATEMENT OF ORIGINALITY

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository, subject to the provisions of the Copyright Act 1968.

Signed: …………………………………………………………………………

ACKNOWLEDGEMENT OF AUTHORSHIP

I hereby certify that the work embodied in this thesis is the result of original research which was completed subsequent to admission to candidature for the degree, Masters by research.

Signed: …………………………………………………………………………
ACKNOWLEDGMENTS

A work like the here presented one is only possible by working hard and by having some help along the way. Some people help others even if there is no advantage for them in doing so. This work would not have been possible without the help of people like these to whom I owe my sincere gratitude.

First I would like to thank Dr Bruce King for uncountable hours of constructive discussions leading to new ideas and ways to overcome obstacles but also for his readiness to be there when needed. His help with the project went well above and beyond the call of duty.

Then I would like to thank Dr Gregg Suaning for his inspiring and sometimes simple solutions to complex problems and for his straight forward advice.

Then I would like to thank the late Phil Craig whose mechanical workshop was always open for me way beyond the normal workshop hours. He always gave me practical advice and sometimes dropped other work just to help me. Thanks Mate, rest in peace!

Also would like to thank David Phelan who helped me with his in-depth knowledge of electron microscopy. I especially thank him for sharing his countless little tricks and tips to overcome obstacles. I specifically would like to acknowledge all the extra hours he spent to allow me to finish my work on the electron microscope after regular hours.

Finally, but most importantly I thank my family for all their support. The greatest thanks belong to my kids, Philippe, Makayla and Katarina. All of them have missed out on time spent with me during the project. Nevertheless they have never complained and always been happy to spent time with me when I could make time. Also I thank my Mum for all the help with administrative issues of my affairs in Germany.

There are many other people who have helped me and in one way or another and I cannot name all of them here but I nevertheless appreciated their help.

Thank you all!
Table of Contents

STATEMENT OF ORIGINALITY

iii

ACKNOWLEDGEMENTS

v

TABLE OF CONTENTS

vii

ABSTRACT

xi

1 INTRODUCTION ... 1-1
 1.1 Introduction and motivation .. 1-1
 1.2 Structure of the Thesis .. 1-3
 1.3 Relevant Implantable Medical Devices .. 1-4
 1.3.1 Cardiovascular Stents ... 1-4
 1.3.2 Visual prostheses ... 1-6
 1.3.3 Summary .. 1-10
 1.4 References ... 1-11

2 LASER MACHINING BACKGROUND ... 2-1
 2.1 Literature Review .. 2-1
 2.2 Discussion of the Literature ... 2-36
 2.3 Conclusion ... 2-41
 2.4 References ... 2-43
3 RELEVANT TECHNIQUES AND METHODS .. 3-1
3.1 Surface Analysis Methods ... 3-2
 3.1.1 Stylus Surface Profilometry ... 3-2
 3.1.2 Optical Microscopy ... 3-4
 3.1.3 Scanning Electron Microscopy ... 3-5
 3.1.3.1 The Scanning Electron Microscope - Imaging 3-5
 3.1.3.2 SEM for Cross Section Imaging .. 3-8
3.2 Material Analysis Methods ... 3-11
 3.2.1 Energy Dispersive X-ray Spectroscopy ... 3-11
 3.2.2 X-Ray Diffraction Analysis .. 3-14
3.3 Laser Machining .. 3-16
 3.3.1 The GCR-5 Laser Setup ... 3-16
 3.3.2 The Engraving Laser Setup ... 3-18
 3.3.3 The Femtosecond Laser Setup ... 3-18
 3.3.4 Laser Machining Parameters ... 3-19
3.4 Other Analysis Techniques .. 3-20
 3.4.1 Atomic Force Microscopy .. 3-20
 3.4.1.1 Contact Mode ... 3-22
 3.4.1.2 Non-Contact Mode and Tapping Mode ... 3-22
 3.4.1.3 Scan Range and Resolution ... 3-23
 3.4.1.4 Suitability of the AFM for the Analysis of Laser Cuts 3-24
 3.4.2 Confocal Laser Scanning Microscopy ... 3-25
 3.4.2.1 Limitations .. 3-26
3.5 Conclusions .. 3-30
3.6 References .. 3-31

4 LASER CUTTING .. 4-1
4.1 Introduction ... 4-1
4.2 Laser types and their parameters ... 4-2
4.3 Materials and Cutting Parameters .. 4-3
4.4 Laser cutting: Results ... 4-5
 4.4.1 Cutting depth .. 4-7
 4.4.1.1 Nanosecond laser .. 4-7
 4.4.1.2 Femtosecond laser ... 4-13
 4.4.2 Cutting width .. 4-21
 4.4.2.1 Nanosecond laser ... 4-21
 4.4.2.2 Femtosecond laser ... 4-25
 4.4.3 Cross section shape of the groove ... 4-27
 4.4.3.1 Nanosecond laser ... 4-27
 4.4.3.2 Femtosecond laser ... 4-30
 4.4.4 Groove roughness, straightness and clogging ... 4-32
 4.4.4.1 Nanosecond laser ... 4-32
 4.4.4.2 Femtosecond laser ... 4-51
4.5 Discussion ... 4-51
4.6 Conclusions and future work .. 4-61
4.7 References .. 4-64
Abstract

Two enabling technologies for production of implantable biomedical electronics, laser cutting and thin film deposition were investigated. These enabling technologies are important for complex devices such as the bionic eye.

The first enabling technology was laser cutting. Although laser cutting as a method to produce micro electrodes in a range of biomedical applications is not new there is a lack of comprehensive measurements, especially comparing the use of nanosecond and femtosecond lasers. Both lasers were used to cut grooves into Ni-Ti and Pt to test their use in producing high density micro electrode arrays. Various grooves depths were produced using multiple laser passes. The nanosecond laser was found to have a significant higher cutting efficiency than the femtosecond laser. It was also found that the melt produced by the nanosecond laser had a significant impact on the groove geometry. The work presented here shows that nanosecond lasers are preferred for rapid production of shallow groves but femtosecond laser cutting is preferred for deep groove cutting.

Feedthroughs in the walls of implanted biomedical devices are required to carry electrical signals to the device. Biocompatible materials such as alumina and platinum must be used for the wall and feedthrough respectively and the feedthrough must be sealed hermetically. According to the literature these two materials only bond if heat and contact pressure is used. Because of the delicate nature of the device, four methods to bond alumina to platinum substrates were trialled without using contact pressure. All methods produced alumina films that adhered well to the platinum substrate. The best film was found to be produced by atomic layer deposition. Therefore this encapsulation method would enable the fabrication of feedthroughs between platinum electrodes and alumina insulation.