THE ROLE OF FOLIC ACID RELATED NUTRITIONAL GENETICS IN COMMON CHRONIC DEGENERATIVE DISORDERS

By

Lyndell Boyd, BHumNut (Hons)

A thesis submitted for the degree of

Doctor of Philosophy, Food Science

Faculty of Science & IT
School of Environmental and Life Science
University of Newcastle
New South Wales
Australia

February 2014
Statement of Originality

This thesis contains no material previously accepted for the award of any other degree or diploma in any university or tertiary institution. Further, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference has been made in the text.

However, I acknowledge that the work embodied in this thesis has been done in collaboration with other researchers and has been carried out in part at other institutions. Where necessary, I have indicated within the thesis the extent and type of collaboration, and acknowledged the contributing parties.

I give consent for this copy of my thesis to be deposited in the University’s Digital Repository and to be made available worldwide for loan and photocopying subject to the provisions of the Copyright Act 1968.
Table of Contents

Table of Contents .. II
Abbreviations ... I
Synopsis .. III
List of Figures .. V
List of Tables .. VI
Acknowledgments ... XI
Acknowledgment of collaboration .. XII
Acknowledgment of Authorship ... XIII

CHAPTER 1 - THESIS INTRODUCTION .. 1

1. Overview .. 2
1.1. Socio-Economic Impact of Nutrition in Disease Prevention ... 2
1.1.1. The burden of chronic disease and prevention ... 3
1.1.2. Gene-nutrient interactions, genetic susceptibility and evolutionary discordance 7
1.1.3. The industrial era - post agriculture diets & health ramifications 10
1.1.4. The ageing process and chronic degenerative diseases .. 17
1.2. Folic Acid – A Key B-group Vitamin .. 28
1.2.1. Discovery ... 29
1.2.2. A paradigm shift in understanding the role of folate in health and disease (1990-2011) 31
1.2.3. Folate biochemistry ... 33
1.2.4. Dietary sources ... 34
1.2.5. Folate bioavailability ... 36
1.2.6. Dietary requirements and assessment of nutriture ... 36
1.2.7. Absorption and transport of dietary folates .. 38
1.2.8. Folate-mediated one-carbon metabolism ... 41
1.2.9. The homocysteine transsulphuration pathway and the relevance of its metabolites 43
1.2.10. Nutrient-nutrient interactions related to folate dependent one-carbon metabolism 47
1.2.11. Genetic variation within folate metabolism ... 52
1.3. B-Vitamin Related Molecular Mechanisms That Underpin Disease 73
1.3.1. The impact of folate deprivation ... 74
1.3.2. Folate excess ... 85
1.3.3. Folic acid fortification ... 86
1.3.4. Possible adverse effects of mandatory fortification of flour with folic acid 88
1.4. Thesis Scope ... 103

CHAPTER 2 - METHODOLOGICAL APPROACH .. 106

2. Overview ... 107
2.1. Biochemical Measurements ... 107
2.1.1. Blood collection and handling ... 107
2.1.2. Assay of red cell folate, serum folate and vitamin B12 ... 108
2.2. Plasma Determination of Thiols ... 109
2.2.1. Equipment and chromatographic conditions ... 110
2.2.2. Assay reagents and standards ... 110
2.2.3. Plasma thiol derivatisation .. 111
2.2.4. The standard curve and calculation of thiol concentrations ... 113
CHAPTER 5 - B-VITAMIN RELATED NUTRITIONAL GENETICS AND OCCURRENCE OF ADENOMATOUS POLYPS - A MAJOR ANTECEDENT OF COLORECTAL CANCER

5. Overview ... 204

5.1. Study Design ... 204

5.1.1. Ethics approval .. 204

5.1.2. Recruitment and clinical assessment .. 205

5.1.3. Food frequency questionnaire ... 205

5.1.4. Non-clinical measurements .. 206

5.1.5. Statistical analysis ... 206

5.2. Results ... 207

5.2.1. Descriptive statistics .. 207

5.2.2. B-vitamin metabolites and related indices .. 207

5.2.3. B-vitamin related genetics – prevalence ... 209

5.2.4. B-vitamin/thiol related nutritional genetics organised by genotype for all subjects (adenomatous and non-adenomatous polyps and controls) ... 209

5.2.5. Adenomatous polyps – phenotype specific analysis ... 214

5.2.6. B-vitamin/thiol related nutritional genetics organised by clinical phenotype 224

5.2.7. Analysis of combined nutritional biochemistry and genetic data to establish any relationship to adenomatous polyps and non-adenomatous polyps ... 237

5.2.8. Integrated analysis of dietary folic acid (type and level of vitamer), folic acid cellular status and risk for colonic adenomatous polyp .. 241

CHAPTER 6 - DISCUSSION .. 247

6. Overview ... 248

6.1. The Role of Folic Acid and Nutritional Genetics in Common Chronic Degenerative Disorders ... 248

6.1.1. Phenotype I: hypertension .. 253

6.1.2. Phenotype II: depression ... 261

6.1.3. Phenotype III: Alzheimer’s dementia .. 267

6.1.4. Phenotype IV: colorectal adenomatous polyps .. 272

6.2. Limitations of this Research ... 279

6.3. Ramifications of Mandatory Folic Acid Fortification .. 282

6.4. Future Undertakings .. 285

6.5. Conclusion .. 287

CHAPTER 7 - REFERENCES & APPENDICES .. 290

7.1 Literature Cited .. 291

7.2 Appendix 1: Food Frequency Questionnaire ... 350

7.3 Appendix 2: Hospital Anxiety and Depression Scale .. 365
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>(\bar{x})</td>
<td>Mean</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer's disease</td>
</tr>
<tr>
<td>ADHD</td>
<td>Attention Deficit Hyperactivity Disorder</td>
</tr>
<tr>
<td>AIHW</td>
<td>Australian Institute of Health and Welfare</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AUD</td>
<td>Australian Dollars</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>bp</td>
<td>Base pairs</td>
</tr>
<tr>
<td>COMT</td>
<td>Catechol-O-methyltransferase</td>
</tr>
<tr>
<td>CpG</td>
<td>Cytosine-Guanine</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>CβS</td>
<td>Cystathionine β-Synthase</td>
</tr>
<tr>
<td>CγL</td>
<td>Cystathionine-γ-lyase</td>
</tr>
<tr>
<td>DHFR</td>
<td>Dihydrofolate Reductase</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTPs</td>
<td>deoxyribonucleoside triphosphate</td>
</tr>
<tr>
<td>dTMP</td>
<td>deoxycytidine monophosphate</td>
</tr>
<tr>
<td>dUMP</td>
<td>deoxyuridine monophosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetra-acetic acid</td>
</tr>
<tr>
<td>eNOS</td>
<td>endothelial nitric oxide synthase</td>
</tr>
<tr>
<td>FAD</td>
<td>Flavin adenine dinucleotide</td>
</tr>
<tr>
<td>FFQ</td>
<td>Food Frequency Questionnaire</td>
</tr>
<tr>
<td>FMN</td>
<td>Flavin mononucleotide</td>
</tr>
<tr>
<td>FSANZ</td>
<td>Food Standards Australia New Zealand</td>
</tr>
<tr>
<td>GWAS</td>
<td>Genome-wide association studies</td>
</tr>
<tr>
<td>GCPII</td>
<td>Glutamate carboxypeptidase II</td>
</tr>
<tr>
<td>H₂PteGlu</td>
<td>Dihydrofolate</td>
</tr>
<tr>
<td>H₄PteGlu</td>
<td>Tetrahydrofolate</td>
</tr>
<tr>
<td>HADS</td>
<td>Hospital Anxiety Depression Scale/Score</td>
</tr>
<tr>
<td>HDL</td>
<td>High Density Lipoprotein</td>
</tr>
<tr>
<td>Het</td>
<td>Heterozygote</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-performance liquid chromatography</td>
</tr>
<tr>
<td>ICPMR</td>
<td>Institute of Clinical Pathology and Medical Research</td>
</tr>
<tr>
<td>IVF</td>
<td>In vitro fertilisation</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>MMSE</td>
<td>Mini mental State Examination</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger Ribonucleic Acid</td>
</tr>
<tr>
<td>MTHFR</td>
<td>Methylene-tetrahydrofolate Reductase</td>
</tr>
<tr>
<td>MTR</td>
<td>Methionine Synthase</td>
</tr>
<tr>
<td>MTRR</td>
<td>Methionine Synthase Reductase</td>
</tr>
<tr>
<td>(n)</td>
<td>Number</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide Adenine Dinucleotide Phosphate</td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>NHMRC</td>
<td>National Health and Medical Research Council</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-d-aspartate</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales, Australia</td>
</tr>
<tr>
<td>NTD</td>
<td>Neural Tube Defects</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>PCFT</td>
<td>Proton Coupled Folate Transporter</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PLP</td>
<td>Pyridoxal 5’ Phosphate</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated Fatty Acid</td>
</tr>
<tr>
<td>RDI</td>
<td>Recommended Daily Intake</td>
</tr>
<tr>
<td>Rec</td>
<td>Recessive</td>
</tr>
<tr>
<td>RFC</td>
<td>Reduced Folate Carrier</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction Fragment Length Polymorphism</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>SAH</td>
<td>S-adenosylhomocysteine</td>
</tr>
<tr>
<td>SAM</td>
<td>S-adenosylmethionine</td>
</tr>
<tr>
<td>SBDF</td>
<td>7-Fluorobenzo-2-oxa-1,3-diazole-4-sulfonic acid ammonium salt</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SHMT</td>
<td>Serine hydroxymethyltransferase</td>
</tr>
<tr>
<td>SNP</td>
<td>Single Nucleotide Polymorphism</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris/Borate/EDTA</td>
</tr>
<tr>
<td>TCEP</td>
<td>Tris(2-carboxyethyl)phosphine</td>
</tr>
<tr>
<td>TS</td>
<td>Thymidylate synthase</td>
</tr>
<tr>
<td>TSER</td>
<td>Thymidylate synthase enhancer region</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>USD</td>
<td>United States Dollars</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet</td>
</tr>
<tr>
<td>VIC</td>
<td>Victoria, Australia</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>Wt</td>
<td>Wild-type</td>
</tr>
</tbody>
</table>
Synopsis

Nutrition has long been recognised as having a significant impact on health. In developed countries, there has been a shift away from prevention of overt nutrient deficiency diseases to emphasis on preventing the health complications of nutritional excess. The contemporary burden of chronic disease, in both developed and developing nations, is increasing as society ages and is linked to dietary elements, genetic susceptibility and environmental change. Today’s populations largely consume energy-dense nutrient-poor foods, an important component in our contemporary obesogenic environment. This type of diet is often low in essential micronutrients, particularly important B-group vitamins linked to the prevention of a range of chronic diseases.

Folic acid nutritional genetics, the subject of this thesis, influences a broad sphere of clinical conditions. Folic acid has a central role in one-carbon metabolism, a complex nexus responsible for donating methyl units vital for both nucleotide synthesis and provision of S-adenosylmethionine. Moderate folate deficiency induces DNA hypomethylation, and via uracil misincorporation, DNA instability; both events are linked to increased cancer risk. Folate deficiency is also associated with potentially vasculo-toxic homocysteine, which accumulates when there is a limited pool of folic acid derived methyl groups. Elevated homocysteine is associated with a range of disorders, most notably increased CVD risk and NTDs. Folate-related one-carbon metabolism contains various polymorphic proteins that modify metabolism and therefore influence disease risk. This dissertation examines four different, common, chronic degenerative disorders that predominately affect ageing populations, with the aim of exploring the relationship between eleven common folate polymorphisms, important indices of folate status, and transsulphuration pathway thiols. This approach employed regression models based on the a priori understanding of possible biochemical, genetic and physiologic relationships. The following reflects what are considered to be the major findings of this study.

An examination of hypertension in an elderly retirement village population (n=229) demonstrated that red cell folate, cysteine and cysteinyl-glycine were predictive of recumbent diastolic blood pressure (p=0.0326, $r^2=0.0202$, slope estimate=-0.040; $p=0.0001$, $r^2=0.01246$, slope estimate=-0.232; $p=0.0008$, $r^2=0.01246$, slope estimate=0.141 respectively). As a component within a model containing key genetic factors, the 677C>T MTHFR SNP was associated with recumbent diastolic blood pressure (p=0.0397, $r^2=0.0650$, slope estimate=-0.011). Several folate-related SNPs
were associated with standing systolic blood pressure \((r^2=0.0868\) for whole model); these were the 677C>T MTHFR \((p=0.0443, \text{slope estimate}=0.009)\), the 19 bp deletion DHFR \((p=0.0157, \text{slope estimate}=0.009)\) and the 1561C>T GCPII \((p=0.0397, \text{slope estimate}=-0.021)\) variants. An examination of the depression phenotype was undertaken in this same population. It was shown that a novel relationship exists with the amino-thiol, cysteinyl-glycine, which was negatively associated with depression \((p=0.0046, r^2=0.0348, \text{slope estimate}=-6.127)\).

The third clinical phenotype examined involved a cohort of AD patients \((n=93)\), which was compared to the former retirement village population as a control after selecting subjects whose MMSE score reflected a specified threshold for cognitive function \((n=229)\). The 2756A>G MTR SNP was associated with AD \((p=0.0419, r^2=0.0512)\), with the G allele considered to be protective \((\text{OR}=0.60:95\%\text{CI};0.39-0.92, p=0.0260)\). An ordinal logistic regression model containing all thiols \((r^2=0.1885)\) indicated that higher homocysteine \((p=<0.0001)\), higher glutathione \((p=0.0003)\) but lower cysteinyl-glycine \((p=<0.0001)\) was significantly associated with AD. Ordinal logistic regression also supported the association of AD with lower serum folate \((p=0.0097, r^2=0.0181)\), lower total dietary folate intake \((p=0.0054, r^2=0.0231)\) and lower natural methylfolate intake \((p=<0.0001, r^2=0.0581)\).

The final phenotype examined involved a cohort of subjects screened for colorectal polyps \((n=203)\). The study had a specific focus on adenomatous polyp occurrence and its possible relationship to folate intake. The 3’UTR 6 deletion TS SNP indicated an association with increased risk for an adenomatous polyp occurrence \((p=0.0073, r^2=0.2744)\). The 66A>G MTRR SNP was also found to be a positive risk factor for an adenomatous polyp \((\text{OR}=2.50:95\%\text{CI};1.23-5.10, p=0.0163, \text{ordinal logistic regression}, p=0.0149, r^2=0.2744)\). This latter SNP was also associated with adenomatous polyp occurrence in subjects with low folate status \((\text{below median red cell folate, OR}=3.40:95\%\text{CI};\ 1.32-8.75, p=0.0164, \text{ordinal logistic regression}, p=0.0261, r^2=0.5799)\). In subjects with a high folate status, the 1420C>T SHMT SNP was a positive risk factor \((\text{OR}=4.56:95\%\text{CI};\ 1.38-15.03, p=0.0225)\). Individuals with a low folate status were also found to have red cell folate levels that predicted adenomatous polyp occurrence \((\text{ordinal logistic regression } p=0.0331, r^2=0.0548)\). Whilst this study has identified various potential associations, the nature of the data and associations found, advocates further examination in larger populations.
List of Figures

CHAPTER 1

Figure 1-1: The corollary between certain key dietary nutrients and brain neurotransmitter metabolism (courtesy of A/Prof Mark Lucock published in Molecular Nutrition and Genomics – Nutrition and the Ascent of Humankind [25]) ... 27
Figure 1-2: The historical timeline showing how our understanding of folic acid developed 30
Figure 1-3: The structure of tetrahydrofolate and its role as a carrier of one-carbon units 34
Figure 1-4: Simple schematic representation of intestinal absorption of folate (adapted from McNulty, H. and K. Pentieva, Folate Bioavailability, Folate in health and disease, L.B. Bailey, p. 28 [302]) .. 39
Figure 1-5: Folate-mediated one-carbon metabolism (courtesy of A/Prof Mark Lucock article Folic acid: an essential nutrient with added health benefits [321]) ... 42
Figure 1-6: Schematic representation of genetic variation within folate metabolism (courtesy of A/Prof Mark Lucock published in Molecular Nutrition and Genomics – Nutrition and the Ascent of Humankind [25]) .. 53

CHAPTER 2

Figure 2-1: Typical chromatogram of the plasma thiols with internal standard 113

CHAPTER 3

Figure 3-1: Retirement village study clinic protocols and data collection 132
Figure 3-2: Mean and standard deviation values for B-vitamin/thiol measurements comparing hypertensive and normotensive phenotypes ... 144
Figure 3-3: Mean and standard deviation values for B-vitamin/thiol measurements comparing the depression phenotype with controls .. 162

CHAPTER 4

Figure 4-1: Mean and standard deviation values for B-vitamin/thiol measurements comparing Alzheimer’s disease cases and controls .. 186

CHAPTER 5

Figure 5-1: Mean and standard deviation values for B-vitamin/thiol measurements comparing controls with subjects who have a polyp (adenomatous and adenomatous plus non-adenomatous) ... 215
Figure 5-2: Low folate status (below median red cell folate); mean and standard deviation values for B-vitamin/thiol measurements comparing controls with subjects who have a polyp (adenomatous and adenomatous plus non-adenomatous) ... 218
Figure 5-3: High folate status (above median red cell folate); mean and standard deviation values for B-vitamin/thiol measurements comparing controls with subjects who have a polyp (adenomatous and adenomatous plus non-adenomatous) ... 221
Figure 5-4: Mean folic acid intake (5-methyl-H₄folic acid and pteroylmonoglutamic acid) for control and adenomatous polyp patients by median red cell folate value. 242
Figure 5-5: Mean red cell folate determined for control individuals and adenomatous polyp patients delineated by whether they are below or above the overall population median red cell folate value. .. 244

CHAPTER 6

Figure 6-1: Folate biochemistry with key gene-nutrient interactions that can modify clinical phenotype (Figure courtesy of A/Prof M Lucock article Folic acid: Beyond Metabolism [377]) ... 249
Figure 6-2: Folate and thiol metabolism in neurochemistry (Figure courtesy of A/Prof M Lucock [375]) ... 265
List of Tables

CHAPTER 1

Table 1-1: Current food staples - environment & consumption in pre and post agriculture eras (information sourced from Cordain et al. [2] Origins and evolution of the Western diet: health implications for the 21st century) .. 11
Table 1-2: The ten leading underlying specific causes of death, all ages, 2009 ... 20
Table 1-3: B-group vitamins – functions and deficiency symptoms ... 28
Table 1-4: Folate content of various food products ... 35
Table 1-5: Summary of key polymorphic variants examined .. 104

CHAPTER 2

Table 2-1: Reference ranges - ICPMR lab guide .. 108
Table 2-2: Thiol concentrations of the working standard solutions .. 111
Table 2-3: Mean thiol value for quality control .. 114
Table 2-4: Key discovery papers .. 118
Table 2-5: Primer sequences ... 119
Table 2-6: Polymerase chain reaction conditions ... 120
Table 2-7: Digestion enzymes and conditions ... 123
Table 2-8: Food groups in food frequency questionnaire ... 127

CHAPTER 3

Table 3-1: Descriptive data based on age (years) ... 136
Table 3-2: Data for all subjects; blood metabolites and related indices ... 136
Table 3-3: Data for male subjects; blood metabolites and related indices ... 137
Table 3-4: Data for female subjects; blood metabolites and related indices ... 137
Table 3-5: Complete genetic data; genotype prevalence and allele number .. 138
Table 3-6: All data; B-vitamin/thiol related nutritional genetic data by genotype (1 of 4) 139
Table 3-7: All data; B-vitamin/thiol related nutritional genetic data by genotype (2 of 4) 140
Table 3-8: All data; B-vitamin/thiol related nutritional genetic data by genotype (3 of 4) 141
Table 3-9: All data; B-vitamin/thiol related nutritional genetic data by genotype (4 of 4) 142
Table 3-10: Hypertensive phenotype; recumbent blood pressure measurements 143
Table 3-11: Hypertensive phenotype; genotype prevalence and allele number 145
Table 3-12: Hypertensive phenotype; odds ratio and 95% CI along with chi-square test p value 146
Table 3-13: Normotensive subjects; B-vitamin/thiol related nutritional genetic data by genotype (1 of 4) .. 147
Table 3-14: Normotensive subjects; B-vitamin/thiol related nutritional genetic data by genotype (2 of 4) .. 148
Table 3-15: Normotensive subjects; B-vitamin/thiol related nutritional genetic data by genotype (3 of 4) .. 149
Table 3-16: Normotensive subjects; B-vitamin/thiol related nutritional genetic data by genotype (4 of 4) .. 150
Table 3-17: Hypertensive subjects; B-vitamin/thiol related nutritional genetic data by genotype (1 of 4) .. 151
Table 3-18: Hypertensive subjects; B-vitamin/thiol related nutritional genetic data by genotype (2 of 4) .. 152
Table 3-19: Hypertensive subjects; B-vitamin/thiol related nutritional genetic data by genotype (3 of 4) .. 153
Table 3-20: Hypertensive subjects; B-vitamin/thiol related nutritional genetic data by genotype (4 of 4) .. 154
Table 3-21: Stepwise regression; model for all genetic, metabolic, and physiologic variables 156
Table 3-22: Stepwise regression; model for genetic data only (eleven variants) 157
Table 3-23: Stepwise regression; model for basic population information – age, body mass index and gender .. 158
Table 3-24: Stepwise regression; model for all B-vitamin related blood metabolites and thiols combined .. 158
Table 3-25: Stepwise regression; model for thiol transsulphuration pathway metabolites 159
Table 3-26: Stepwise regression; model for B-vitamin related blood metabolites 159
Table 3-27: Stepwise regression; model for dietary folic acid .. 160
Table 3-28: Depression phenotype; HADS scores ... 161
Table 3-29: Depression phenotype; genotype prevalence, allele number and carriage of mutant allele .. 163
Table 3-30: Depression phenotype; odds ratio and 95% CI along with chi-square test p value 164
Table 3-31: Control; B-vitamin/thiol related nutritional genetic data by genotype (1 of 4) 165
Table 3-32: Control; B-vitamin/thiol related nutritional genetic data by genotype (2 of 4) 166
Table 3-33: Control; B-vitamin/thiol related nutritional genetic data by genotype (3 of 4) 167
Table 3-34: Control; B-vitamin/thiol related nutritional genetic data by genotype (4 of 4) 168
Table 3-35: Depression; B-vitamin/thiol related nutritional genetic data by genotype (1 of 4) ... 169
Table 3-36: Depression; B-vitamin/thiol related nutritional genetic data by genotype (2 of 4) ... 170
Table 3-37: Depression; B-vitamin/thiol related nutritional genetic data by genotype (3 of 4) ... 171
Table 3-38: Depression; B-vitamin/thiol related nutritional genetic data by genotype (4 of 4) ... 172
Table 3-39: Stepwise regression; model for all genetic, metabolic and physiologic variables . 174
Table 3-40: Stepwise regression; model for basic population information – age, body mass index, and gender .. 174
Table 3-41: Stepwise regression; model for all B-vitamin related blood metabolites and thiols combined ... 174
Table 3-42: Stepwise regression; model for thiol transsulphuration pathway metabolites 175
Table 3-43: Ordinal logistic regression; model for all genetic, metabolic and physiologic variables ... 176
Table 3-44: Ordinal logistic regression; model for all B-vitamin related blood metabolites and thiols combined .. 176
Table 3-45: Ordinal logistic regression; model for thiol transsulphuration pathway metabolites 177
Table 3-46: Ordinal logistic regression; model for B-vitamin related blood metabolites 177

CHAPTER 4

Table 4-1: Descriptive data based on age (years).. 184
Table 4-2: Data for all Alzheimer’s disease cases; blood metabolites and related indices 185
Table 4-3: Data for male Alzheimer’s disease cases; blood metabolites and related indices ... 185
Table 4-4: Data for female Alzheimer’s disease cases; blood metabolites and related indices 185
Table 4-5: Complete genetic data for the Alzheimer’s disease cohort; genotype prevalence and allele number ... 187
Table 4-6: All data; B-vitamin/thiol related nutritional genetic data by genotype (1 of 4) 188
Table 4-7: All data; B-vitamin/thiol related nutritional genetic data by genotype (2 of 4) 189
Table 4-8: All data; B-vitamin/thiol related nutritional genetic data by genotype (3 of 4) 190
Table 4-9: All data; B-vitamin/thiol related nutritional genetic data by genotype (4 of 4) 191
Table 4-10: Alzheimer’s disease phenotype; genotype prevalence, allele number and carriage of mutant allele .. 192
Table 4-11: Alzheimer’s disease phenotype; odds ratio and 95% CI along with chi-square test p value ... 193
Table 4-12: Alzheimer’s disease cases; B-vitamin/thiol related nutritional genetic data by genotype (1 of 4) .. 194
Table 4-13: Alzheimer’s disease cases; B-vitamin/thiol related nutritional genetic data by genotype (2 of 4) .. 195
Table 4-14: Alzheimer’s disease cases; B-vitamin/thiol related nutritional genetic data by genotype (3 of 4) .. 196
Table 4-15: Alzheimer’s disease cases; B-vitamin/thiol related nutritional genetic data by genotype (4 of 4) .. 197
Table 4-16: Ordinal logistic regression; model for all genetic, metabolic and physiologic variables .. 198
Table 4-17: Ordinal logistic regression; model for gene variants only .. 199
Table 4-18: Ordinal logistic regression; model for all B-vitamin related blood metabolites and thiols combined .. 199
Table 4-19: Ordinal logistic regression; model for thiol transsulphuration pathway metabolites 200
Table 4-20: Ordinal logistic regression; model for B-vitamin related blood metabolites 200
Table 4-21: Ordinal logistic regression; model for total dietary folic acid 201
Table 4-22: Ordinal Logistic regression; model for total natural and synthetic folic acid intakes. ... 201

CHAPTER 5

Table 5-1: Descriptive data based on age (years). ... 207
Table 5-2: Data for all subjects (adenomatous and non-adenomatous polyps and controls); blood metabolites and related indices ... 208
Table 5-3: Data for male subjects (adenomatous and non-adenomatous polyps and controls); blood metabolites and related indices ... 208
Table 5-4: Data for female subjects (adenomatous and non-adenomatous polyps and controls); blood metabolites and related indices ... 208
Table 5-5: Complete genetic data for the adenomatous and non-adenomatous polyp and control cohorts; genotype prevalence and allele number .. 209
Table 5-6: All data (adenomatous and non-adenomatous polyps and controls); B-vitamin/thiol related nutritional genetic data by genotype (1 of 4) ... 210
Table 5-7: All data (adenomatous and non-adenomatous polyps and controls); B-vitamin/thiol related nutritional genetic data by genotype (2 of 4) ... 211
Table 5-8: All data (adenomatous and non-adenomatous polyps and controls); B-vitamin/thiol related nutritional genetic data by genotype (3 of 4) ... 212
Table 5-9: All data (adenomatous and non-adenomatous polyps and controls); B-vitamin/thiol related nutritional genetic data by genotype (4 of 4) ... 213
Table 5-10: Clinical phenotype; genotype prevalence, allele number and carriage of mutant allele .. 216
Table 5-11: Clinical phenotype; odds ratio and 95% CI along with chi-square test p value .. 217
Table 5-12: Clinical phenotype; genotype prevalence, allele number and carriage of mutant allele for individuals with a low folate status (below median red cell folate) .. 219
Table 5-13: Clinical phenotype; odds ratio and 95% CI along with chi-square test p value for individuals with a low folate status (below median red cell folate) .. 220
Table 5-14: Clinical phenotype; genotype prevalence, allele number and carriage of mutant allele for individuals with a high folate status (above median red cell folate) .. 222
Table 5-15: Clinical phenotype; odds ratio and 95% CI along with chi-square test p value for individuals with a high folate status (above median red cell folate) .. 223
Table 5-16: Controls; B-vitamin/thiol related nutritional genetic data by genotype (1 of 4) .. 225
Table 5-17: Controls; B-vitamin/thiol related nutritional genetic data by genotype (2 of 4) .. 226
Table 5-18: Controls; B-vitamin/thiol related nutritional genetic data by genotype (3 of 4) .. 227
Table 5-19: Controls; B-vitamin/thiol related nutritional genetic data by genotype (4 of 4) .. 228
Table 5-20: Adenomatous polyp; B-vitamin/thiol related nutritional genetic data by genotype (1 of 4) .. 229
Table 5-21: Adenomatous polyp; B-vitamin/thiol related nutritional genetic data by genotype (2 of 4) .. 230
Table 5-22: Adenomatous polyp; B-vitamin/thiol related nutritional genetic data by genotype (3 of 4) .. 231
Table 5-23: Adenomatous polyp; B-vitamin/thiol related nutritional genetic data by genotype (4 of 4) .. 232
Table 5-24: Adenomatous plus non-adenomatous polyp; B-vitamin/thiol related nutritional genetic data by genotype (1 of 4) .. 233
Table 5-25: Adenomatous plus non-adenomatous polyp; B-vitamin/thiol related nutritional genetic data by genotype (2 of 4) .. 234
Table 5-26: Adenomatous plus non-adenomatous polyp; B-vitamin/thiol related nutritional genetic data by genotype (3 of 4) .. 235
Table 5-27: Adenomatous plus non-adenomatous polyp; B-vitamin/thiol related nutritional genetic data by genotype (4 of 4) .. 236
Table 5-28: Ordinal logistic regression; model for adenomatous polyp - all genetic, metabolic and physiologic variables .. 237
Table 5-29: Ordinal logistic regression; model for adenomatous polyp - gene variants only .. 238
Table 5-30: Ordinal logistic regression; model for adenomatous polyp plus non-adenomatous polyp - all genetic, metabolic and physiologic variables .. 238
Table 5-31: Ordinal logistic regression; model for adenomatous polyp plus non-adenomatous polyp - gene variants only .. 239
Table 5-32	Ordinal logistic regression; model for adenomatous polyp plus non-adenomatous polyp – basic population information .. 239
Table 5-33	Ordinal logistic regression; model for below median red cell folate status – adenomatous polyp - gene variants only .. 240
Table 5-34	Ordinal logistic regression; model for below median red cell folate status – adenomatous polyp – basic population information ... 240
Table 5-35	Ordinal logistic regression; model for below median red cell folate status – adenomatous polyp – thiols and blood metabolites only .. 240
Table 5-36	Ordinal logistic regression; model for below median red cell folate status – adenomatous polyp – blood metabolites only .. 241
Table 5-37	Analysis using a standard least squares model to examine the relationship between dietary vitamers of folic acid and red cell folate in all subjects 242
Table 5-38	Analysis using a standard least squares model to examine the relationship between dietary vitamers of folic acid and red cell folate for individuals below the population median value for red cell folate status .. 243
Table 5-39	Analysis using a standard least squares model to examine the relationship between dietary vitamers of folic acid and red cell folate for individuals at or above the population median value for red cell folate status .. 243
Table 5-40	Ordinal logistic regression; risk for adenomatous polyps below median red cell folate value – examination of all blood folate parameters .. 245
Table 5-41	Ordinal logistic regression; risk for adenomatous polyps below median red cell folate value – examination of blood folate parameters and gender .. 245
Acknowledgments

Firstly, I would like to express sincere gratitude and appreciation to A/Prof Mark Lucock who has been my principal supervisor. Thank you for allowing me to undertake this research and, more importantly, believing in my ability to achieve this doctorate. Mark’s expertise, patience, and understanding have been of great benefit to my university experience. You have exemplified what it is to be a true academic. Thank you for always being available when I have needed you, especially for rescheduling your days and working late nights.

I would also like to acknowledge my other supervisors, A/Prof Martin Veysey, who provided scholarship and research funds, assisted with the numerous clinical aspects of this work, and lead the facilitation between the research group and other healthcare professionals. A very special thanks also goes to Dr Paul Roach, whose academic oversight throughout this whole endeavour and work to recruit and collect data was greatly valued.

I would like to express my gratitude to Dr Zoe Yates for her role in helping me achieve this doctorate. The door of her office was always open to me as I worked through the challenges of this research. In the laboratory she was a pleasure to work with and she also ensured the safety and maintenance of the working environment.

Finally, I would like to thank my husband David for lovingly supporting me through this doctorate. He encouraged me to keep going when I otherwise would have given up. And, he knew how to distract me when I needed a break.
Acknowledgment of collaboration

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers, or carried out in other institutions. I have included as part of the thesis this statement clearly outlining the extent of collaboration, with whom and under what auspices.

PhD Candidate

CHAPTER 3: B-VITAMIN NUTRITIONAL GENETICS IN THE ELDERLY - A DETAILED STUDY OF HYPERTENSIVE AND DEPRESSIVE PHENOTYPES

I would like to thank and acknowledge various associate investigators and students whose work has been incorporated into this chapter. This study was completed in two stages, for stage 1 I would like to thank Dr Barbara Blades for the recruitment, clinical assessment including blood pressure measurements, HADS, and MMSE data. I would like to thank Dr Virginia Skinner for the continued recruitment in stage 2, and for interviewing, clinical assessments, venepuncture and database management. I would like to thank honours student Lisa Dufficy for work in stage 1, in which she interviewed participants and completed the FFQ’s, and dietary folate analysis. Additionally I would like to acknowledge her for genotyping of the first stage cohort for the 80 G>A RFC polymorphism. I would like to recognise honours student Charlotte Naylor for genotyping the 1420C>T SHMT and the 1947G>A COMT polymorphisms for this in the entire cohort of samples covering both stage 1 and 2. I also acknowledge the collaboration with PhD students, Dr Nenad Naumovski (for method development and analysis of the amino-thiols for samples collected in stage 1), and Dr Xiaowei Ng (in sample collection across both stages, and for completion of the genotyping of 677C>T MTHFR, 1298A>C MTHFR, 19bp del DHFR and 1561C>T GCPII polymorphisms in stage 1).

CHAPTER 4: B-VITAMIN NUTRITIONAL GENETICS IN THE ELDERLY - RISK FOR ALZHEIMER’S DISEASE

I would like to thank the chief investigator of the study, Dr Jonathan Sturm for the recruitment of participants. I also acknowledge the work of Dr Bill O’Brien for clinical evaluation, interviews, and sample collection. I would again also like to thank honours student Charlotte Naylor for genotyping the 1420C>T SHMT and the 1947G>A COMT polymorphisms for this AD cohort.
CHAPTER 5: B-VITAMIN NUTRITIONAL GENETICS AND OCCURRENCE OF ADENOMATOUS POLYP – A MAJOR ANTECEDENT OF COLORECTAL CANCER

I would like to thank BMedSci student Ron Wai for the initial recruitment, interviewing, and venepuncture of the first 50 subjects recruited into this study. I also acknowledge his completion of the 80G>A RFC polymorphism on those initial subjects as a part of his BMedSci project. This data has been incorporated into the study database and has been used for analysis in this chapter. I would again like to thank Dr Virginia Skinner for her involvement in the recruitment, interviewing, and venepuncture of subjects in this cohort.

Overall, I would like to acknowledge ICMPR at Westmead Hospital, NSW for the analysis of samples for serum vitamin B_{12}, serum folate, red cell folate across all three study chapters. I would like to finally thank Dr Maureen Townley-Jones, School of Mathematical & Physical Sciences, University of Newcastle, for her assistance in applying and interpreting the correct statistical analysis for all three sets of data. Each of these chapters has contained data from larger ongoing studies. Over the years, there have been many contributors to the research and I apologise for any omission of those who I have not named.
Acknowledgment of Authorship

I hereby certify that the work embodied in this thesis contains published paper/s/scholarly work of which I am a joint author. I have included this written statement as part of the thesis, which attests to my contribution to the joint publication/s/scholarly work and is endorsed by my supervisor.

PhD Candidate Principal Supervisor

Journal Papers

