The relationship between early Alzheimer’s Disease, Apolipoprotein E genotyping & Hippocampal MRI Volumes

Bernard Anthony Walsh

Thesis submission for the degree of Master of Philosophy (Clinical Epidemiology), University of Newcastle, Australia.

February 2014
Declarations:

Statement of Originality:

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968.

Signed

Bernard Anthony Walsh
Statement of Collaboration:

I hereby certify that the work embodied in this thesis has been done in collaboration with another researcher, Dr Stuart Slater, senior radiologist, Hunter Imaging Group, Newcastle Australia, whose input involved performing all cerebral MRI scanning and associated medial temporal lobe volume estimations conducted on the research subjects in this thesis.

Signed

Bernard Anthony Walsh

Statement of Authorship:

I hereby certify that the work embodied in this thesis contains published work of which I am a joint author. As part of thesis I provide the written statement, endorsed by my principal supervisor Professor Balakrishnan Nair, School of Medicine and Public Health, University of Newcastle, that I was the primary contributor and author of these publications.

Signed

Bernard Anthony Walsh
Acknowledgements:

The author wishes to acknowledge the support and assistance provided by the following persons and organizations, whose skills and guidance were invaluable in the formation of this research:

Professor Balakrishnan Nair, School of Medicine and Public Health, University of Newcastle. (principal supervisor)

Professor John Attia, School of Medicine and Public Health, University of Newcastle. (co-supervisor)

Professor Rodney Scott, School of Biomedical Sciences and Pharmacy, University of Newcastle (co-supervisor)

Dr Stuart Slater, senior radiologist, Hunter Imaging Group

Associate Professor Patrick McElduff, senior statistician, University of Newcastle

All of the study participants who volunteered to be part of this research

Hunter New England Health Service
Table of Contents:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declarations</td>
<td>2-3</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>4</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>5-6</td>
</tr>
<tr>
<td>List of Figures & Graphs</td>
<td>7</td>
</tr>
<tr>
<td>List of Tables</td>
<td>8</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>9</td>
</tr>
<tr>
<td>Abstract</td>
<td>11</td>
</tr>
<tr>
<td>Chapter 1: Introduction.</td>
<td>12</td>
</tr>
<tr>
<td>1.1 Overview</td>
<td></td>
</tr>
<tr>
<td>1.2 Study Rationale & scientific background</td>
<td></td>
</tr>
<tr>
<td>1.3 Aims</td>
<td></td>
</tr>
<tr>
<td>1.4 Research hypotheses (x2)</td>
<td></td>
</tr>
<tr>
<td>Chapter 2: Literature review.</td>
<td>29</td>
</tr>
<tr>
<td>Chapter 3: Methods.</td>
<td>34</td>
</tr>
<tr>
<td>3.1 Overview</td>
<td></td>
</tr>
<tr>
<td>3.2 Ethics committee application</td>
<td></td>
</tr>
<tr>
<td>3.3 Studies populations</td>
<td></td>
</tr>
<tr>
<td>3.4 Sample size estimates</td>
<td></td>
</tr>
<tr>
<td>3.5 Patient selection, recruitment & consent plus data storage protocols</td>
<td></td>
</tr>
<tr>
<td>3.6 Outcome measures</td>
<td></td>
</tr>
</tbody>
</table>
3.7 MRI image acquisition
3.8 Statistical analysis

Chapter 4.a. Results (Major Study).

Chapter 4.b. Results (Minor Study).

Chapter 5.a. Discussion (Major Study).

Chapter 5.b. Discussion (Minor Study).

Chapter 6: Publications arising from thesis research.

6.1 Overview

8. Appendices.

8.1 Structured UoN course work and thesis timetable

8.2 Hunter New England Human Research Ethics committee approval

8.3 Study Information form

8.4 Clinical Dementia Rating scale (CDR)

8.5 DSM IV criteria for probable Alzheimer’s Disease
List of Figures & Graphs:

Figure 1. Immunofluorecence staining of the combined ApoE4 - Aβ Amyloid protein complex within the cerebral cortex of Alzheimer’s Disease.

Graph 1. Apolipoprotein E e4 count and Age-of-Diagnosis (nil, 1 and 2 e4 alleles) with the vertical axis being Density Estimations using age specific histograms, together with a Kernel Smoothing plotted line.

Graph 2. Left and right Hippocampal volumes across Apolipoprotein E e4 allele load (nil, 1 and 2 e4 alleles)
List of Tables:

Table 1. Structural differences of the three allelic forms of the Apolipoprotein E gene.

Table 2. The five major biomarkers of Alzheimer’s Disease and their relationship to the Amyloid hypothesis stages.

Table 3. The five major biomarkers of Alzheimer’s Disease: Ability of each to correlate with the level of neuronal destruction in Alzheimer’s Disease.

Table 4. The 10 studies examining links between Apolipoprotein E genotype and the structural Magnetic Resonance Imaging changes in Alzheimer’s Disease persons.

Table 5. Clinical characteristics of study population (Eighty eight Clinical Dementia Rating 1.0 patients).

Table 6. Multiple Linear regression of hippocampal volume.

Table 7. Demographics and Results of study group of five hundred and twenty community dwelling Clinical Dementia Rating 1.0 subjects

Table 8. Apolipoprotein E ε4 allele frequency in the study group of five hundred and twenty community dwelling Clinical Dementia Rating 1.0 subjects

Table 9. Comparative Apolipoprotein E ε4 frequency in study group of Clinical Dementia Rating 1.0 persons compared to known general Caucasian populations data
List of Abbreviations:

Amnesic Mild Cognitive Impairment Syndrome Amnesic MCI
ALlele FREquency Database (US Nat. Science Foundation) ALFRED
Alzheimer’s Disease AD
One Way Analysis of Variance ANOVA
Amyloid Precursor Protein APP
Apolipoprotein E Apo E
Apolipoprotein E epsilon 2 allele ApoE ε2
Apolipoprotein E epsilon 3 allele ApoE ε3
Apolipoprotein E epsilon 4 allele ApoE ε4
Apolipoprotein E2 protein isoform (coded by ApoE ε2 allele) Apo E2
Apolipoprotein E2 protein isoform (coded by ApoE ε3 allele) Apo E3
Apolipoprotein E2 protein isoform (coded by ApoE ε4 allele) Apo E4
Cerebral Spinal Fluid CSF
Clinical Dementia Rating scale CDR
FluoroDeoxyGlucose FDG
Medial Temporal Lobe (of the cerebrum) MTL
Magnetic Resonance Imaging MRI
Dementia of the Alzheimer’s Type DAT
Mini Mental State Examination MMSE
Positron Emission Tomography PET
Pittsburgh Compound-B PIB
Relative Ratio RR
Single Photon Emission Computerised Tomography SPECT
Tau family of intraneuronal proteins Tau
Vascular Dementia VasD
Abstract:

This thesis attempts to improve the clinical probability of correctly staging the degree of Alzheimer’s Disease (AD) neuropathology in an individual presenting with the syndrome of early Dementia, by exploring the relationship between the known subtypes of the cerebral protein Apolipoprotein E (ApoE) and the extent of AD neuropathology in such persons, using the surrogate of cerebral MRI volume loss within the Medial Temporal Lobe (MTL) regions as the maker of severity of AD neuropathology.

In this thesis Early Dementia is defined as “CDR 1.0” using the Clinical Dementia Rating scale (CDR), this being the classification in most common use by Dementia clinicians. The research subjects were drawn from CDR 1.0 persons residing within the community (as opposed to more serve dementia persons typically needing to reside within assisted care programs and who typically have more advanced neurodegeneration). These subjects are the most likely group where improved definition of the degree of neurodegeneration within an early AD individual would be of most clinical use.

No demonstrable relationship between the ApoE ε4 allele and increasing MTL volume loss in early AD was found in the research studies of this thesis and hence the presence of one or more ε4 alleles cannot be used by the clinician to estimate pathological disease load within an equivalent degree of cognitive impairment in early AD.

One peer reviewed medical literature publication and one published abstract resulted from this thesis work.