Statement of Originality

The thesis contains no material which has been accepted for the award of any other degree or diploma in any other university or other tertiary institution, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University’s Digital Repository**, subject to the provisions of the Copyright Act 1968. **Unless an Embargo has been approved for a determined period.

Signature : __________________________
Name : Majid Hosseini
Date : __________________________
Abstract

Wireless sensor networks have gained considerable attention from both academia and industry in last few years due to their crucial and advantageous applications including localising and tracking variety of objects and phenomena in different environments. Using a fleet of inexpensive sensor nodes is substituted the old fashion of the expensive nodes in the technology of autonomous sensing and tracking. The existing works are heavily based on state-space systems of a linear motion model along a nonlinear measurement. Due to nonlinearity in measurements, non-linear state estimation methods, like particle filtering, has become more popular in this field. There are three issues highlighted on using such tools in wireless sensor networks consist of heavy computation, lack of good knowledge of motion model, and initialization. This research has proposed solutions to all three problems. The tracking problem is divided into two categories of static and dynamic tracking. In the former, the main proposed method is a maximum likelihood estimator which is initialised via a least squares estimation. In this case, there is no assumption about target motion and it is independent from sampling rate. For the latter group, a nearly-constant-acceleration linear model is assumed for target movement along a nonlinear measurement model. First, this work derives a linear form of the nonlinear measurement. Then, a Kalman filter estimator initialised by maximum likelihood is designed for tracking purposes. For analogy to Kalman model, a particle filter estimator is also designed on the original nonlinear measurement. During this research, it is also found that most of existing works are assuming independent measurement noise, probably for problem simplification. Therefore, a similar tracking system is proposed considering dependent noise measurement. The analysis and numerical proof is presented in this research and both cases are compared together. The results show that the proposed tracking system with dependent measurement noise highly overtake the other method with independent measurement noise. At last, due to importance of distributed techniques in wireless sensor networks, a quasi distributed tracking method is developed through applying a naive extended Kalman filtering on each sensor’s measurements. However, the final coordinate estimation is done in the fusion center using standard least squares estimation. The simulation results show a great improvement on the accuracy of estimation over the standard least squares.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>vii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Wireless Sensor Networks: Categories and Attributes 2
1.2 Target Tracking in WSNs 3
 1.2.1 Centralized Tracking 5
 1.2.1.1 Single-target Tracking 5
 1.2.1.2 Multi-target Tracking 6
 1.2.2 Distributed Tracking 7
 1.2.2.1 Single-target Tracking 8
 1.2.2.2 Multi-target Tracking 10
1.3 General Issues 11
1.4 Research Focus 13
1.5 Research Contributions 16
1.6 Thesis Outline 17

2 FAST AND ACCURATE TARGET TRACKING IN SENSOR NETWORKS: INDEPENDENT MEASUREMENT NOISE

2.1 Problem description 21
2.1.1 Measurement model 21
2.1.2 Target motion model 22
2.1.3 Wiener-Process Acceleration Model 24
2.2 Estimation methods 28
2.2.1 Static tracking 28
2.2.1.1 Maximum-likelihood and Cramér-Rao bound 29
2.2.1.2 Acceleration of maximum-likelihood method via reliable initialisation 33
2.2.2 Dynamic tracking 35
 2.2.2.1 Near optimal state estimation 36
 2.2.2.2 Initialisation 40
 2.2.2.3 Comments on the shape of the $f_s|\theta$ 41
2.3 Numerical examples 45
2.4 Conclusions 47

3 ACCOUNTING FOR SPATIAL CORRELATION IN THE MEASUREMENTS 48
 3.1 Introduction 48
 3.2 Problem description 49
 3.2.1 Measurement and target motion model 49
 3.2.2 Estimation problems 50
 3.3 Static tracking 50
 3.3.1 Estimation method 51
 3.3.2 Initialisation 54
 3.3.3 Theoretical foundation 55
 3.4 Dynamic tracking 58
 3.5 Simulations 60
 3.6 Conclusion 61

4 A QUASI-DISTRIBUTED TARGET LOCALISATION METHOD 62
 4.1 Extended Kalman filtering of sensor measurement 63
 4.2 Least squares based source localisation 64
 4.3 Simulations and Results 65
 4.4 Conclusion 66

5 CONCLUSION AND FUTURE WORKS 68
 5.1 Conclusion 69
 5.2 Future Works 70

BIBLIOGRAPHY 72
List of Figures

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Plot of (\delta {-2 \log(\epsilon)/n}) as a function of (n) for some ‘sufficiently small’ values of (\epsilon).</td>
<td>43</td>
</tr>
<tr>
<td>2.2</td>
<td>The plots of (c, c_{\min}, c_{\max}) as functions of (\gamma).</td>
<td>44</td>
</tr>
<tr>
<td>2.3</td>
<td>RMSE of the position and intensity estimates, and the computation time as functions of (M).</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>Comparison of the average localisation errors obtained by either considering and ignoring the statistical dependence of inter-sensor measurements.</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>The results of parameters estimation by all methods.</td>
<td>67</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

AoA - Angle of Arrival
CRB - Cramér-Rao Bound
DV-Hop - Distance Vector-Hop
EKF - Extended Kalman Filter
ELSE - Extended kalman filtered Least Squares Estimation
GPS - Global Positioning System
KFE - Kalman Filter Estimation
LOS - Line-Of-Sight
LSE - Least Squares Estimation
MCL - Monte Carlo Localization
MEMS - Micro Electro-Mechanical System
MKF - Maximum likelihood Kalman Filter estimation
MLE - Maximum Likelihood Estimation
MMWSN - MultiMedia Wireless Sensor Network
MWSN - Mobile Wireless Sensor Network
PFE - Particle Filter Estimation
QoS - Quality of Service
RF - Radio Frequency
RFID - Radio-Frequency IDentification
RSSI - Received Signal Strength Indication
SMC - Sequential Monte Carlo
TDoA - Time Difference of Arrival
TL - Transmission Loss
ToA - Time of Arrival
TUKF - Truncated Unscented Kalman Filter
TWSN - Terrestrial Wireless Sensor Network
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>UGWSN</td>
<td>UnderGround Wireless Sensor Network</td>
</tr>
<tr>
<td>UKF</td>
<td>Unscented Kalman Filter</td>
</tr>
<tr>
<td>WLSE</td>
<td>Weighted Least Squares Estimation</td>
</tr>
<tr>
<td>WSN</td>
<td>Wireless Sensor Network</td>
</tr>
</tbody>
</table>